Properties

Label 100.9.f.b.93.2
Level $100$
Weight $9$
Character 100.93
Analytic conductor $40.738$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(57,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.57"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} + 8 x^{6} + 22254 x^{5} + 4820745 x^{4} + 50131374 x^{3} + 307615702 x^{2} + \cdots + 2405464244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 93.2
Root \(-29.1758 - 30.1758i\) of defining polynomial
Character \(\chi\) \(=\) 100.93
Dual form 100.9.f.b.57.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-18.1203 - 18.1203i) q^{3} +(190.873 - 190.873i) q^{7} -5904.31i q^{9} -19026.8 q^{11} +(27902.1 + 27902.1i) q^{13} +(22518.5 - 22518.5i) q^{17} -63405.3i q^{19} -6917.35 q^{21} +(-196829. - 196829. i) q^{23} +(-225875. + 225875. i) q^{27} +595585. i q^{29} +249340. q^{31} +(344771. + 344771. i) q^{33} +(-229540. + 229540. i) q^{37} -1.01119e6i q^{39} -4.30046e6 q^{41} +(3.59483e6 + 3.59483e6i) q^{43} +(-6.19225e6 + 6.19225e6i) q^{47} +5.69194e6i q^{49} -816086. q^{51} +(253926. + 253926. i) q^{53} +(-1.14893e6 + 1.14893e6i) q^{57} +7.27642e6i q^{59} -3.24983e6 q^{61} +(-1.12697e6 - 1.12697e6i) q^{63} +(-2.68654e7 + 2.68654e7i) q^{67} +7.13321e6i q^{69} -3.70958e7 q^{71} +(2.76665e7 + 2.76665e7i) q^{73} +(-3.63169e6 + 3.63169e6i) q^{77} -2.03584e7i q^{79} -3.05523e7 q^{81} +(2.23434e7 + 2.23434e7i) q^{83} +(1.07922e7 - 1.07922e7i) q^{87} +2.64461e7i q^{89} +1.06515e7 q^{91} +(-4.51812e6 - 4.51812e6i) q^{93} +(-9.78714e7 + 9.78714e7i) q^{97} +1.12340e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 70 q^{3} + 2030 q^{7} - 420 q^{11} - 33180 q^{13} - 43620 q^{17} + 108668 q^{21} + 663270 q^{23} - 1576040 q^{27} - 3178492 q^{31} + 944020 q^{33} - 5344080 q^{37} - 10185252 q^{41} + 10342710 q^{43}+ \cdots + 179570760 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −18.1203 18.1203i −0.223708 0.223708i 0.586350 0.810058i \(-0.300564\pi\)
−0.810058 + 0.586350i \(0.800564\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 190.873 190.873i 0.0794971 0.0794971i −0.666240 0.745737i \(-0.732097\pi\)
0.745737 + 0.666240i \(0.232097\pi\)
\(8\) 0 0
\(9\) 5904.31i 0.899910i
\(10\) 0 0
\(11\) −19026.8 −1.29955 −0.649776 0.760125i \(-0.725137\pi\)
−0.649776 + 0.760125i \(0.725137\pi\)
\(12\) 0 0
\(13\) 27902.1 + 27902.1i 0.976930 + 0.976930i 0.999740 0.0228094i \(-0.00726109\pi\)
−0.0228094 + 0.999740i \(0.507261\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 22518.5 22518.5i 0.269615 0.269615i −0.559330 0.828945i \(-0.688942\pi\)
0.828945 + 0.559330i \(0.188942\pi\)
\(18\) 0 0
\(19\) 63405.3i 0.486532i −0.969960 0.243266i \(-0.921781\pi\)
0.969960 0.243266i \(-0.0782188\pi\)
\(20\) 0 0
\(21\) −6917.35 −0.0355682
\(22\) 0 0
\(23\) −196829. 196829.i −0.703360 0.703360i 0.261770 0.965130i \(-0.415694\pi\)
−0.965130 + 0.261770i \(0.915694\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −225875. + 225875.i −0.425024 + 0.425024i
\(28\) 0 0
\(29\) 595585.i 0.842077i 0.907043 + 0.421039i \(0.138334\pi\)
−0.907043 + 0.421039i \(0.861666\pi\)
\(30\) 0 0
\(31\) 249340. 0.269988 0.134994 0.990846i \(-0.456898\pi\)
0.134994 + 0.990846i \(0.456898\pi\)
\(32\) 0 0
\(33\) 344771. + 344771.i 0.290720 + 0.290720i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −229540. + 229540.i −0.122476 + 0.122476i −0.765688 0.643212i \(-0.777601\pi\)
0.643212 + 0.765688i \(0.277601\pi\)
\(38\) 0 0
\(39\) 1.01119e6i 0.437094i
\(40\) 0 0
\(41\) −4.30046e6 −1.52188 −0.760938 0.648824i \(-0.775261\pi\)
−0.760938 + 0.648824i \(0.775261\pi\)
\(42\) 0 0
\(43\) 3.59483e6 + 3.59483e6i 1.05149 + 1.05149i 0.998600 + 0.0528880i \(0.0168426\pi\)
0.0528880 + 0.998600i \(0.483157\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.19225e6 + 6.19225e6i −1.26899 + 1.26899i −0.322375 + 0.946612i \(0.604481\pi\)
−0.946612 + 0.322375i \(0.895519\pi\)
\(48\) 0 0
\(49\) 5.69194e6i 0.987360i
\(50\) 0 0
\(51\) −816086. −0.120630
\(52\) 0 0
\(53\) 253926. + 253926.i 0.0321813 + 0.0321813i 0.723014 0.690833i \(-0.242756\pi\)
−0.690833 + 0.723014i \(0.742756\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.14893e6 + 1.14893e6i −0.108841 + 0.108841i
\(58\) 0 0
\(59\) 7.27642e6i 0.600496i 0.953861 + 0.300248i \(0.0970694\pi\)
−0.953861 + 0.300248i \(0.902931\pi\)
\(60\) 0 0
\(61\) −3.24983e6 −0.234715 −0.117358 0.993090i \(-0.537442\pi\)
−0.117358 + 0.993090i \(0.537442\pi\)
\(62\) 0 0
\(63\) −1.12697e6 1.12697e6i −0.0715402 0.0715402i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.68654e7 + 2.68654e7i −1.33320 + 1.33320i −0.430705 + 0.902493i \(0.641735\pi\)
−0.902493 + 0.430705i \(0.858265\pi\)
\(68\) 0 0
\(69\) 7.13321e6i 0.314694i
\(70\) 0 0
\(71\) −3.70958e7 −1.45979 −0.729896 0.683559i \(-0.760431\pi\)
−0.729896 + 0.683559i \(0.760431\pi\)
\(72\) 0 0
