Properties

Label 180.4.k.e.163.1
Level $180$
Weight $4$
Character 180.163
Analytic conductor $10.620$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,4,Mod(127,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.127"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 180.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6203438010\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 44x^{8} - 156x^{6} + 704x^{4} - 1792x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.1
Root \(-1.76129 - 0.947553i\) of defining polynomial
Character \(\chi\) \(=\) 180.163
Dual form 180.4.k.e.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.70884 - 0.813737i) q^{2} +(6.67566 + 4.40857i) q^{4} +(0.435501 + 11.1719i) q^{5} +(-17.7783 - 17.7783i) q^{7} +(-14.4959 - 17.3744i) q^{8} +(7.91125 - 30.6172i) q^{10} -7.37590i q^{11} +(-2.68249 - 2.68249i) q^{13} +(33.6917 + 62.6254i) q^{14} +(25.1290 + 58.8603i) q^{16} +(20.2367 - 20.2367i) q^{17} +135.808 q^{19} +(-46.3447 + 76.4995i) q^{20} +(-6.00204 + 19.9802i) q^{22} +(71.0426 - 71.0426i) q^{23} +(-124.621 + 9.73070i) q^{25} +(5.08361 + 9.44930i) q^{26} +(-40.3050 - 197.059i) q^{28} -34.2890i q^{29} -187.974i q^{31} +(-20.1737 - 179.892i) q^{32} +(-71.2855 + 38.3507i) q^{34} +(190.874 - 206.359i) q^{35} +(250.679 - 250.679i) q^{37} +(-367.882 - 110.512i) q^{38} +(187.791 - 169.513i) q^{40} +211.105 q^{41} +(46.7326 - 46.7326i) q^{43} +(32.5172 - 49.2390i) q^{44} +(-250.253 + 134.633i) q^{46} +(-189.707 - 189.707i) q^{47} +289.134i q^{49} +(345.496 + 75.0495i) q^{50} +(-6.08147 - 29.7334i) q^{52} +(74.5742 + 74.5742i) q^{53} +(82.4025 - 3.21221i) q^{55} +(-51.1739 + 566.598i) q^{56} +(-27.9022 + 92.8835i) q^{58} -101.072 q^{59} +232.112 q^{61} +(-152.961 + 509.191i) q^{62} +(-91.7370 + 503.715i) q^{64} +(28.8002 - 31.1367i) q^{65} +(-34.7419 - 34.7419i) q^{67} +(224.309 - 45.8785i) q^{68} +(-684.969 + 403.672i) q^{70} -614.600i q^{71} +(-37.4378 - 37.4378i) q^{73} +(-883.036 + 475.063i) q^{74} +(906.607 + 598.718i) q^{76} +(-131.131 + 131.131i) q^{77} -1002.91 q^{79} +(-646.635 + 306.371i) q^{80} +(-571.850 - 171.784i) q^{82} +(423.190 - 423.190i) q^{83} +(234.895 + 217.269i) q^{85} +(-164.619 + 88.5632i) q^{86} +(-128.152 + 106.920i) q^{88} +1049.38i q^{89} +95.3802i q^{91} +(787.453 - 161.060i) q^{92} +(359.514 + 668.257i) q^{94} +(59.1444 + 1517.22i) q^{95} +(-536.526 + 536.526i) q^{97} +(235.279 - 783.218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 12 q^{8} - 110 q^{10} + 116 q^{13} + 312 q^{16} + 332 q^{17} - 140 q^{20} + 360 q^{22} + 340 q^{25} + 164 q^{26} - 880 q^{28} + 376 q^{32} + 508 q^{37} - 1600 q^{38} + 1420 q^{40} + 656 q^{41}+ \cdots - 1698 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.70884 0.813737i −0.957721 0.287699i
\(3\) 0 0
\(4\) 6.67566 + 4.40857i 0.834458 + 0.551071i
\(5\) 0.435501 + 11.1719i 0.0389524 + 0.999241i
\(6\) 0 0
\(7\) −17.7783 17.7783i −0.959936 0.959936i 0.0392914 0.999228i \(-0.487490\pi\)
−0.999228 + 0.0392914i \(0.987490\pi\)
\(8\) −14.4959 17.3744i −0.640635 0.767846i
\(9\) 0 0
\(10\) 7.91125 30.6172i 0.250176 0.968200i
\(11\) 7.37590i 0.202174i −0.994878 0.101087i \(-0.967768\pi\)
0.994878 0.101087i \(-0.0322321\pi\)
\(12\) 0 0
\(13\) −2.68249 2.68249i −0.0572300 0.0572300i 0.677913 0.735143i \(-0.262885\pi\)
−0.735143 + 0.677913i \(0.762885\pi\)
\(14\) 33.6917 + 62.6254i 0.643178 + 1.19552i
\(15\) 0 0
\(16\) 25.1290 + 58.8603i 0.392641 + 0.919692i
\(17\) 20.2367 20.2367i 0.288713 0.288713i −0.547858 0.836571i \(-0.684557\pi\)
0.836571 + 0.547858i \(0.184557\pi\)
\(18\) 0 0
\(19\) 135.808 1.63981 0.819906 0.572498i \(-0.194025\pi\)
0.819906 + 0.572498i \(0.194025\pi\)
\(20\) −46.3447 + 76.4995i −0.518149 + 0.855290i
\(21\) 0 0
\(22\) −6.00204 + 19.9802i −0.0581654 + 0.193627i
\(23\) 71.0426 71.0426i 0.644061 0.644061i −0.307490 0.951551i \(-0.599489\pi\)
0.951551 + 0.307490i \(0.0994892\pi\)
\(24\) 0 0
\(25\) −124.621 + 9.73070i −0.996965 + 0.0778456i
\(26\) 5.08361 + 9.44930i 0.0383453 + 0.0712754i
\(27\) 0 0
\(28\) −40.3050 197.059i −0.272033 1.33002i
\(29\) 34.2890i 0.219562i −0.993956 0.109781i \(-0.964985\pi\)
0.993956 0.109781i \(-0.0350150\pi\)
\(30\) 0 0
\(31\) 187.974i 1.08907i −0.838739 0.544533i \(-0.816707\pi\)
0.838739 0.544533i \(-0.183293\pi\)
\(32\) −20.1737 179.892i −0.111445 0.993771i
\(33\) 0 0
\(34\) −71.2855 + 38.3507i −0.359569 + 0.193444i
\(35\) 190.874 206.359i 0.921816 0.996600i
\(36\) 0 0
\(37\) 250.679 250.679i 1.11382 1.11382i 0.121190 0.992629i \(-0.461329\pi\)
0.992629 0.121190i \(-0.0386712\pi\)
\(38\) −367.882 110.512i −1.57048 0.471773i
\(39\) 0 0
\(40\) 187.791 169.513i 0.742309 0.670058i
\(41\) 211.105 0.804122 0.402061 0.915613i \(-0.368294\pi\)
0.402061 + 0.915613i \(0.368294\pi\)
\(42\) 0 0
\(43\) 46.7326 46.7326i 0.165736 0.165736i −0.619366 0.785102i \(-0.712610\pi\)
0.785102 + 0.619366i \(0.212610\pi\)
\(44\) 32.5172 49.2390i 0.111412 0.168706i
\(45\) 0 0
\(46\) −250.253 + 134.633i −0.802126 + 0.431535i
\(47\) −189.707 189.707i −0.588757 0.588757i 0.348538 0.937295i \(-0.386678\pi\)
−0.937295 + 0.348538i \(0.886678\pi\)
\(48\) 0 0
\(49\) 289.134i 0.842956i
\(50\) 345.496 + 75.0495i 0.977211 + 0.212272i
\(51\) 0 0
\(52\) −6.08147 29.7334i −0.0162182 0.0792939i
\(53\) 74.5742 + 74.5742i 0.193275 + 0.193275i 0.797109 0.603835i \(-0.206361\pi\)
