Defining parameters
Level: | \( N \) | \(=\) | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 100.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(135\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 258 | 24 | 234 |
Cusp forms | 222 | 24 | 198 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(100, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
100.9.f.a | $4$ | $40.738$ | \(\Q(i, \sqrt{3309})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+7\beta _{2}q^{7}-57\beta _{1}q^{9}+420q^{11}+\cdots\) |
100.9.f.b | $8$ | $40.738$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(70\) | \(0\) | \(2030\) | \(q+(9+9\beta _{1}+\beta _{2})q^{3}+(254-254\beta _{1}+\cdots)q^{7}+\cdots\) |
100.9.f.c | $12$ | $40.738$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{3}+(7\beta _{7}-20\beta _{8}-\beta _{11})q^{7}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(100, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(100, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)