\(73\) 2.76665e7 + 2.76665e7i 0.974234 + 0.974234i 0.999676 0.0254420i \(-0.00809931\pi\)
−0.0254420 + 0.999676i \(0.508099\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.63169e6 + 3.63169e6i −0.103311 + 0.103311i
\(78\) 0 0
\(79\) 2.03584e7i 0.522681i −0.965247 0.261340i \(-0.915836\pi\)
0.965247 0.261340i \(-0.0841645\pi\)
\(80\) 0 0
\(81\) −3.05523e7 −0.709747
\(82\) 0 0
\(83\) 2.23434e7 + 2.23434e7i 0.470800 + 0.470800i 0.902173 0.431374i \(-0.141971\pi\)
−0.431374 + 0.902173i \(0.641971\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.07922e7 1.07922e7i 0.188379 0.188379i
\(88\) 0 0
\(89\) 2.64461e7i 0.421504i 0.977540 + 0.210752i \(0.0675912\pi\)
−0.977540 + 0.210752i \(0.932409\pi\)
\(90\) 0 0
\(91\) 1.06515e7 0.155326
\(92\) 0 0
\(93\) −4.51812e6 4.51812e6i −0.0603984 0.0603984i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.78714e7 + 9.78714e7i −1.10553 + 1.10553i −0.111795 + 0.993731i \(0.535660\pi\)
−0.993731 + 0.111795i \(0.964340\pi\)
\(98\) 0 0
\(99\) 1.12340e8i 1.16948i
\(100\) 0 0
\(101\) 1.04946e8 1.00851 0.504257 0.863553i \(-0.331766\pi\)
0.504257 + 0.863553i \(0.331766\pi\)
\(102\) 0 0
\(103\) −1.04986e8 1.04986e8i −0.932789 0.932789i 0.0650901 0.997879i \(-0.479267\pi\)
−0.997879 + 0.0650901i \(0.979267\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.19346e8 1.19346e8i 0.910485 0.910485i −0.0858251 0.996310i \(-0.527353\pi\)
0.996310 + 0.0858251i \(0.0273526\pi\)
\(108\) 0 0
\(109\) 1.74582e8i 1.23678i −0.785871 0.618390i \(-0.787785\pi\)
0.785871 0.618390i \(-0.212215\pi\)
\(110\) 0 0
\(111\) 8.31868e6 0.0547977
\(112\) 0 0
\(113\) −5.45939e6 5.45939e6i −0.0334835 0.0334835i 0.690167 0.723650i \(-0.257537\pi\)
−0.723650 + 0.690167i \(0.757537\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.64743e8 1.64743e8i 0.879149 0.879149i
\(118\) 0 0
\(119\) 8.59633e6i 0.0428672i
\(120\) 0 0
\(121\) 1.47658e8 0.688838
\(122\) 0 0
\(123\) 7.79257e7 + 7.79257e7i 0.340456 + 0.340456i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −6.35128e6 + 6.35128e6i −0.0244144 + 0.0244144i −0.719209 0.694794i \(-0.755495\pi\)
0.694794 + 0.719209i \(0.255495\pi\)
\(128\) 0 0
\(129\) 1.30279e8i 0.470452i
\(130\) 0 0
\(131\) −2.24615e8 −0.762699 −0.381350 0.924431i \(-0.624541\pi\)
−0.381350 + 0.924431i \(0.624541\pi\)
\(132\) 0 0
\(133\) −1.21023e7 1.21023e7i −0.0386779 0.0386779i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.38143e8 3.38143e8i 0.959882 0.959882i −0.0393439 0.999226i \(-0.512527\pi\)
0.999226 + 0.0393439i \(0.0125268\pi\)
\(138\) 0 0
\(139\) 5.48983e8i 1.47062i −0.677732 0.735309i \(-0.737037\pi\)
0.677732 0.735309i \(-0.262963\pi\)
\(140\) 0 0
\(141\) 2.24411e8 0.567764
\(142\) 0 0
\(143\) −5.30887e8 5.30887e8i −1.26957 1.26957i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.03140e8 1.03140e8i 0.220880 0.220880i
\(148\) 0 0
\(149\) 5.66486e8i 1.14933i 0.818389 + 0.574665i \(0.194867\pi\)
−0.818389 + 0.574665i \(0.805133\pi\)
\(150\) 0 0
\(151\) 9.43633e8 1.81508 0.907539 0.419968i \(-0.137959\pi\)
0.907539 + 0.419968i \(0.137959\pi\)
\(152\) 0 0
\(153\) −1.32956e8 1.32956e8i −0.242629 0.242629i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.37850e8 1.37850e8i 0.226886 0.226886i −0.584505 0.811390i \(-0.698711\pi\)
0.811390 + 0.584505i \(0.198711\pi\)
\(158\) 0 0
\(159\) 9.20244e6i 0.0143984i
\(160\) 0 0
\(161\) −7.51385e7 −0.111830
\(162\) 0 0
\(163\) 1.86924e8 + 1.86924e8i 0.264798 + 0.264798i 0.827000 0.562202i \(-0.190046\pi\)
−0.562202 + 0.827000i \(0.690046\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.37971e8 + 5.37971e8i −0.691661 + 0.691661i −0.962597 0.270936i \(-0.912667\pi\)
0.270936 + 0.962597i \(0.412667\pi\)
\(168\) 0 0
\(169\) 7.41325e8i 0.908786i
\(170\) 0 0
\(171\) −3.74365e8 −0.437835
\(172\) 0 0
\(173\) 4.79607e8 + 4.79607e8i 0.535428 + 0.535428i 0.922183 0.386754i \(-0.126404\pi\)
−0.386754 + 0.922183i \(0.626404\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.31851e8 1.31851e8i 0.134335 0.134335i
\(178\) 0 0
\(179\) 1.39076e9i 1.35469i −0.735665 0.677346i \(-0.763130\pi\)
0.735665 0.677346i \(-0.236870\pi\)
\(180\) 0 0
\(181\) −1.45715e9 −1.35766 −0.678830 0.734296i \(-0.737512\pi\)
−0.678830 + 0.734296i \(0.737512\pi\)
\(182\) 0 0
\(183\) 5.88880e7 + 5.88880e7i 0.0525076 + 0.0525076i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.28454e8 + 4.28454e8i −0.350379 + 0.350379i
\(188\) 0 0
\(189\) 8.62269e7i 0.0675765i
\(190\) 0 0
\(191\) −4.33136e8 −0.325455 −0.162727 0.986671i \(-0.552029\pi\)
−0.162727 + 0.986671i \(0.552029\pi\)
\(192\) 0 0
\(193\) 9.36884e8 + 9.36884e8i 0.675237 + 0.675237i 0.958919 0.283681i \(-0.0915557\pi\)
−0.283681 + 0.958919i \(0.591556\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.12789e8 + 7.12789e8i −0.473256 + 0.473256i −0.902967 0.429711i \(-0.858616\pi\)
0.429711 + 0.902967i \(0.358616\pi\)
\(198\) 0 0