−0.603835 + 0.797109i \(0.706361\pi\)
\(54\) 0 0
\(55\) 82.4025 3.21221i 0.202021 0.00787517i
\(56\) −51.1739 + 566.598i −0.122114 + 1.35205i
\(57\) 0 0
\(58\) −27.9022 + 92.8835i −0.0631679 + 0.210279i
\(59\) −101.072 −0.223024 −0.111512 0.993763i \(-0.535569\pi\)
−0.111512 + 0.993763i \(0.535569\pi\)
\(60\) 0 0
\(61\) 232.112 0.487196 0.243598 0.969876i \(-0.421672\pi\)
0.243598 + 0.969876i \(0.421672\pi\)
\(62\) −152.961 + 509.191i −0.313324 + 1.04302i
\(63\) 0 0
\(64\) −91.7370 + 503.715i −0.179174 + 0.983817i
\(65\) 28.8002 31.1367i 0.0549573 0.0594158i
\(66\) 0 0
\(67\) −34.7419 34.7419i −0.0633493 0.0633493i 0.674722 0.738072i \(-0.264263\pi\)
−0.738072 + 0.674722i \(0.764263\pi\)
\(68\) 224.309 45.8785i 0.400021 0.0818175i
\(69\) 0 0
\(70\) −684.969 + 403.672i −1.16956 + 0.689258i
\(71\) 614.600i 1.02732i −0.857994 0.513660i \(-0.828289\pi\)
0.857994 0.513660i \(-0.171711\pi\)
\(72\) 0 0
\(73\) −37.4378 37.4378i −0.0600242 0.0600242i 0.676457 0.736482i \(-0.263514\pi\)
−0.736482 + 0.676457i \(0.763514\pi\)
\(74\) −883.036 + 475.063i −1.38717 + 0.746283i
\(75\) 0 0
\(76\) 906.607 + 598.718i 1.36836 + 0.903654i
\(77\) −131.131 + 131.131i −0.194074 + 0.194074i
\(78\) 0 0
\(79\) −1002.91 −1.42831 −0.714153 0.699990i \(-0.753188\pi\)
−0.714153 + 0.699990i \(0.753188\pi\)
\(80\) −646.635 + 306.371i −0.903700 + 0.428167i
\(81\) 0 0
\(82\) −571.850 171.784i −0.770125 0.231346i
\(83\) 423.190 423.190i 0.559652 0.559652i −0.369556 0.929208i \(-0.620490\pi\)
0.929208 + 0.369556i \(0.120490\pi\)
\(84\) 0 0
\(85\) 234.895 + 217.269i 0.299740 + 0.277248i
\(86\) −164.619 + 88.5632i −0.206411 + 0.111047i
\(87\) 0 0
\(88\) −128.152 + 106.920i −0.155239 + 0.129520i
\(89\) 1049.38i 1.24982i 0.780695 + 0.624912i \(0.214865\pi\)
−0.780695 + 0.624912i \(0.785135\pi\)
\(90\) 0 0
\(91\) 95.3802i 0.109874i
\(92\) 787.453 161.060i 0.892365 0.182518i
\(93\) 0 0
\(94\) 359.514 + 668.257i 0.394479 + 0.733249i
\(95\) 59.1444 + 1517.22i 0.0638746 + 1.63857i
\(96\) 0 0
\(97\) −536.526 + 536.526i −0.561608 + 0.561608i −0.929764 0.368156i \(-0.879989\pi\)
0.368156 + 0.929764i \(0.379989\pi\)
\(98\) 235.279 783.218i 0.242518 0.807316i
\(99\) 0 0
\(100\) −874.824 484.440i −0.874824 0.484440i
\(101\) 1415.80 1.39483 0.697414 0.716668i \(-0.254334\pi\)
0.697414 + 0.716668i \(0.254334\pi\)
\(102\) 0 0
\(103\) 284.920 284.920i 0.272563 0.272563i −0.557568 0.830131i \(-0.688265\pi\)
0.830131 + 0.557568i \(0.188265\pi\)
\(104\) −7.72143 + 85.4919i −0.00728027 + 0.0806074i
\(105\) 0 0
\(106\) −141.326 262.694i −0.129498 0.240708i
\(107\) −464.315 464.315i −0.419505 0.419505i 0.465528 0.885033i \(-0.345864\pi\)
−0.885033 + 0.465528i \(0.845864\pi\)
\(108\) 0 0
\(109\) 638.365i 0.560957i 0.959860 + 0.280478i \(0.0904931\pi\)
−0.959860 + 0.280478i \(0.909507\pi\)
\(110\) −225.829 58.3525i −0.195745 0.0505791i
\(111\) 0 0
\(112\) 599.684 1493.18i 0.505936 1.25976i
\(113\) −1001.84 1001.84i −0.834027 0.834027i 0.154038 0.988065i \(-0.450772\pi\)
−0.988065 + 0.154038i \(0.950772\pi\)
\(114\) 0 0
\(115\) 824.616 + 762.738i 0.668660 + 0.618484i
\(116\) 151.165 228.902i 0.120994 0.183216i
\(117\) 0 0
\(118\) 273.787 + 82.2456i 0.213594 + 0.0641638i
\(119\) −719.548 −0.554293
\(120\) 0 0
\(121\) 1276.60 0.959126
\(122\) −628.756 188.878i −0.466598 0.140166i
\(123\) 0 0
\(124\) 828.695 1254.85i 0.600153 0.908780i
\(125\) −162.982 1388.01i −0.116621 0.993177i
\(126\) 0 0
\(127\) 619.456 + 619.456i 0.432818 + 0.432818i 0.889586 0.456768i \(-0.150993\pi\)
−0.456768 + 0.889586i \(0.650993\pi\)
\(128\) 658.392 1289.83i 0.454642 0.890674i
\(129\) 0 0
\(130\) −103.352 + 60.9086i −0.0697277 + 0.0410926i
\(131\) 1620.12i 1.08054i 0.841491 + 0.540270i \(0.181678\pi\)
−0.841491 + 0.540270i \(0.818322\pi\)
\(132\) 0 0
\(133\) −2414.43 2414.43i −1.57412 1.57412i
\(134\) 65.8397 + 122.381i 0.0424454 + 0.0788965i
\(135\) 0 0
\(136\) −644.950 58.2504i −0.406647 0.0367274i
\(137\) −825.076 + 825.076i −0.514533 + 0.514533i −0.915912 0.401379i \(-0.868531\pi\)
0.401379 + 0.915912i \(0.368531\pi\)
\(138\) 0 0
\(139\) −1264.21 −0.771430 −0.385715 0.922618i \(-0.626045\pi\)
−0.385715 + 0.922618i \(0.626045\pi\)
\(140\) 2183.96 536.101i 1.31841 0.323634i
\(141\) 0 0
\(142\) −500.123 + 1664.86i −0.295559 + 0.983885i
\(143\) −19.7858 + 19.7858i −0.0115704 + 0.0115704i
\(144\) 0 0
\(145\) 383.072 14.9329i 0.219396 0.00855247i
\(146\) 70.9487 + 131.878i 0.0402175 + 0.0747553i
\(147\) 0 0
\(148\) 2778.58 568.312i 1.54323 0.315642i
\(149\) 1351.49i 0.743079i −0.928417 0.371539i \(-0.878830\pi\)
0.928417 0.371539i \(-0.121170\pi\)
\(150\) 0 0
\(151\) 2325.64i 1.25336i −0.779275 0.626682i \(-0.784412\pi\)
0.779275 0.626682i \(-0.215588\pi\)
\(152\) −1968.66 2359.57i −1.05052 1.25912i
\(153\) 0 0
\(154\) 461.918 248.507i 0.241704 0.130034i
\(155\) 2100.01 81.8626i 1.08824 0.0424217i
\(156\) 0 0
\(157\) 162.486 162.486i 0.0825976 0.0825976i −0.664601 0.747199i \(-0.731398\pi\)
0.747199 + 0.664601i \(0.231398\pi\)
\(158\) 2716.73 + 816.105i 1.36792 + 0.410923i
\(159\) 0 0
\(160\) 2000.94 303.721i 0.988675 0.150070i
\(161\) −2526.03 −1.23651
\(162\) 0 0
\(163\) −932.441 + 932.441i −0.448064 + 0.448064i −0.894710 0.446647i \(-0.852618\pi\)
0.446647 + 0.894710i \(0.352618\pi\)
\(164\) 1409.26 + 930.670i 0.671006 + 0.443129i
\(165\) 0 0
\(166\) −1490.72 + 801.990i −0.697002 + 0.374979i