\(199\) 1.63094e9i 1.03998i 0.854173 + 0.519989i \(0.174064\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(200\) 0 0
\(201\) 9.73621e8 0.596493
\(202\) 0 0
\(203\) 1.13681e8 + 1.13681e8i 0.0669427 + 0.0669427i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.16214e9 + 1.16214e9i −0.632960 + 0.632960i
\(208\) 0 0
\(209\) 1.20640e9i 0.632274i
\(210\) 0 0
\(211\) −2.87914e9 −1.45255 −0.726277 0.687402i \(-0.758751\pi\)
−0.726277 + 0.687402i \(0.758751\pi\)
\(212\) 0 0
\(213\) 6.72187e8 + 6.72187e8i 0.326567 + 0.326567i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.75921e7 4.75921e7i 0.0214633 0.0214633i
\(218\) 0 0
\(219\) 1.00265e9i 0.435887i
\(220\) 0 0
\(221\) 1.25663e9 0.526790
\(222\) 0 0
\(223\) −2.77849e9 2.77849e9i −1.12354 1.12354i −0.991205 0.132337i \(-0.957752\pi\)
−0.132337 0.991205i \(-0.542248\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.66218e9 + 1.66218e9i −0.626001 + 0.626001i −0.947059 0.321059i \(-0.895961\pi\)
0.321059 + 0.947059i \(0.395961\pi\)
\(228\) 0 0
\(229\) 1.39534e9i 0.507384i 0.967285 + 0.253692i \(0.0816450\pi\)
−0.967285 + 0.253692i \(0.918355\pi\)
\(230\) 0 0
\(231\) 1.31615e8 0.0462228
\(232\) 0 0
\(233\) 1.53597e9 + 1.53597e9i 0.521146 + 0.521146i 0.917918 0.396771i \(-0.129869\pi\)
−0.396771 + 0.917918i \(0.629869\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.68902e8 + 3.68902e8i −0.116928 + 0.116928i
\(238\) 0 0
\(239\) 5.45417e8i 0.167162i −0.996501 0.0835809i \(-0.973364\pi\)
0.996501 0.0835809i \(-0.0266357\pi\)
\(240\) 0 0
\(241\) −9.46365e8 −0.280537 −0.140269 0.990113i \(-0.544797\pi\)
−0.140269 + 0.990113i \(0.544797\pi\)
\(242\) 0 0
\(243\) 2.03559e9 + 2.03559e9i 0.583800 + 0.583800i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.76914e9 1.76914e9i 0.475308 0.475308i
\(248\) 0 0
\(249\) 8.09738e8i 0.210643i
\(250\) 0 0
\(251\) −4.66712e9 −1.17585 −0.587927 0.808914i \(-0.700056\pi\)
−0.587927 + 0.808914i \(0.700056\pi\)
\(252\) 0 0
\(253\) 3.74502e9 + 3.74502e9i 0.914053 + 0.914053i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.22158e8 + 4.22158e8i −0.0967705 + 0.0967705i −0.753835 0.657064i \(-0.771798\pi\)
0.657064 + 0.753835i \(0.271798\pi\)
\(258\) 0 0
\(259\) 8.76258e7i 0.0194730i
\(260\) 0 0
\(261\) 3.51652e9 0.757793
\(262\) 0 0
\(263\) −3.92697e9 3.92697e9i −0.820794 0.820794i 0.165428 0.986222i \(-0.447100\pi\)
−0.986222 + 0.165428i \(0.947100\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.79212e8 4.79212e8i 0.0942936 0.0942936i
\(268\) 0 0
\(269\) 1.88692e9i 0.360366i −0.983633 0.180183i \(-0.942331\pi\)
0.983633 0.180183i \(-0.0576691\pi\)
\(270\) 0 0
\(271\) 3.82459e9 0.709100 0.354550 0.935037i \(-0.384634\pi\)
0.354550 + 0.935037i \(0.384634\pi\)
\(272\) 0 0
\(273\) −1.93009e8 1.93009e8i −0.0347477 0.0347477i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.08916e9 6.08916e9i 1.03428 1.03428i 0.0348898 0.999391i \(-0.488892\pi\)
0.999391 0.0348898i \(-0.0111080\pi\)
\(278\) 0 0
\(279\) 1.47218e9i 0.242965i
\(280\) 0 0
\(281\) 7.36217e9 1.18081 0.590406 0.807107i \(-0.298968\pi\)
0.590406 + 0.807107i \(0.298968\pi\)
\(282\) 0 0
\(283\) −7.50823e9 7.50823e9i −1.17055 1.17055i −0.982078 0.188477i \(-0.939645\pi\)
−0.188477 0.982078i \(-0.560355\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.20840e8 + 8.20840e8i −0.120985 + 0.120985i
\(288\) 0 0
\(289\) 5.96159e9i 0.854616i
\(290\) 0 0
\(291\) 3.54692e9 0.494630
\(292\) 0 0
\(293\) −5.53947e9 5.53947e9i −0.751619 0.751619i 0.223163 0.974781i \(-0.428362\pi\)
−0.974781 + 0.223163i \(0.928362\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.29768e9 4.29768e9i 0.552342 0.552342i
\(298\) 0 0
\(299\) 1.09839e10i 1.37427i
\(300\) 0 0
\(301\) 1.37231e9 0.167181
\(302\) 0 0
\(303\) −1.90166e9 1.90166e9i −0.225613 0.225613i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.64460e8 5.64460e8i 0.0635448 0.0635448i −0.674620 0.738165i \(-0.735693\pi\)
0.738165 + 0.674620i \(0.235693\pi\)
\(308\) 0 0
\(309\) 3.80477e9i 0.417344i
\(310\) 0 0
\(311\) −2.47892e9 −0.264984 −0.132492 0.991184i \(-0.542298\pi\)
−0.132492 + 0.991184i \(0.542298\pi\)
\(312\) 0 0
\(313\) 9.72227e9 + 9.72227e9i 1.01296 + 1.01296i 0.999915 + 0.0130407i \(0.00415111\pi\)
0.0130407 + 0.999915i \(0.495849\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.03089e10 1.03089e10i 1.02088 1.02088i 0.0211068 0.999777i \(-0.493281\pi\)
0.999777 0.0211068i \(-0.00671900\pi\)
\(318\) 0 0
\(319\) 1.13321e10i 1.09432i
\(320\) 0 0
\(321\) −4.32518e9 −0.407365
\(322\) 0 0
\(323\) −1.42779e9 1.42779e9i −0.131176 0.131176i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.16348e9 + 3.16348e9i −0.276677 + 0.276677i
\(328\) 0 0
\(329\) 2.36386e9i 0.201762i
\(330\) 0 0
\(331\) 7.62056e9 0.634855 0.317428 0.948282i \(-0.397181\pi\)
0.317428 + 0.948282i \(0.397181\pi\)
\(332\) 0 0
\(333\) 1.35527e9 + 1.35527e9i 0.110217 + 0.110217i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.43147e9 1.43147e9i 0.110985 0.110985i −0.649433 0.760418i \(-0.724994\pi\)
0.760418 + 0.649433i \(0.224994\pi\)
\(338\) 0 0
\(339\) 1.97852e8i 0.0149810i
\(340\) 0 0
\(341\) −4.74412e9 −0.350864
\(342\) 0 0
\(343\) 2.18678e9 + 2.18678e9i 0.157989 + 0.157989i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.72187e9 + 7.72187e9i −0.532604 + 0.532604i −0.921346 0.388742i \(-0.872910\pi\)
0.388742 + 0.921346i \(0.372910\pi\)
\(348\) 0 0
\(349\) 3.20836e9i 0.216263i −0.994137 0.108131i \(-0.965513\pi\)
0.994137 0.108131i \(-0.0344867\pi\)
\(350\) 0 0
\(351\) −1.26048e10 −0.830439
\(352\) 0 0
\(353\) −5.06371e9 5.06371e9i −0.326115 0.326115i 0.524992 0.851107i \(-0.324068\pi\)
−0.851107 + 0.524992i \(0.824068\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.55768e8 + 1.55768e8i −0.00958973 + 0.00958973i
\(358\) 0 0
\(359\) 6.18165e9i 0.372157i 0.982535 + 0.186079i \(0.0595779\pi\)
−0.982535 + 0.186079i \(0.940422\pi\)
\(360\) 0 0
\(361\) 1.29633e10 0.763287
\(362\) 0 0
\(363\) −2.67562e9 2.67562e9i −0.154098 0.154098i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.55537e10 + 1.55537e10i −0.857371 + 0.857371i −0.991028 0.133657i \(-0.957328\pi\)
0.133657 + 0.991028i \(0.457328\pi\)
\(368\) 0 0
\(369\) 2.53912e10i 1.36955i
\(370\) 0 0
\(371\) 9.69350e7 0.00511664
\(372\) 0 0
\(373\) 8.05344e9 + 8.05344e9i 0.416051 + 0.416051i 0.883840 0.467789i \(-0.154949\pi\)
−0.467789 + 0.883840i \(0.654949\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.66181e10 + 1.66181e10i −0.822651 + 0.822651i
\(378\) 0 0
\(379\) 2.11955e10i 1.02727i 0.858007 + 0.513637i \(0.171702\pi\)
−0.858007 + 0.513637i \(0.828298\pi\)
\(380\) 0 0
\(381\) 2.30175e8 0.0109234
\(382\) 0 0
\(383\) 4.49717e9 + 4.49717e9i 0.208999 + 0.208999i 0.803842 0.594843i \(-0.202786\pi\)
−0.594843 + 0.803842i \(0.702786\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.12250e10 2.12250e10i 0.946245 0.946245i
\(388\) 0 0
\(389\) 1.17946e10i 0.515093i −0.966266 0.257547i \(-0.917086\pi\)
0.966266 0.257547i \(-0.0829141\pi\)
\(390\) 0 0
\(391\) −8.86459e9 −0.379273
\(392\) 0 0
\(393\) 4.07010e9 + 4.07010e9i 0.170622 + 0.170622i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.96839e10 + 2.96839e10i −1.19498 + 1.19498i −0.219324 + 0.975652i \(0.570385\pi\)
−0.975652 + 0.219324i \(0.929615\pi\)
\(398\) 0 0
\(399\) 4.38597e8i 0.0173051i
\(400\) 0 0
\(401\) −2.98937e10 −1.15612 −0.578059 0.815995i \(-0.696190\pi\)
−0.578059 + 0.815995i \(0.696190\pi\)
\(402\) 0 0
\(403\) 6.95710e9 + 6.95710e9i 0.263760 + 0.263760i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.36740e9 4.36740e9i 0.159164 0.159164i
\(408\) 0 0
\(409\) 4.06334e10i 1.45208i −0.687654 0.726039i \(-0.741359\pi\)
0.687654 0.726039i \(-0.258641\pi\)
\(410\) 0 0
\(411\) −1.22545e10 −0.429466
\(412\) 0 0
\(413\) 1.38887e9 + 1.38887e9i 0.0477377 + 0.0477377i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9.94775e9 + 9.94775e9i −0.328988 + 0.328988i
\(418\) 0 0
\(419\) 5.67792e9i 0.184218i 0.995749 + 0.0921092i \(0.0293609\pi\)
−0.995749 + 0.0921092i \(0.970639\pi\)
\(420\) 0 0
\(421\) −3.08470e10 −0.981938 −0.490969 0.871177i \(-0.663357\pi\)
−0.490969 + 0.871177i \(0.663357\pi\)
\(422\) 0 0
\(423\) 3.65610e10 + 3.65610e10i 1.14197 + 1.14197i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.20304e8 + 6.20304e8i −0.0186592 + 0.0186592i
\(428\) 0 0
\(429\) 1.92397e10i 0.568026i
\(430\) 0 0
\(431\) −3.27768e10 −0.949856 −0.474928 0.880025i \(-0.657526\pi\)
−0.474928 + 0.880025i \(0.657526\pi\)
\(432\) 0 0
\(433\) 7.60012e9 + 7.60012e9i 0.216206 + 0.216206i 0.806898 0.590691i \(-0.201145\pi\)
−0.590691 + 0.806898i \(0.701145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.24800e10 + 1.24800e10i −0.342207 + 0.342207i
\(438\) 0 0
\(439\) 1.35066e10i 0.363654i 0.983330 + 0.181827i \(0.0582012\pi\)
−0.983330 + 0.181827i \(0.941799\pi\)
\(440\) 0 0
\(441\) 3.36069e10 0.888535
\(442\) 0 0
\(443\) −3.65065e10 3.65065e10i −0.947883 0.947883i 0.0508241 0.998708i \(-0.483815\pi\)
−0.998708 + 0.0508241i \(0.983815\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.02649e10 1.02649e10i 0.257114 0.257114i
\(448\) 0 0
\(449\) 2.93648e9i 0.0722507i 0.999347 + 0.0361253i \(0.0115016\pi\)
−0.999347 + 0.0361253i \(0.988498\pi\)
\(450\) 0 0
\(451\) 8.18238e10 1.97776
\(452\) 0 0
\(453\) −1.70989e10 1.70989e10i −0.406047 0.406047i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.06216e10 4.06216e10i 0.931305 0.931305i −0.0664829 0.997788i \(-0.521178\pi\)
0.997788 + 0.0664829i \(0.0211778\pi\)
\(458\) 0 0
\(459\) 1.01728e10i 0.229186i
\(460\) 0 0
\(461\) 1.69744e10 0.375830 0.187915 0.982185i \(-0.439827\pi\)
0.187915 + 0.982185i \(0.439827\pi\)
\(462\) 0 0
\(463\) 1.02630e10 + 1.02630e10i 0.223332 + 0.223332i 0.809900 0.586568i \(-0.199521\pi\)