\(167\) 976.461 + 976.461i 0.452460 + 0.452460i 0.896170 0.443710i \(-0.146338\pi\)
−0.443710 + 0.896170i \(0.646338\pi\)
\(168\) 0 0
\(169\) 2182.61i 0.993449i
\(170\) −459.494 779.689i −0.207303 0.351761i
\(171\) 0 0
\(172\) 517.995 105.947i 0.229632 0.0469674i
\(173\) −761.698 761.698i −0.334745 0.334745i 0.519640 0.854385i \(-0.326066\pi\)
−0.854385 + 0.519640i \(0.826066\pi\)
\(174\) 0 0
\(175\) 2388.54 + 2042.54i 1.03175 + 0.882296i
\(176\) 434.148 185.349i 0.185938 0.0793818i
\(177\) 0 0
\(178\) 853.921 2842.61i 0.359574 1.19698i
\(179\) −4003.32 −1.67163 −0.835816 0.549009i \(-0.815005\pi\)
−0.835816 + 0.549009i \(0.815005\pi\)
\(180\) 0 0
\(181\) −1950.00 −0.800785 −0.400392 0.916344i \(-0.631126\pi\)
−0.400392 + 0.916344i \(0.631126\pi\)
\(182\) 77.6144 258.370i 0.0316108 0.105229i
\(183\) 0 0
\(184\) −2264.15 204.493i −0.907147 0.0819315i
\(185\) 2909.72 + 2691.38i 1.15636 + 1.06959i
\(186\) 0 0
\(187\) −149.264 149.264i −0.0583704 0.0583704i
\(188\) −430.083 2102.75i −0.166846 0.815740i
\(189\) 0 0
\(190\) 1074.41 4158.05i 0.410241 1.58767i
\(191\) 1458.80i 0.552644i 0.961065 + 0.276322i \(0.0891156\pi\)
−0.961065 + 0.276322i \(0.910884\pi\)
\(192\) 0 0
\(193\) 2264.70 + 2264.70i 0.844647 + 0.844647i 0.989459 0.144812i \(-0.0462577\pi\)
−0.144812 + 0.989459i \(0.546258\pi\)
\(194\) 1889.96 1016.77i 0.699438 0.376289i
\(195\) 0 0
\(196\) −1274.67 + 1930.16i −0.464529 + 0.703411i
\(197\) −2092.70 + 2092.70i −0.756845 + 0.756845i −0.975747 0.218902i \(-0.929753\pi\)
0.218902 + 0.975747i \(0.429753\pi\)
\(198\) 0 0
\(199\) 2087.70 0.743683 0.371842 0.928296i \(-0.378726\pi\)
0.371842 + 0.928296i \(0.378726\pi\)
\(200\) 1975.56 + 2024.15i 0.698464 + 0.715645i
\(201\) 0 0
\(202\) −3835.19 1152.09i −1.33586 0.401291i
\(203\) −609.599 + 609.599i −0.210766 + 0.210766i
\(204\) 0 0
\(205\) 91.9363 + 2358.43i 0.0313225 + 0.803512i
\(206\) −1003.65 + 539.954i −0.339456 + 0.182623i
\(207\) 0 0
\(208\) 90.4840 225.301i 0.0301632 0.0751048i
\(209\) 1001.70i 0.331528i
\(210\) 0 0
\(211\) 199.597i 0.0651223i 0.999470 + 0.0325611i \(0.0103664\pi\)
−0.999470 + 0.0325611i \(0.989634\pi\)
\(212\) 169.067 + 826.598i 0.0547714 + 0.267788i
\(213\) 0 0
\(214\) 879.926 + 1635.59i 0.281077 + 0.522460i
\(215\) 542.442 + 501.738i 0.172066 + 0.159155i
\(216\) 0 0
\(217\) −3341.84 + 3341.84i −1.04543 + 1.04543i
\(218\) 519.461 1729.23i 0.161387 0.537240i
\(219\) 0 0
\(220\) 564.252 + 341.834i 0.172918 + 0.104756i
\(221\) −108.570 −0.0330461
\(222\) 0 0
\(223\) −3340.24 + 3340.24i −1.00304 + 1.00304i −0.00304854 + 0.999995i \(0.500970\pi\)
−0.999995 + 0.00304854i \(0.999030\pi\)
\(224\) −2839.51 + 3556.82i −0.846976 + 1.06094i
\(225\) 0 0
\(226\) 1898.59 + 3529.06i 0.558816 + 1.03871i
\(227\) 824.316 + 824.316i 0.241021 + 0.241021i 0.817272 0.576251i \(-0.195485\pi\)
−0.576251 + 0.817272i \(0.695485\pi\)
\(228\) 0 0
\(229\) 4512.23i 1.30208i −0.759043 0.651041i \(-0.774333\pi\)
0.759043 0.651041i \(-0.225667\pi\)
\(230\) −1613.09 2737.16i −0.462452 0.784708i
\(231\) 0 0
\(232\) −595.749 + 497.050i −0.168590 + 0.140659i
\(233\) 292.574 + 292.574i 0.0822625 + 0.0822625i 0.747041 0.664778i \(-0.231474\pi\)
−0.664778 + 0.747041i \(0.731474\pi\)
\(234\) 0 0
\(235\) 2036.76 2201.99i 0.565376 0.611243i
\(236\) −674.720 445.581i −0.186104 0.122902i
\(237\) 0 0
\(238\) 1949.14 + 585.522i 0.530858 + 0.159470i
\(239\) 2925.20 0.791696 0.395848 0.918316i \(-0.370451\pi\)
0.395848 + 0.918316i \(0.370451\pi\)
\(240\) 0 0
\(241\) 4259.40 1.13847 0.569236 0.822174i \(-0.307239\pi\)
0.569236 + 0.822174i \(0.307239\pi\)
\(242\) −3458.10 1038.81i −0.918574 0.275940i
\(243\) 0 0
\(244\) 1549.50 + 1023.28i 0.406544 + 0.268480i
\(245\) −3230.16 + 125.918i −0.842316 + 0.0328351i
\(246\) 0 0
\(247\) −364.304 364.304i −0.0938465 0.0938465i
\(248\) −3265.92 + 2724.85i −0.836235 + 0.697694i
\(249\) 0 0
\(250\) −687.978 + 3892.52i −0.174046 + 0.984737i
\(251\) 5268.72i 1.32493i −0.749091 0.662467i \(-0.769509\pi\)
0.749091 0.662467i \(-0.230491\pi\)
\(252\) 0 0
\(253\) −524.003 524.003i −0.130213 0.130213i
\(254\) −1173.94 2182.08i −0.289997 0.539040i
\(255\) 0 0
\(256\) −2833.07 + 2958.20i −0.691667 + 0.722217i
\(257\) 5635.08 5635.08i 1.36773 1.36773i 0.504061 0.863668i \(-0.331839\pi\)
0.863668 0.504061i \(-0.168161\pi\)
\(258\) 0 0
\(259\) −8913.27 −2.13839
\(260\) 329.529 80.8902i 0.0786020 0.0192946i
\(261\) 0 0
\(262\) 1318.35 4388.66i 0.310871 1.03486i
\(263\) −2721.99 + 2721.99i −0.638195 + 0.638195i −0.950110 0.311915i \(-0.899030\pi\)
0.311915 + 0.950110i \(0.399030\pi\)
\(264\) 0 0
\(265\) −800.655 + 865.609i −0.185599 + 0.200656i
\(266\) 4575.60 + 8505.01i 1.05469 + 1.96044i
\(267\) 0 0
\(268\) −78.7632 385.088i −0.0179523 0.0877723i
\(269\) 603.964i 0.136893i −0.997655 0.0684467i \(-0.978196\pi\)
0.997655 0.0684467i \(-0.0218043\pi\)
\(270\) 0 0
\(271\) 4232.24i 0.948672i −0.880344 0.474336i \(-0.842688\pi\)
0.880344 0.474336i \(-0.157312\pi\)
\(272\) 1699.67 + 682.611i 0.378888 + 0.152167i
\(273\) 0 0
\(274\) 2906.40 1563.61i 0.640810 0.344748i
\(275\) 71.7727 + 919.189i 0.0157384 + 0.201561i
\(276\) 0 0
\(277\) 3214.07 3214.07i 0.697165 0.697165i −0.266633 0.963798i \(-0.585911\pi\)
0.963798 + 0.266633i \(0.0859113\pi\)
\(278\) 3424.54 + 1028.73i 0.738815 + 0.221940i
\(279\) 0 0
\(280\) −6352.24 324.953i −1.35578 0.0693559i