−0.586568 + 0.809900i \(0.699521\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.93031e10 + 1.93031e10i −0.405845 + 0.405845i −0.880287 0.474442i \(-0.842650\pi\)
0.474442 + 0.880287i \(0.342650\pi\)
\(468\) 0 0
\(469\) 1.02557e10i 0.211971i
\(470\) 0 0
\(471\) −4.99576e9 −0.101512
\(472\) 0 0
\(473\) −6.83979e10 6.83979e10i −1.36646 1.36646i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.49926e9 1.49926e9i 0.0289603 0.0289603i
\(478\) 0 0
\(479\) 6.47760e10i 1.23047i −0.788343 0.615236i \(-0.789061\pi\)
0.788343 0.615236i \(-0.210939\pi\)
\(480\) 0 0
\(481\) −1.28093e10 −0.239301
\(482\) 0 0
\(483\) 1.36153e9 + 1.36153e9i 0.0250173 + 0.0250173i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.13580e10 3.13580e10i 0.557483 0.557483i −0.371107 0.928590i \(-0.621022\pi\)
0.928590 + 0.371107i \(0.121022\pi\)
\(488\) 0 0
\(489\) 6.77426e9i 0.118475i
\(490\) 0 0
\(491\) 2.72949e10 0.469630 0.234815 0.972040i \(-0.424552\pi\)
0.234815 + 0.972040i \(0.424552\pi\)
\(492\) 0 0
\(493\) 1.34117e10 + 1.34117e10i 0.227037 + 0.227037i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.08056e9 + 7.08056e9i −0.116049 + 0.116049i
\(498\) 0 0
\(499\) 8.55600e10i 1.37997i 0.723825 + 0.689984i \(0.242382\pi\)
−0.723825 + 0.689984i \(0.757618\pi\)
\(500\) 0 0
\(501\) 1.94964e10 0.309460
\(502\) 0 0
\(503\) 4.20771e10 + 4.20771e10i 0.657315 + 0.657315i 0.954744 0.297429i \(-0.0961292\pi\)
−0.297429 + 0.954744i \(0.596129\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.34330e10 1.34330e10i 0.203302 0.203302i
\(508\) 0 0
\(509\) 1.19496e11i 1.78025i −0.455714 0.890126i \(-0.650616\pi\)
0.455714 0.890126i \(-0.349384\pi\)
\(510\) 0 0
\(511\) 1.05616e10 0.154898
\(512\) 0 0
\(513\) 1.43217e10 + 1.43217e10i 0.206788 + 0.206788i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.17818e11 1.17818e11i 1.64912 1.64912i
\(518\) 0 0
\(519\) 1.73813e10i 0.239559i
\(520\) 0 0
\(521\) −9.31604e9 −0.126439 −0.0632194 0.998000i \(-0.520137\pi\)
−0.0632194 + 0.998000i \(0.520137\pi\)
\(522\) 0 0
\(523\) 4.01748e9 + 4.01748e9i 0.0536967 + 0.0536967i 0.733445 0.679749i \(-0.237911\pi\)
−0.679749 + 0.733445i \(0.737911\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.61476e9 5.61476e9i 0.0727928 0.0727928i
\(528\) 0 0
\(529\) 8.27726e8i 0.0105697i
\(530\) 0 0
\(531\) 4.29622e10 0.540392
\(532\) 0 0
\(533\) −1.19992e11 1.19992e11i −1.48677 1.48677i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.52010e10 + 2.52010e10i −0.303055 + 0.303055i
\(538\) 0 0
\(539\) 1.08299e11i 1.28313i
\(540\) 0 0
\(541\) −5.43998e10 −0.635050 −0.317525 0.948250i \(-0.602852\pi\)
−0.317525 + 0.948250i \(0.602852\pi\)
\(542\) 0 0
\(543\) 2.64041e10 + 2.64041e10i 0.303719 + 0.303719i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.69974e10 6.69974e10i 0.748357 0.748357i −0.225814 0.974171i \(-0.572504\pi\)
0.974171 + 0.225814i \(0.0725040\pi\)
\(548\) 0 0
\(549\) 1.91880e10i 0.211223i
\(550\) 0 0
\(551\) 3.77633e10 0.409697
\(552\) 0 0
\(553\) −3.88587e9 3.88587e9i −0.0415516 0.0415516i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.16300e11 + 1.16300e11i −1.20825 + 1.20825i −0.236660 + 0.971593i \(0.576053\pi\)
−0.971593 + 0.236660i \(0.923947\pi\)
\(558\) 0 0
\(559\) 2.00607e11i 2.05446i
\(560\) 0 0
\(561\) 1.55275e10 0.156765
\(562\) 0 0
\(563\) −4.63107e10 4.63107e10i −0.460944 0.460944i 0.438021 0.898965i \(-0.355680\pi\)
−0.898965 + 0.438021i \(0.855680\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.83160e9 + 5.83160e9i −0.0564229 + 0.0564229i
\(568\) 0 0
\(569\) 3.00951e10i 0.287109i −0.989642 0.143555i \(-0.954147\pi\)
0.989642 0.143555i \(-0.0458532\pi\)
\(570\) 0 0
\(571\) 5.41650e10 0.509536 0.254768 0.967002i \(-0.418001\pi\)
0.254768 + 0.967002i \(0.418001\pi\)
\(572\) 0 0
\(573\) 7.84856e9 + 7.84856e9i 0.0728067 + 0.0728067i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4.83913e10 + 4.83913e10i −0.436581 + 0.436581i −0.890859 0.454279i \(-0.849897\pi\)
0.454279 + 0.890859i \(0.349897\pi\)
\(578\) 0 0
\(579\) 3.39533e10i 0.302112i
\(580\) 0 0
\(581\) 8.52947e9 0.0748544
\(582\) 0 0
\(583\) −4.83139e9 4.83139e9i −0.0418213 0.0418213i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.35625e10 5.35625e10i 0.451137 0.451137i −0.444595 0.895732i \(-0.646652\pi\)
0.895732 + 0.444595i \(0.146652\pi\)
\(588\) 0 0
\(589\) 1.58095e10i 0.131358i
\(590\) 0 0
\(591\) 2.58319e10 0.211742
\(592\) 0 0
\(593\) −2.01477e10 2.01477e10i −0.162932 0.162932i 0.620932 0.783864i \(-0.286754\pi\)
−0.783864 + 0.620932i \(0.786754\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.95531e10 2.95531e10i 0.232651 0.232651i
\(598\) 0 0
\(599\) 7.82597e10i 0.607898i 0.952688 + 0.303949i \(0.0983053\pi\)
−0.952688 + 0.303949i \(0.901695\pi\)
\(600\) 0 0
\(601\) −1.00940e11 −0.773686 −0.386843 0.922146i \(-0.626434\pi\)
−0.386843 + 0.922146i \(0.626434\pi\)
\(602\) 0 0
\(603\) 1.58622e11 + 1.58622e11i 1.19976 + 1.19976i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.85629e10 + 6.85629e10i −0.505050 + 0.505050i −0.913003 0.407953i \(-0.866243\pi\)
0.407953 + 0.913003i \(0.366243\pi\)
\(608\) 0 0
\(609\) 4.11987e9i 0.0299512i
\(610\) 0 0
\(611\) −3.45554e11 −2.47942
\(612\) 0 0
\(613\) 1.41547e11 + 1.41547e11i 1.00244 + 1.00244i 0.999997 + 0.00244188i \(0.000777275\pi\)
0.00244188 + 0.999997i \(0.499223\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.48653e11 + 1.48653e11i −1.02573 + 1.02573i −0.0260699 + 0.999660i \(0.508299\pi\)
−0.999660 + 0.0260699i \(0.991701\pi\)
\(618\) 0 0
\(619\) 1.85869e10i 0.126603i −0.997994 0.0633016i \(-0.979837\pi\)
0.997994 0.0633016i \(-0.0201630\pi\)
\(620\) 0 0
\(621\) 8.89176e10 0.597890
\(622\) 0 0
\(623\) 5.04783e9 + 5.04783e9i 0.0335083 + 0.0335083i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.18603e10 2.18603e10i 0.141445 0.141445i
\(628\) 0 0
\(629\) 1.03378e10i 0.0660428i
\(630\) 0 0
\(631\) −4.57215e10 −0.288405 −0.144203 0.989548i \(-0.546062\pi\)
−0.144203 + 0.989548i \(0.546062\pi\)
\(632\) 0 0
\(633\) 5.21709e10 + 5.21709e10i 0.324948 + 0.324948i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.58817e11 + 1.58817e11i −0.964582 + 0.964582i
\(638\) 0 0
\(639\) 2.19025e11i 1.31368i
\(640\) 0 0
\(641\) −1.01366e11 −0.600426 −0.300213 0.953872i \(-0.597058\pi\)
−0.300213 + 0.953872i \(0.597058\pi\)
\(642\) 0 0
\(643\) 7.00290e10 + 7.00290e10i 0.409670 + 0.409670i 0.881623 0.471953i \(-0.156451\pi\)
−0.471953 + 0.881623i \(0.656451\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.02119e11 + 2.02119e11i −1.15343 + 1.15343i −0.167567 + 0.985861i \(0.553591\pi\)
−0.985861 + 0.167567i \(0.946409\pi\)
\(648\) 0 0
\(649\) 1.38447e11i 0.780376i
\(650\) 0 0
\(651\) −1.72477e9 −0.00960300
\(652\) 0 0
\(653\) −1.44565e11 1.44565e11i −0.795078 0.795078i 0.187237 0.982315i \(-0.440047\pi\)
−0.982315 + 0.187237i \(0.940047\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.63352e11 1.63352e11i 0.876723 0.876723i
\(658\) 0 0
\(659\) 6.86847e9i 0.0364182i −0.999834 0.0182091i \(-0.994204\pi\)
0.999834 0.0182091i \(-0.00579645\pi\)
\(660\) 0 0
\(661\) 3.42797e10 0.179569 0.0897844 0.995961i \(-0.471382\pi\)
0.0897844 + 0.995961i \(0.471382\pi\)
\(662\) 0 0
\(663\) −2.27705e10 2.27705e10i −0.117847 0.117847i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.17228e11 1.17228e11i 0.592283 0.592283i
\(668\) 0 0
\(669\) 1.00694e11i 0.502690i
\(670\) 0 0
\(671\) 6.18337e10 0.305025
\(672\) 0 0
\(673\) −5.18977e10 5.18977e10i −0.252981 0.252981i 0.569211 0.822192i \(-0.307249\pi\)
−0.822192 + 0.569211i \(0.807249\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.02064e9 + 5.02064e9i −0.0239004 + 0.0239004i −0.718956 0.695056i \(-0.755380\pi\)
0.695056 + 0.718956i \(0.255380\pi\)
\(678\) 0 0
\(679\) 3.73620e10i 0.175772i
\(680\) 0 0
\(681\) 6.02385e10 0.280082
\(682\) 0 0
\(683\) −3.82161e10 3.82161e10i −0.175616 0.175616i 0.613826 0.789441i \(-0.289630\pi\)
−0.789441 + 0.613826i \(0.789630\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.52839e10 2.52839e10i 0.113506 0.113506i
\(688\) 0 0
\(689\) 1.41701e10i 0.0628778i
\(690\) 0 0
\(691\) 3.21018e11 1.40805 0.704023 0.710177i \(-0.251385\pi\)
0.704023 + 0.710177i \(0.251385\pi\)
\(692\) 0 0
\(693\) 2.14426e10 + 2.14426e10i 0.0929703 + 0.0929703i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −9.68399e10 + 9.68399e10i −0.410321 + 0.410321i
\(698\) 0 0
\(699\) 5.56646e10i 0.233169i
\(700\) 0 0
\(701\) −2.92163e11 −1.20991 −0.604956 0.796259i \(-0.706809\pi\)
−0.604956 + 0.796259i \(0.706809\pi\)
\(702\) 0 0
\(703\) 1.45541e10 + 1.45541e10i 0.0595886 + 0.0595886i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.00314e10 2.00314e10i 0.0801740 0.0801740i
\(708\) 0 0
\(709\) 1.84412e11i 0.729801i 0.931047 + 0.364900i \(0.118897\pi\)
−0.931047 + 0.364900i \(0.881103\pi\)
\(710\) 0 0
\(711\) −1.20203e11 −0.470365
\(712\) 0 0
\(713\) −4.90773e10 4.90773e10i −0.189899 0.189899i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.88314e9 + 9.88314e9i −0.0373954 + 0.0373954i
\(718\) 0 0
\(719\) 3.86759e11i 1.44719i −0.690226 0.723594i \(-0.742489\pi\)
0.690226 0.723594i \(-0.257511\pi\)
\(720\) 0 0
\(721\) −4.00780e10 −0.148308
\(722\) 0 0
\(723\) 1.71484e10 + 1.71484e10i 0.0627583 + 0.0627583i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.08489e11 + 1.08489e11i −0.388373 + 0.388373i −0.874107 0.485734i \(-0.838552\pi\)
0.485734 + 0.874107i \(0.338552\pi\)
\(728\) 0 0
\(729\) 1.26683e11i 0.448546i
\(730\) 0 0
\(731\) 1.61900e11 0.566994
\(732\) 0 0
\(733\) 1.81338e11 + 1.81338e11i 0.628165 + 0.628165i 0.947606 0.319441i \(-0.103495\pi\)
−0.319441 + 0.947606i \(0.603495\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.11162e11 5.11162e11i 1.73256 1.73256i
\(738\) 0 0
\(739\) 5.46351e11i 1.83187i −0.401330 0.915933i \(-0.631452\pi\)