\(281\) 7574.78 1.60809 0.804046 0.594567i \(-0.202677\pi\)
0.804046 + 0.594567i \(0.202677\pi\)
\(282\) 0 0
\(283\) 504.094 504.094i 0.105884 0.105884i −0.652180 0.758064i \(-0.726145\pi\)
0.758064 + 0.652180i \(0.226145\pi\)
\(284\) 2709.51 4102.87i 0.566126 0.857255i
\(285\) 0 0
\(286\) 69.6971 37.4962i 0.0144101 0.00775244i
\(287\) −3753.08 3753.08i −0.771906 0.771906i
\(288\) 0 0
\(289\) 4093.95i 0.833289i
\(290\) −1049.83 271.269i −0.212580 0.0549291i
\(291\) 0 0
\(292\) −84.8750 414.970i −0.0170101 0.0831653i
\(293\) 244.144 + 244.144i 0.0486793 + 0.0486793i 0.731027 0.682348i \(-0.239041\pi\)
−0.682348 + 0.731027i \(0.739041\pi\)
\(294\) 0 0
\(295\) −44.0167 1129.16i −0.00868730 0.222854i
\(296\) −7989.20 721.566i −1.56879 0.141690i
\(297\) 0 0
\(298\) −1099.76 + 3660.99i −0.213783 + 0.711662i
\(299\) −381.143 −0.0737192
\(300\) 0 0
\(301\) −1661.65 −0.318192
\(302\) −1892.46 + 6299.80i −0.360592 + 1.20037i
\(303\) 0 0
\(304\) 3412.71 + 7993.69i 0.643857 + 1.50812i
\(305\) 101.085 + 2593.13i 0.0189774 + 0.486826i
\(306\) 0 0
\(307\) 6853.22 + 6853.22i 1.27405 + 1.27405i 0.943942 + 0.330110i \(0.107086\pi\)
0.330110 + 0.943942i \(0.392914\pi\)
\(308\) −1453.48 + 297.286i −0.268896 + 0.0549981i
\(309\) 0 0
\(310\) −5755.22 1487.11i −1.05443 0.272458i
\(311\) 10802.7i 1.96966i −0.173510 0.984832i \(-0.555511\pi\)
0.173510 0.984832i \(-0.444489\pi\)
\(312\) 0 0
\(313\) 2618.43 + 2618.43i 0.472851 + 0.472851i 0.902836 0.429985i \(-0.141481\pi\)
−0.429985 + 0.902836i \(0.641481\pi\)
\(314\) −572.372 + 307.929i −0.102869 + 0.0553422i
\(315\) 0 0
\(316\) −6695.09 4421.40i −1.19186 0.787098i
\(317\) −3652.64 + 3652.64i −0.647170 + 0.647170i −0.952308 0.305138i \(-0.901297\pi\)
0.305138 + 0.952308i \(0.401297\pi\)
\(318\) 0 0
\(319\) −252.912 −0.0443898
\(320\) −5667.38 805.504i −0.990050 0.140716i
\(321\) 0 0
\(322\) 6842.61 + 2055.52i 1.18424 + 0.355745i
\(323\) 2748.30 2748.30i 0.473436 0.473436i
\(324\) 0 0
\(325\) 360.397 + 308.192i 0.0615115 + 0.0526012i
\(326\) 3284.60 1767.07i 0.558028 0.300212i
\(327\) 0 0
\(328\) −3060.16 3667.81i −0.515149 0.617442i
\(329\) 6745.31i 1.13034i
\(330\) 0 0
\(331\) 7839.91i 1.30187i −0.759131 0.650937i \(-0.774376\pi\)
0.759131 0.650937i \(-0.225624\pi\)
\(332\) 4690.74 959.411i 0.775415 0.158598i
\(333\) 0 0
\(334\) −1850.50 3439.66i −0.303158 0.563503i
\(335\) 373.002 403.262i 0.0608336 0.0657688i
\(336\) 0 0
\(337\) −4503.23 + 4503.23i −0.727912 + 0.727912i −0.970204 0.242291i \(-0.922101\pi\)
0.242291 + 0.970204i \(0.422101\pi\)
\(338\) −1776.07 + 5912.34i −0.285815 + 0.951447i
\(339\) 0 0
\(340\) 610.235 + 2485.96i 0.0973371 + 0.396530i
\(341\) −1386.47 −0.220181
\(342\) 0 0
\(343\) −957.648 + 957.648i −0.150753 + 0.150753i
\(344\) −1489.38 134.517i −0.233436 0.0210834i
\(345\) 0 0
\(346\) 1443.50 + 2683.14i 0.224286 + 0.416898i
\(347\) 8458.77 + 8458.77i 1.30862 + 1.30862i 0.922413 + 0.386205i \(0.126214\pi\)
0.386205 + 0.922413i \(0.373786\pi\)
\(348\) 0 0
\(349\) 5515.41i 0.845941i −0.906144 0.422970i \(-0.860987\pi\)
0.906144 0.422970i \(-0.139013\pi\)
\(350\) −4808.07 7476.57i −0.734292 1.14183i
\(351\) 0 0
\(352\) −1326.86 + 148.799i −0.200915 + 0.0225314i
\(353\) 761.447 + 761.447i 0.114810 + 0.114810i 0.762178 0.647368i \(-0.224130\pi\)
−0.647368 + 0.762178i \(0.724130\pi\)
\(354\) 0 0
\(355\) 6866.23 267.659i 1.02654 0.0400165i
\(356\) −4626.28 + 7005.33i −0.688742 + 1.04293i
\(357\) 0 0
\(358\) 10844.4 + 3257.65i 1.60096 + 0.480928i
\(359\) 3564.71 0.524062 0.262031 0.965059i \(-0.415608\pi\)
0.262031 + 0.965059i \(0.415608\pi\)
\(360\) 0 0
\(361\) 11584.8 1.68899
\(362\) 5282.23 + 1586.78i 0.766928 + 0.230385i
\(363\) 0 0
\(364\) −420.491 + 636.726i −0.0605486 + 0.0916855i
\(365\) 401.946 434.554i 0.0576405 0.0623167i
\(366\) 0 0
\(367\) −4407.82 4407.82i −0.626939 0.626939i 0.320358 0.947297i \(-0.396197\pi\)
−0.947297 + 0.320358i \(0.896197\pi\)
\(368\) 5966.81 + 2396.36i 0.845222 + 0.339453i
\(369\) 0 0
\(370\) −5691.90 9658.26i −0.799750 1.35705i
\(371\) 2651.60i 0.371063i
\(372\) 0 0
\(373\) −8371.19 8371.19i −1.16205 1.16205i −0.984027 0.178021i \(-0.943030\pi\)
−0.178021 0.984027i \(-0.556970\pi\)
\(374\) 282.871 + 525.794i 0.0391094 + 0.0726957i
\(375\) 0 0
\(376\) −546.061 + 6046.00i −0.0748962 + 0.829252i
\(377\) −91.9800 + 91.9800i −0.0125656 + 0.0125656i
\(378\) 0 0
\(379\) 11130.1 1.50848 0.754240 0.656599i \(-0.228006\pi\)
0.754240 + 0.656599i \(0.228006\pi\)
\(380\) −6293.97 + 10389.2i −0.849667 + 1.40252i
\(381\) 0 0
\(382\) 1187.08 3951.66i 0.158995 0.529279i
\(383\) 1006.62 1006.62i 0.134297 0.134297i −0.636763 0.771060i \(-0.719727\pi\)
0.771060 + 0.636763i \(0.219727\pi\)
\(384\) 0 0
\(385\) −1522.08 1407.87i −0.201487 0.186367i
\(386\) −4291.85 7977.60i −0.565932 1.05194i
\(387\) 0 0
\(388\) −5946.98 + 1216.35i −0.778124 + 0.159152i
\(389\) 13548.4i 1.76589i −0.469478 0.882944i \(-0.655558\pi\)
0.469478 0.882944i \(-0.344442\pi\)
\(390\) 0 0
\(391\) 2875.34i 0.371898i
\(392\) 5023.52 4191.26i 0.647260 0.540027i
\(393\) 0 0
\(394\) 7371.69 3965.88i 0.942590 0.507102i
\(395\) −436.768 11204.4i −0.0556359 1.42722i
\(396\) 0 0
\(397\) 1822.81 1822.81i 0.230439 0.230439i −0.582437 0.812876i \(-0.697901\pi\)
0.812876 + 0.582437i \(0.197901\pi\)
\(398\) −5655.25 1698.84i −0.712241 0.213957i
\(399\) 0 0