0.401330 0.915933i \(-0.368548\pi\)
\(740\) 0 0
\(741\) −6.41149e10 −0.212660
\(742\) 0 0
\(743\) −3.08189e11 3.08189e11i −1.01126 1.01126i −0.999936 0.0113233i \(-0.996396\pi\)
−0.0113233 0.999936i \(-0.503604\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.31922e11 1.31922e11i 0.423677 0.423677i
\(748\) 0 0
\(749\) 4.55598e10i 0.144762i
\(750\) 0 0
\(751\) 1.35575e9 0.00426205 0.00213103 0.999998i \(-0.499322\pi\)
0.00213103 + 0.999998i \(0.499322\pi\)
\(752\) 0 0
\(753\) 8.45697e10 + 8.45697e10i 0.263048 + 0.263048i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.95475e11 2.95475e11i 0.899781 0.899781i −0.0956356 0.995416i \(-0.530488\pi\)
0.995416 + 0.0956356i \(0.0304883\pi\)
\(758\) 0 0
\(759\) 1.35722e11i 0.408962i
\(760\) 0 0
\(761\) 3.50018e11 1.04364 0.521822 0.853055i \(-0.325253\pi\)
0.521822 + 0.853055i \(0.325253\pi\)
\(762\) 0 0
\(763\) −3.33229e10 3.33229e10i −0.0983205 0.0983205i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.03028e11 + 2.03028e11i −0.586642 + 0.586642i
\(768\) 0 0
\(769\) 3.37337e11i 0.964624i 0.875999 + 0.482312i \(0.160203\pi\)
−0.875999 + 0.482312i \(0.839797\pi\)
\(770\) 0 0
\(771\) 1.52993e10 0.0432966
\(772\) 0 0
\(773\) 5.80219e10 + 5.80219e10i 0.162508 + 0.162508i 0.783677 0.621169i \(-0.213342\pi\)
−0.621169 + 0.783677i \(0.713342\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.58781e9 1.58781e9i 0.00435626 0.00435626i
\(778\) 0 0
\(779\) 2.72672e11i 0.740442i
\(780\) 0 0
\(781\) 7.05812e11 1.89708
\(782\) 0 0
\(783\) −1.34528e11 1.34528e11i −0.357903 0.357903i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.28984e10 + 1.28984e10i −0.0336231 + 0.0336231i −0.723718 0.690095i \(-0.757569\pi\)
0.690095 + 0.723718i \(0.257569\pi\)
\(788\) 0 0
\(789\) 1.42316e11i 0.367236i
\(790\) 0 0
\(791\) −2.08410e9 −0.00532368
\(792\) 0 0
\(793\) −9.06772e10 9.06772e10i −0.229301 0.229301i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.41350e10 + 1.41350e10i −0.0350318 + 0.0350318i −0.724406 0.689374i \(-0.757886\pi\)
0.689374 + 0.724406i \(0.257886\pi\)
\(798\) 0 0
\(799\) 2.78881e11i 0.684276i
\(800\) 0 0
\(801\) 1.56146e11 0.379315
\(802\) 0 0
\(803\) −5.26404e11 5.26404e11i −1.26607 1.26607i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.41916e10 + 3.41916e10i −0.0806167 + 0.0806167i
\(808\) 0 0
\(809\) 6.90397e11i 1.61178i −0.592067 0.805889i \(-0.701688\pi\)
0.592067 0.805889i \(-0.298312\pi\)
\(810\) 0 0
\(811\) −8.75326e10 −0.202342 −0.101171 0.994869i \(-0.532259\pi\)
−0.101171 + 0.994869i \(0.532259\pi\)
\(812\) 0 0
\(813\) −6.93027e10 6.93027e10i −0.158631 0.158631i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.27931e11 2.27931e11i 0.511583 0.511583i
\(818\) 0 0
\(819\) 6.28897e10i 0.139780i
\(820\) 0 0
\(821\) −2.30471e11 −0.507275 −0.253638 0.967299i \(-0.581627\pi\)
−0.253638 + 0.967299i \(0.581627\pi\)
\(822\) 0 0
\(823\) 8.64879e10 + 8.64879e10i 0.188519 + 0.188519i 0.795056 0.606536i \(-0.207442\pi\)
−0.606536 + 0.795056i \(0.707442\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.31886e11 2.31886e11i 0.495739 0.495739i −0.414370 0.910109i \(-0.635998\pi\)
0.910109 + 0.414370i \(0.135998\pi\)
\(828\) 0 0
\(829\) 1.24583e11i 0.263779i −0.991264 0.131890i \(-0.957896\pi\)
0.991264 0.131890i \(-0.0421044\pi\)
\(830\) 0 0
\(831\) −2.20675e11 −0.462753
\(832\) 0 0
\(833\) 1.28174e11 + 1.28174e11i 0.266207 + 0.266207i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.63197e10 + 5.63197e10i −0.114752 + 0.114752i
\(838\) 0 0
\(839\) 1.32482e11i 0.267367i −0.991024 0.133684i \(-0.957319\pi\)
0.991024 0.133684i \(-0.0426806\pi\)
\(840\) 0 0
\(841\) 1.45525e11 0.290906
\(842\) 0 0
\(843\) −1.33405e11 1.33405e11i −0.264157 0.264157i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.81840e10 2.81840e10i 0.0547606 0.0547606i
\(848\) 0 0
\(849\) 2.72103e11i 0.523724i
\(850\) 0 0
\(851\) 9.03602e10 0.172290
\(852\) 0 0
\(853\) 1.92442e11 + 1.92442e11i 0.363499 + 0.363499i 0.865099 0.501600i \(-0.167255\pi\)
−0.501600 + 0.865099i \(0.667255\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.33628e11 + 5.33628e11i −0.989272 + 0.989272i −0.999943 0.0106713i \(-0.996603\pi\)
0.0106713 + 0.999943i \(0.496603\pi\)
\(858\) 0 0
\(859\) 3.48989e11i 0.640972i −0.947253 0.320486i \(-0.896154\pi\)
0.947253 0.320486i \(-0.103846\pi\)
\(860\) 0 0
\(861\) 2.97478e10 0.0541305
\(862\) 0 0
\(863\) 7.36194e11 + 7.36194e11i 1.32724 + 1.32724i 0.907769 + 0.419470i \(0.137784\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.08026e11 1.08026e11i 0.191184 0.191184i
\(868\) 0 0
\(869\) 3.87355e11i 0.679251i
\(870\) 0 0
\(871\) −1.49920e12 −2.60488
\(872\) 0 0
\(873\) 5.77863e11 + 5.77863e11i 0.994874 + 0.994874i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.69351e10 5.69351e10i 0.0962458 0.0962458i −0.657344 0.753590i \(-0.728320\pi\)