\(400\) −3704.34 7090.69i −0.463043 0.886336i
\(401\) −5922.04 −0.737488 −0.368744 0.929531i \(-0.620212\pi\)
−0.368744 + 0.929531i \(0.620212\pi\)
\(402\) 0 0
\(403\) −504.238 + 504.238i −0.0623273 + 0.0623273i
\(404\) 9451.43 + 6241.67i 1.16393 + 0.768650i
\(405\) 0 0
\(406\) 2147.36 1155.25i 0.262492 0.141218i
\(407\) −1848.98 1848.98i −0.225186 0.225186i
\(408\) 0 0
\(409\) 8533.05i 1.03162i 0.856703 + 0.515809i \(0.172509\pi\)
−0.856703 + 0.515809i \(0.827491\pi\)
\(410\) 1670.10 6463.43i 0.201172 0.778552i
\(411\) 0 0
\(412\) 3158.12 645.940i 0.377644 0.0772408i
\(413\) 1796.88 + 1796.88i 0.214088 + 0.214088i
\(414\) 0 0
\(415\) 4912.12 + 4543.52i 0.581027 + 0.537428i
\(416\) −428.443 + 536.674i −0.0504955 + 0.0632515i
\(417\) 0 0
\(418\) −815.124 + 2713.46i −0.0953804 + 0.317511i
\(419\) −7128.02 −0.831089 −0.415545 0.909573i \(-0.636409\pi\)
−0.415545 + 0.909573i \(0.636409\pi\)
\(420\) 0 0
\(421\) −611.239 −0.0707601 −0.0353800 0.999374i \(-0.511264\pi\)
−0.0353800 + 0.999374i \(0.511264\pi\)
\(422\) 162.419 540.676i 0.0187356 0.0623690i
\(423\) 0 0
\(424\) 214.658 2376.70i 0.0245866 0.272223i
\(425\) −2325.00 + 2718.83i −0.265362 + 0.310312i
\(426\) 0 0
\(427\) −4126.56 4126.56i −0.467677 0.467677i
\(428\) −1052.65 5146.58i −0.118882 0.581236i
\(429\) 0 0
\(430\) −1061.11 1800.53i −0.119003 0.201929i
\(431\) 9361.72i 1.04626i 0.852253 + 0.523130i \(0.175236\pi\)
−0.852253 + 0.523130i \(0.824764\pi\)
\(432\) 0 0
\(433\) −1769.48 1769.48i −0.196388 0.196388i 0.602062 0.798450i \(-0.294346\pi\)
−0.798450 + 0.602062i \(0.794346\pi\)
\(434\) 11771.9 6333.15i 1.30200 0.700463i
\(435\) 0 0
\(436\) −2814.28 + 4261.51i −0.309127 + 0.468095i
\(437\) 9648.13 9648.13i 1.05614 1.05614i
\(438\) 0 0
\(439\) −7823.34 −0.850541 −0.425271 0.905066i \(-0.639821\pi\)
−0.425271 + 0.905066i \(0.639821\pi\)
\(440\) −1250.31 1385.13i −0.135469 0.150076i
\(441\) 0 0
\(442\) 294.099 + 88.3472i 0.0316490 + 0.00950735i
\(443\) −9066.48 + 9066.48i −0.972374 + 0.972374i −0.999629 0.0272545i \(-0.991324\pi\)
0.0272545 + 0.999629i \(0.491324\pi\)
\(444\) 0 0
\(445\) −11723.5 + 457.007i −1.24888 + 0.0486836i
\(446\) 11766.3 6330.10i 1.24921 0.672061i
\(447\) 0 0
\(448\) 10586.1 7324.25i 1.11640 0.772407i
\(449\) 3381.93i 0.355464i 0.984079 + 0.177732i \(0.0568759\pi\)
−0.984079 + 0.177732i \(0.943124\pi\)
\(450\) 0 0
\(451\) 1557.09i 0.162573i
\(452\) −2271.26 11104.6i −0.236352 1.15557i
\(453\) 0 0
\(454\) −1562.17 2903.72i −0.161489 0.300173i
\(455\) −1065.57 + 41.5382i −0.109791 + 0.00427987i
\(456\) 0 0
\(457\) 10289.7 10289.7i 1.05324 1.05324i 0.0547399 0.998501i \(-0.482567\pi\)
0.998501 0.0547399i \(-0.0174330\pi\)
\(458\) −3671.77 + 12222.9i −0.374608 + 1.24703i
\(459\) 0 0
\(460\) 2142.28 + 8727.16i 0.217140 + 0.884579i
\(461\) 5310.20 0.536488 0.268244 0.963351i \(-0.413557\pi\)
0.268244 + 0.963351i \(0.413557\pi\)
\(462\) 0 0
\(463\) −7686.78 + 7686.78i −0.771566 + 0.771566i −0.978380 0.206814i \(-0.933690\pi\)
0.206814 + 0.978380i \(0.433690\pi\)
\(464\) 2018.26 861.648i 0.201930 0.0862091i
\(465\) 0 0
\(466\) −554.459 1030.62i −0.0551176 0.102451i
\(467\) 4535.99 + 4535.99i 0.449466 + 0.449466i 0.895177 0.445711i \(-0.147049\pi\)
−0.445711 + 0.895177i \(0.647049\pi\)
\(468\) 0 0
\(469\) 1235.30i 0.121623i
\(470\) −7309.10 + 4307.47i −0.717327 + 0.422742i
\(471\) 0 0
\(472\) 1465.12 + 1756.05i 0.142877 + 0.171248i
\(473\) −344.695 344.695i −0.0335076 0.0335076i
\(474\) 0 0
\(475\) −16924.5 + 1321.51i −1.63484 + 0.127652i
\(476\) −4803.46 3172.18i −0.462534 0.305455i
\(477\) 0 0
\(478\) −7923.91 2380.34i −0.758224 0.227771i
\(479\) 10969.6 1.04638 0.523189 0.852217i \(-0.324742\pi\)
0.523189 + 0.852217i \(0.324742\pi\)
\(480\) 0 0
\(481\) −1344.89 −0.127488
\(482\) −11538.0 3466.03i −1.09034 0.327538i
\(483\) 0 0
\(484\) 8522.13 + 5627.97i 0.800350 + 0.528547i
\(485\) −6227.65 5760.33i −0.583058 0.539306i
\(486\) 0 0
\(487\) 12736.0 + 12736.0i 1.18506 + 1.18506i 0.978416 + 0.206646i \(0.0662547\pi\)
0.206646 + 0.978416i \(0.433745\pi\)
\(488\) −3364.68 4032.80i −0.312115 0.374091i
\(489\) 0 0
\(490\) 8852.46 + 2287.41i 0.816150 + 0.210887i
\(491\) 10518.6i 0.966796i 0.875401 + 0.483398i \(0.160598\pi\)
−0.875401 + 0.483398i \(0.839402\pi\)
\(492\) 0 0
\(493\) −693.897 693.897i −0.0633905 0.0633905i
\(494\) 690.394 + 1283.29i 0.0628792 + 0.116878i
\(495\) 0 0
\(496\) 11064.2 4723.59i 1.00161 0.427612i
\(497\) −10926.5 + 10926.5i −0.986161 + 0.986161i
\(498\) 0 0
\(499\) 2445.26 0.219368 0.109684 0.993966i \(-0.465016\pi\)
0.109684 + 0.993966i \(0.465016\pi\)
\(500\) 5031.11 9984.38i 0.449996 0.893031i
\(501\) 0 0
\(502\) −4287.35 + 14272.1i −0.381183 + 1.26892i
\(503\) −12216.7 + 12216.7i −1.08293 + 1.08293i −0.0866986 + 0.996235i \(0.527632\pi\)
−0.996235 + 0.0866986i \(0.972368\pi\)
\(504\) 0 0
\(505\) 616.584 + 15817.1i 0.0543319 + 1.39377i
\(506\) 993.041 + 1845.84i 0.0872452 + 0.162169i
\(507\) 0 0
\(508\) 1404.37 + 6866.20i 0.122655 + 0.599682i
\(509\) 5615.75i 0.489025i 0.969646 + 0.244512i \(0.0786279\pi\)
−0.969646 + 0.244512i \(0.921372\pi\)
\(510\) 0 0
\(511\) 1331.16i 0.115239i
\(512\) 10081.5 5707.93i 0.870205 0.492690i
\(513\) 0 0
\(514\) −19850.0 + 10679.1i −1.70340 + 0.916408i
\(515\) 3307.17 + 3059.00i 0.282973 + 0.261739i
\(516\) 0 0
\(517\) −1399.26 + 1399.26i −0.119031 + 0.119031i