0.753590 + 0.657344i \(0.228320\pi\)
\(878\) 0 0
\(879\) 2.00754e11i 0.336286i
\(880\) 0 0
\(881\) −4.10972e11 −0.682196 −0.341098 0.940028i \(-0.610799\pi\)
−0.341098 + 0.940028i \(0.610799\pi\)
\(882\) 0 0
\(883\) −3.49612e11 3.49612e11i −0.575100 0.575100i 0.358449 0.933549i \(-0.383306\pi\)
−0.933549 + 0.358449i \(0.883306\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.64244e11 + 5.64244e11i −0.911533 + 0.911533i −0.996393 0.0848602i \(-0.972956\pi\)
0.0848602 + 0.996393i \(0.472956\pi\)
\(888\) 0 0
\(889\) 2.42457e9i 0.00388175i
\(890\) 0 0
\(891\) 5.81311e11 0.922354
\(892\) 0 0
\(893\) 3.92622e11 + 3.92622e11i 0.617403 + 0.617403i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.99032e11 + 1.99032e11i −0.307434 + 0.307434i
\(898\) 0 0
\(899\) 1.48503e11i 0.227351i
\(900\) 0 0
\(901\) 1.14361e10 0.0173531
\(902\) 0 0
\(903\) −2.48667e10 2.48667e10i −0.0373996 0.0373996i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9.44245e8 9.44245e8i 0.00139526 0.00139526i −0.706409 0.707804i \(-0.749686\pi\)
0.707804 + 0.706409i \(0.249686\pi\)
\(908\) 0 0
\(909\) 6.19636e11i 0.907572i
\(910\) 0 0
\(911\) −4.02795e11 −0.584804 −0.292402 0.956295i \(-0.594455\pi\)
−0.292402 + 0.956295i \(0.594455\pi\)
\(912\) 0 0
\(913\) −4.25122e11 4.25122e11i −0.611829 0.611829i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.28728e10 + 4.28728e10i −0.0606324 + 0.0606324i
\(918\) 0 0
\(919\) 5.71953e11i 0.801860i 0.916109 + 0.400930i \(0.131313\pi\)
−0.916109 + 0.400930i \(0.868687\pi\)
\(920\) 0 0
\(921\) −2.04564e10 −0.0284309
\(922\) 0 0
\(923\) −1.03505e12 1.03505e12i −1.42611 1.42611i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6.19871e11 + 6.19871e11i −0.839426 + 0.839426i
\(928\) 0 0
\(929\) 9.36530e11i 1.25736i 0.777665 + 0.628679i \(0.216404\pi\)
−0.777665 + 0.628679i \(0.783596\pi\)
\(930\) 0 0
\(931\) 3.60899e11 0.480382
\(932\) 0 0
\(933\) 4.49188e10 + 4.49188e10i 0.0592791 + 0.0592791i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.93070e11 + 2.93070e11i −0.380200 + 0.380200i −0.871174 0.490974i \(-0.836641\pi\)
0.490974 + 0.871174i \(0.336641\pi\)
\(938\) 0 0
\(939\) 3.52342e11i 0.453212i
\(940\) 0 0
\(941\) 8.88370e11 1.13301 0.566507 0.824057i \(-0.308294\pi\)
0.566507 + 0.824057i \(0.308294\pi\)
\(942\) 0 0
\(943\) 8.46455e11 + 8.46455e11i 1.07043 + 1.07043i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.47904e10 5.47904e10i 0.0681247 0.0681247i −0.672224 0.740348i \(-0.734661\pi\)
0.740348 + 0.672224i \(0.234661\pi\)
\(948\) 0 0
\(949\) 1.54391e12i 1.90352i
\(950\) 0 0
\(951\) −3.73602e11 −0.456759
\(952\) 0 0
\(953\) 9.59818e11 + 9.59818e11i 1.16364 + 1.16364i 0.983673 + 0.179963i \(0.0575979\pi\)
0.179963 + 0.983673i \(0.442402\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.05340e11 + 2.05340e11i −0.244809 + 0.244809i
\(958\) 0 0
\(959\) 1.29084e11i 0.152616i
\(960\) 0 0
\(961\) −7.90721e11 −0.927106
\(962\) 0 0
\(963\) −7.04656e11 7.04656e11i −0.819354 0.819354i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −5.73546e11 + 5.73546e11i −0.655938 + 0.655938i −0.954416 0.298479i \(-0.903521\pi\)
0.298479 + 0.954416i \(0.403521\pi\)
\(968\) 0 0
\(969\) 5.17442e10i 0.0586903i
\(970\) 0 0
\(971\) 6.59341e11 0.741708 0.370854 0.928691i \(-0.379065\pi\)
0.370854 + 0.928691i \(0.379065\pi\)
\(972\) 0 0
\(973\) −1.04786e11 1.04786e11i −0.116910 0.116910i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.80295e11 4.80295e11i 0.527144 0.527144i −0.392576 0.919720i \(-0.628416\pi\)
0.919720 + 0.392576i \(0.128416\pi\)
\(978\) 0 0
\(979\) 5.03183e11i 0.547766i
\(980\) 0 0
\(981\) −1.03078e12 −1.11299
\(982\) 0 0
\(983\) 1.05351e12 + 1.05351e12i 1.12830 + 1.12830i 0.990453 + 0.137852i \(0.0440198\pi\)
0.137852 + 0.990453i \(0.455980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.28340e10 4.28340e10i 0.0451356 0.0451356i
\(988\) 0 0
\(989\) 1.41513e12i 1.47915i
\(990\) 0 0
\(991\) −6.86106e11 −0.711372 −0.355686 0.934606i \(-0.615753\pi\)
−0.355686 + 0.934606i \(0.615753\pi\)
\(992\) 0 0
\(993\) −1.38087e11 1.38087e11i −0.142022 0.142022i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.70841e11 9.70841e11i 0.982579 0.982579i −0.0172719 0.999851i \(-0.505498\pi\)
0.999851 + 0.0172719i \(0.00549808\pi\)
\(998\) 0 0
\(999\) 1.03695e11i 0.104111i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.f.b.93.2 8
5.2 odd 4 inner 100.9.f.b.57.2 8
5.3 odd 4 20.9.f.a.17.3 yes 8
5.4 even 2 20.9.f.a.13.3 8
15.8 even 4 180.9.l.a.37.4 8
15.14 odd 2 180.9.l.a.73.4 8
20.3 even 4 80.9.p.d.17.2 8
20.19 odd 2 80.9.p.d.33.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.f.a.13.3 8 5.4 even 2
20.9.f.a.17.3 yes 8 5.3 odd 4
80.9.p.d.17.2 8 20.3 even 4
80.9.p.d.33.2 8 20.19 odd 2
100.9.f.b.57.2 8 5.2 odd 4 inner
100.9.f.b.93.2 8 1.1 even 1 trivial
180.9.l.a.37.4 8 15.8 even 4
180.9.l.a.73.4 8 15.14 odd 2