\(518\) 24144.6 + 7253.05i 2.04798 + 0.615214i
\(519\) 0 0
\(520\) −958.465 49.0309i −0.0808298 0.00413490i
\(521\) −5287.10 −0.444591 −0.222296 0.974979i \(-0.571355\pi\)
−0.222296 + 0.974979i \(0.571355\pi\)
\(522\) 0 0
\(523\) −4328.34 + 4328.34i −0.361883 + 0.361883i −0.864506 0.502623i \(-0.832369\pi\)
0.502623 + 0.864506i \(0.332369\pi\)
\(524\) −7142.43 + 10815.4i −0.595455 + 0.901666i
\(525\) 0 0
\(526\) 9588.45 5158.47i 0.794821 0.427605i
\(527\) −3803.97 3803.97i −0.314428 0.314428i
\(528\) 0 0
\(529\) 2072.91i 0.170371i
\(530\) 2873.23 1693.28i 0.235481 0.138776i
\(531\) 0 0
\(532\) −5473.73 26762.1i −0.446083 2.18098i
\(533\) −566.287 566.287i −0.0460199 0.0460199i
\(534\) 0 0
\(535\) 4985.05 5389.47i 0.402846 0.435527i
\(536\) −100.003 + 1107.23i −0.00805871 + 0.0892262i
\(537\) 0 0
\(538\) −491.468 + 1636.04i −0.0393841 + 0.131106i
\(539\) 2132.62 0.170424
\(540\) 0 0
\(541\) −13608.6 −1.08148 −0.540739 0.841190i \(-0.681855\pi\)
−0.540739 + 0.841190i \(0.681855\pi\)
\(542\) −3443.93 + 11464.5i −0.272932 + 0.908563i
\(543\) 0 0
\(544\) −4048.67 3232.17i −0.319090 0.254739i
\(545\) −7131.72 + 278.009i −0.560531 + 0.0218506i
\(546\) 0 0
\(547\) −2884.33 2884.33i −0.225457 0.225457i 0.585335 0.810792i \(-0.300963\pi\)
−0.810792 + 0.585335i \(0.800963\pi\)
\(548\) −9145.34 + 1870.52i −0.712901 + 0.145812i
\(549\) 0 0
\(550\) 553.557 2548.34i 0.0429159 0.197567i
\(551\) 4656.71i 0.360041i
\(552\) 0 0
\(553\) 17830.0 + 17830.0i 1.37108 + 1.37108i
\(554\) −11321.8 + 6091.00i −0.868263 + 0.467115i
\(555\) 0 0
\(556\) −8439.43 5573.35i −0.643726 0.425113i
\(557\) 6538.87 6538.87i 0.497416 0.497416i −0.413216 0.910633i \(-0.635595\pi\)
0.910633 + 0.413216i \(0.135595\pi\)
\(558\) 0 0
\(559\) −250.720 −0.0189702
\(560\) 16942.8 + 6049.30i 1.27851 + 0.456481i
\(561\) 0 0
\(562\) −20518.9 6163.88i −1.54010 0.462647i
\(563\) −6499.93 + 6499.93i −0.486571 + 0.486571i −0.907222 0.420651i \(-0.861802\pi\)
0.420651 + 0.907222i \(0.361802\pi\)
\(564\) 0 0
\(565\) 10756.1 11628.7i 0.800907 0.865882i
\(566\) −1775.71 + 955.311i −0.131870 + 0.0709447i
\(567\) 0 0
\(568\) −10678.3 + 8909.19i −0.788822 + 0.658136i
\(569\) 5264.67i 0.387885i −0.981013 0.193942i \(-0.937872\pi\)
0.981013 0.193942i \(-0.0621275\pi\)
\(570\) 0 0
\(571\) 22034.0i 1.61488i 0.589952 + 0.807438i \(0.299147\pi\)
−0.589952 + 0.807438i \(0.700853\pi\)
\(572\) −219.311 + 44.8563i −0.0160312 + 0.00327891i
\(573\) 0 0
\(574\) 7112.48 + 13220.5i 0.517194 + 0.961348i
\(575\) −8162.08 + 9544.67i −0.591969 + 0.692244i
\(576\) 0 0
\(577\) −9208.58 + 9208.58i −0.664399 + 0.664399i −0.956414 0.292015i \(-0.905674\pi\)
0.292015 + 0.956414i \(0.405674\pi\)
\(578\) 3331.40 11089.9i 0.239737 0.798059i
\(579\) 0 0
\(580\) 2623.09 + 1589.11i 0.187789 + 0.113766i
\(581\) −15047.2 −1.07446
\(582\) 0 0
\(583\) 550.052 550.052i 0.0390751 0.0390751i
\(584\) −107.763 + 1193.15i −0.00763572 + 0.0845429i
\(585\) 0 0
\(586\) −462.679 860.016i −0.0326162 0.0606262i
\(587\) −6536.20 6536.20i −0.459587 0.459587i 0.438933 0.898520i \(-0.355357\pi\)
−0.898520 + 0.438933i \(0.855357\pi\)
\(588\) 0 0
\(589\) 25528.3i 1.78586i
\(590\) −799.602 + 3094.53i −0.0557951 + 0.215932i
\(591\) 0 0
\(592\) 21054.3 + 8455.72i 1.46170 + 0.587040i
\(593\) 11033.7 + 11033.7i 0.764079 + 0.764079i 0.977057 0.212978i \(-0.0683163\pi\)
−0.212978 + 0.977057i \(0.568316\pi\)
\(594\) 0 0
\(595\) −313.364 8038.68i −0.0215910 0.553872i
\(596\) 5958.16 9022.12i 0.409489 0.620068i
\(597\) 0 0
\(598\) 1032.46 + 310.150i 0.0706024 + 0.0212090i
\(599\) −1861.62 −0.126985 −0.0634923 0.997982i \(-0.520224\pi\)
−0.0634923 + 0.997982i \(0.520224\pi\)
\(600\) 0 0
\(601\) −21693.2 −1.47235 −0.736177 0.676789i \(-0.763371\pi\)
−0.736177 + 0.676789i \(0.763371\pi\)
\(602\) 4501.15 + 1352.15i 0.304739 + 0.0915437i
\(603\) 0 0
\(604\) 10252.8 15525.2i 0.690693 1.04588i
\(605\) 555.959 + 14261.9i 0.0373602 + 0.958398i
\(606\) 0 0
\(607\) 617.817 + 617.817i 0.0413121 + 0.0413121i 0.727461 0.686149i \(-0.240700\pi\)
−0.686149 + 0.727461i \(0.740700\pi\)
\(608\) −2739.75 24430.7i −0.182749 1.62960i
\(609\) 0 0
\(610\) 1836.30 7106.63i 0.121884 0.471703i
\(611\) 1017.77i 0.0673891i
\(612\) 0 0
\(613\) 5656.87 + 5656.87i 0.372722 + 0.372722i 0.868468 0.495745i \(-0.165105\pi\)
−0.495745 + 0.868468i \(0.665105\pi\)
\(614\) −12987.6 24141.0i −0.853642 1.58673i
\(615\) 0 0
\(616\) 4179.17 + 377.453i 0.273350 + 0.0246884i
\(617\) −12811.8 + 12811.8i −0.835953 + 0.835953i −0.988323 0.152370i \(-0.951309\pi\)
0.152370 + 0.988323i \(0.451309\pi\)
\(618\) 0 0
\(619\) −12163.2 −0.789788 −0.394894 0.918727i \(-0.629219\pi\)
−0.394894 + 0.918727i \(0.629219\pi\)
\(620\) 14379.9 + 8711.57i 0.931468 + 0.564299i
\(621\) 0 0
\(622\) −8790.56 + 29262.9i −0.566671 + 1.88639i
\(623\) 18656.2 18656.2i 1.19975 1.19975i
\(624\) 0 0
\(625\) 15435.6 2425.29i 0.987880 0.155219i
\(626\) −4962.20 9223.62i −0.316820 0.588898i
\(627\) 0 0
\(628\) 1801.04 368.372i 0.114441 0.0234071i
\(629\) 10145.8i 0.643149i
\(630\) 0 0
\(631\) 3347.17i 0.211171i 0.994410 + 0.105585i \(0.0336716\pi\)
−0.994410 + 0.105585i \(0.966328\pi\)
\(632\) 14538.1 + 17424.9i 0.915023 + 1.09672i
\(633\) 0 0
\(634\) 12866.7 6922.14i 0.805998 0.433617i
\(635\) −6650.70 + 7190.25i −0.415630 + 0.449349i
\(636\) 0 0
\(637\) 775.600 775.600i 0.0482424 0.0482424i
\(638\) 685.099 + 205.804i 0.0425131 + 0.0127709i
\(639\) 0 0
\(640\) 14696.6 + 6793.74i 0.907708 + 0.419603i
\(641\) 24791.3 1.52761 0.763803 0.645449i \(-0.223330\pi\)
0.763803 + 0.645449i \(0.223330\pi\)
\(642\) 0 0
\(643\) 12922.9 12922.9i 0.792583 0.792583i −0.189330 0.981913i \(-0.560632\pi\)
0.981913 + 0.189330i \(0.0606316\pi\)
\(644\) −16862.9 11136.2i −1.03182 0.681408i
\(645\) 0 0
\(646\) −9681.12 + 5208.33i −0.589626 + 0.317212i
\(647\) 16924.5 + 16924.5i 1.02840 + 1.02840i 0.999585 + 0.0288113i \(0.00917218\pi\)
0.0288113 + 0.999585i \(0.490828\pi\)
\(648\) 0 0
\(649\) 745.493i 0.0450896i
\(650\) −725.472 1128.11i −0.0437774 0.0680741i
\(651\) 0 0
\(652\) −10335.4 + 2113.93i −0.620806 + 0.126975i
\(653\) −10391.0 10391.0i −0.622715 0.622715i 0.323510 0.946225i \(-0.395137\pi\)
−0.946225 + 0.323510i \(0.895137\pi\)
\(654\) 0 0
\(655\) −18099.8 + 705.565i −1.07972 + 0.0420896i
\(656\) 5304.85 + 12425.7i 0.315731 + 0.739545i
\(657\) 0 0
\(658\) 5488.91 18272.0i 0.325197 1.08255i
\(659\) −773.045 −0.0456958 −0.0228479 0.999739i \(-0.507273\pi\)
−0.0228479 + 0.999739i \(0.507273\pi\)
\(660\) 0 0
\(661\) 17856.3 1.05073 0.525364 0.850878i \(-0.323929\pi\)
0.525364 + 0.850878i \(0.323929\pi\)
\(662\) −6379.62 + 21237.1i −0.374549 + 1.24683i
\(663\) 0 0
\(664\) −13487.2 1218.13i −0.788259 0.0711938i
\(665\) 25922.1 28025.1i 1.51161 1.63424i
\(666\) 0 0
\(667\) −2435.98 2435.98i −0.141411 0.141411i
\(668\) 2213.73 + 10823.3i 0.128221 + 0.626896i
\(669\) 0 0
\(670\) −1338.55 + 788.848i −0.0771833 + 0.0454864i
\(671\) 1712.04i 0.0984985i
\(672\) 0 0
\(673\) −19931.6 19931.6i −1.14161 1.14161i −0.988155 0.153459i \(-0.950959\pi\)
−0.153459 0.988155i \(-0.549041\pi\)
\(674\) 15863.0 8534.10i 0.906557 0.487717i
\(675\) 0 0
\(676\) 9622.18 14570.4i 0.547462 0.828992i
\(677\) 5515.73 5515.73i 0.313126 0.313126i −0.532993 0.846120i \(-0.678933\pi\)
0.846120 + 0.532993i \(0.178933\pi\)
\(678\) 0 0
\(679\) 19077.0 1.07822
\(680\) 369.889 7230.65i 0.0208597 0.407769i
\(681\) 0 0
\(682\) 3755.74 + 1128.22i 0.210872 + 0.0633460i
\(683\) 19946.1 19946.1i 1.11745 1.11745i 0.125331 0.992115i \(-0.460001\pi\)
0.992115 0.125331i \(-0.0399992\pi\)
\(684\) 0 0
\(685\) −9576.95 8858.31i −0.534185 0.494100i
\(686\) 3373.39 1814.85i 0.187750 0.101007i
\(687\) 0 0
\(688\) 3925.04 + 1576.35i 0.217501 + 0.0873515i
\(689\) 400.090i 0.0221222i
\(690\) 0 0
\(691\) 356.654i 0.0196350i −0.999952 0.00981748i \(-0.996875\pi\)
0.999952 0.00981748i \(-0.00312505\pi\)
\(692\) −1726.84 8442.84i −0.0948621 0.463798i
\(693\) 0 0
\(694\) −16030.3 29796.7i −0.876802 1.62978i
\(695\) −550.564 14123.6i −0.0300490 0.770845i
\(696\) 0 0
\(697\) 4272.07 4272.07i 0.232161 0.232161i
\(698\) −4488.09 + 14940.4i −0.243377 + 0.810175i
\(699\) 0 0
\(700\) 6940.35 + 24165.4i 0.374744 + 1.30481i
\(701\) −17230.0 −0.928343 −0.464172 0.885745i \(-0.653648\pi\)
−0.464172 + 0.885745i \(0.653648\pi\)
\(702\) 0 0
\(703\) 34044.1 34044.1i 1.82646 1.82646i
\(704\) 3715.35 + 676.643i 0.198903 + 0.0362243i
\(705\) 0 0
\(706\) −1443.02 2682.26i −0.0769248 0.142986i
\(707\) −25170.5 25170.5i −1.33895 1.33895i
\(708\) 0 0
\(709\) 8153.11i 0.431871i 0.976408 + 0.215935i \(0.0692801\pi\)
−0.976408 + 0.215935i \(0.930720\pi\)
\(710\) −18817.3 4862.26i −0.994651 0.257010i
\(711\) 0 0
\(712\) 18232.4 15211.8i 0.959672 0.800681i
\(713\) −13354.1 13354.1i −0.701425 0.701425i
\(714\) 0 0
\(715\) −229.661 212.427i −0.0120124 0.0111110i
\(716\) −26724.8 17648.9i −1.39491 0.921189i
\(717\) 0 0
\(718\) −9656.25 2900.74i −0.501905 0.150772i
\(719\) −17219.3 −0.893147 −0.446573 0.894747i \(-0.647356\pi\)
−0.446573 + 0.894747i \(0.647356\pi\)
\(720\) 0 0
\(721\) −10130.8 −0.523287
\(722\) −31381.3 9426.94i −1.61758 0.485920i
\(723\) 0 0
\(724\) −13017.5 8596.70i −0.668221 0.441290i
\(725\) 333.656 + 4273.12i 0.0170920 + 0.218896i
\(726\) 0 0
\(727\) −8881.73 8881.73i −0.453102 0.453102i 0.443281 0.896383i \(-0.353814\pi\)
−0.896383 + 0.443281i \(0.853814\pi\)
\(728\) 1657.17 1382.62i 0.0843665 0.0703893i
\(729\) 0 0
\(730\) −1442.42 + 850.061i −0.0731320 + 0.0430989i
\(731\) 1891.43i 0.0957004i
\(732\) 0 0
\(733\) 4401.20 + 4401.20i 0.221776 + 0.221776i 0.809246 0.587470i \(-0.199876\pi\)
−0.587470 + 0.809246i \(0.699876\pi\)
\(734\) 8353.30 + 15526.9i 0.420062 + 0.780802i
\(735\) 0 0
\(736\) −14213.2 11346.8i −0.711826 0.568271i
\(737\) −256.253 + 256.253i −0.0128076 + 0.0128076i
\(738\) 0 0
\(739\) 23097.8 1.14975 0.574875 0.818241i \(-0.305051\pi\)
0.574875 + 0.818241i \(0.305051\pi\)
\(740\) 7559.18 + 30794.4i 0.375515 + 1.52976i
\(741\) 0 0
\(742\) −2157.70 + 7182.77i −0.106754 + 0.355374i
\(743\) 17404.1 17404.1i 0.859348 0.859348i −0.131913 0.991261i \(-0.542112\pi\)
0.991261 + 0.131913i \(0.0421119\pi\)
\(744\) 0 0
\(745\) 15098.7 588.577i 0.742515 0.0289447i
\(746\) 15864.3 + 29488.2i 0.778597 + 1.44724i
\(747\) 0 0
\(748\) −338.395 1654.48i −0.0165414 0.0808739i
\(749\) 16509.4i 0.805396i
\(750\) 0 0
\(751\) 2347.75i 0.114075i 0.998372 + 0.0570377i \(0.0181655\pi\)
−0.998372 + 0.0570377i \(0.981834\pi\)
\(752\) 6399.05 15933.3i 0.310305 0.772644i
\(753\) 0 0
\(754\) 324.007 174.312i 0.0156494 0.00841919i
\(755\) 25981.7 1012.82i 1.25241 0.0488215i
\(756\) 0 0
\(757\) −7078.12 + 7078.12i −0.339840 + 0.339840i −0.856307 0.516467i \(-0.827247\pi\)
0.516467 + 0.856307i \(0.327247\pi\)
\(758\) −30149.6 9056.95i −1.44470 0.433989i
\(759\) 0 0
\(760\) 25503.5 23021.2i 1.21725 1.09877i
\(761\) 27017.6 1.28697 0.643486 0.765458i \(-0.277487\pi\)
0.643486 + 0.765458i \(0.277487\pi\)
\(762\) 0 0
\(763\) 11349.0 11349.0i 0.538483 0.538483i
\(764\) −6431.22 + 9738.45i −0.304546 + 0.461158i
\(765\) 0 0
\(766\) −3545.90 + 1907.65i −0.167257 + 0.0899821i
\(767\) 271.124 + 271.124i 0.0127636 + 0.0127636i
\(768\) 0 0
\(769\) 41584.0i 1.95001i 0.222183 + 0.975005i \(0.428682\pi\)
−0.222183 + 0.975005i \(0.571318\pi\)
\(770\) 2977.45 + 5052.26i 0.139350 + 0.236456i
\(771\) 0 0
\(772\) 5134.29 + 25102.5i 0.239362 + 1.17028i
\(773\) 19799.8 + 19799.8i 0.921280 + 0.921280i 0.997120 0.0758404i \(-0.0241639\pi\)
−0.0758404 + 0.997120i \(0.524164\pi\)
\(774\) 0 0
\(775\) 1829.12 + 23425.4i 0.0847790 + 1.08576i
\(776\) 17099.2 + 1544.36i 0.791014 + 0.0714426i
\(777\) 0 0
\(778\) −11024.8 + 36700.5i −0.508045 + 1.69123i
\(779\) 28669.7 1.31861
\(780\) 0 0
\(781\) −4533.23 −0.207697
\(782\) −2339.77 + 7788.84i −0.106995 + 0.356174i
\(783\) 0 0
\(784\) −17018.5 + 7265.64i −0.775260 + 0.330979i
\(785\) 1886.04 + 1744.51i 0.0857523 + 0.0793176i
\(786\) 0 0
\(787\) −23772.7 23772.7i −1.07675 1.07675i −0.996799 0.0799542i \(-0.974523\pi\)
−0.0799542 0.996799i \(-0.525477\pi\)
\(788\) −23195.9 + 4744.34i −1.04863 + 0.214480i
\(789\) 0 0
\(790\) −7934.27 + 30706.3i −0.357327 + 1.38289i
\(791\) 35621.9i 1.60123i
\(792\) 0 0
\(793\) −622.640 622.640i −0.0278822 0.0278822i
\(794\) −6420.99 + 3454.42i −0.286993 + 0.154399i
\(795\) 0 0
\(796\) 13936.8 + 9203.77i 0.620573 + 0.409823i
\(797\) −8760.69 + 8760.69i −0.389359 + 0.389359i −0.874459 0.485100i \(-0.838783\pi\)
0.485100 + 0.874459i \(0.338783\pi\)
\(798\) 0 0
\(799\) −7678.08 −0.339964
\(800\) 4264.54 + 22221.9i 0.188468 + 0.982079i
\(801\) 0 0
\(802\) 16041.9 + 4818.98i 0.706308 + 0.212175i
\(803\) −276.138 + 276.138i −0.0121353 + 0.0121353i
\(804\) 0 0
\(805\) −1100.09 28220.4i −0.0481652 1.23558i
\(806\) 1776.22 955.585i 0.0776236 0.0417606i
\(807\) 0 0
\(808\) −20523.4 24598.7i −0.893576 1.07101i
\(809\) 27571.0i 1.19820i 0.800673 + 0.599102i \(0.204475\pi\)
−0.800673 + 0.599102i \(0.795525\pi\)
\(810\) 0 0
\(811\) 20085.4i 0.869661i 0.900512 + 0.434831i \(0.143192\pi\)
−0.900512 + 0.434831i \(0.856808\pi\)
\(812\) −6756.94 + 1382.02i −0.292022 + 0.0597282i
\(813\) 0 0
\(814\) 3504.02 + 6513.18i 0.150879 + 0.280451i
\(815\) −10823.2 10011.0i −0.465177 0.430271i
\(816\) 0 0
\(817\) 6346.65 6346.65i 0.271776 0.271776i
\(818\) 6943.65 23114.7i 0.296796 0.988002i
\(819\) 0 0
\(820\) −9783.57 + 16149.4i −0.416655 + 0.687758i
\(821\) −14867.5 −0.632008 −0.316004 0.948758i \(-0.602341\pi\)
−0.316004 + 0.948758i \(0.602341\pi\)
\(822\) 0 0
\(823\) −23345.7 + 23345.7i −0.988797 + 0.988797i −0.999938 0.0111410i \(-0.996454\pi\)
0.0111410 + 0.999938i \(0.496454\pi\)
\(824\) −9080.48 820.128i −0.383900 0.0346730i
\(825\) 0 0
\(826\) −3405.27 6329.64i −0.143444 0.266630i
\(827\) −3330.46 3330.46i −0.140038 0.140038i 0.633613 0.773651i \(-0.281571\pi\)
−0.773651 + 0.633613i \(0.781571\pi\)
\(828\) 0 0
\(829\) 11521.6i 0.482703i 0.970438 + 0.241351i \(0.0775906\pi\)
−0.970438 + 0.241351i \(0.922409\pi\)
\(830\) −9608.93 16304.8i −0.401844 0.681867i
\(831\) 0 0
\(832\) 1597.30 1105.13i 0.0665580 0.0460498i
\(833\) 5851.12 + 5851.12i 0.243372 + 0.243372i
\(834\) 0 0
\(835\) −10483.6 + 11334.1i −0.434492 + 0.469741i
\(836\) 4416.09 6687.04i 0.182696 0.276646i
\(837\) 0 0
\(838\) 19308.7 + 5800.33i 0.795951 + 0.239104i
\(839\) −33130.1 −1.36326 −0.681631 0.731696i \(-0.738729\pi\)
−0.681631 + 0.731696i \(0.738729\pi\)
\(840\) 0 0
\(841\) 23213.3 0.951792
\(842\) 1655.75 + 497.388i 0.0677684 + 0.0203576i
\(843\) 0 0
\(844\) −879.936 + 1332.44i −0.0358870 + 0.0543418i
\(845\) 24383.8 950.528i 0.992695 0.0386972i
\(846\) 0 0
\(847\) −22695.7 22695.7i −0.920699 0.920699i
\(848\) −2515.48 + 6263.43i −0.101866 + 0.253641i
\(849\) 0 0
\(850\) 8510.46 5472.95i 0.343419 0.220848i
\(851\) 35617.7i 1.43474i
\(852\) 0 0
\(853\) 12007.8 + 12007.8i 0.481994 + 0.481994i 0.905768 0.423774i \(-0.139295\pi\)
−0.423774 + 0.905768i \(0.639295\pi\)
\(854\) 7820.26 + 14536.1i 0.313354 + 0.582454i
\(855\) 0 0
\(856\) −1336.51 + 14797.8i −0.0533655 + 0.590864i
\(857\) 9369.48 9369.48i 0.373460 0.373460i −0.495276 0.868736i \(-0.664933\pi\)
0.868736 + 0.495276i \(0.164933\pi\)
\(858\) 0 0
\(859\) 17337.1 0.688630 0.344315 0.938854i \(-0.388111\pi\)
0.344315 + 0.938854i \(0.388111\pi\)
\(860\) 1409.21 + 5740.83i 0.0558765 + 0.227629i
\(861\) 0 0
\(862\) 7617.98 25359.4i 0.301009 1.00203i
\(863\) 17345.8 17345.8i 0.684191 0.684191i −0.276751 0.960942i \(-0.589258\pi\)
0.960942 + 0.276751i \(0.0892576\pi\)
\(864\) 0 0
\(865\) 8177.86 8841.30i 0.321451 0.347530i
\(866\) 3353.36 + 6233.15i 0.131584 + 0.244586i
\(867\) 0 0
\(868\) −37041.8 + 7576.27i −1.44848 + 0.296262i
\(869\) 7397.36i 0.288767i
\(870\) 0 0
\(871\) 186.390i 0.00725096i
\(872\) 11091.2 9253.69i 0.430728 0.359368i
\(873\) 0 0
\(874\) −33986.3 + 18284.2i −1.31534 + 0.707636i
\(875\) −21778.8 + 27573.9i −0.841438 + 1.06533i
\(876\) 0 0
\(877\) −18857.4 + 18857.4i −0.726075 + 0.726075i −0.969836 0.243760i \(-0.921619\pi\)
0.243760 + 0.969836i \(0.421619\pi\)
\(878\) 21192.2 + 6366.14i 0.814581 + 0.244700i
\(879\) 0 0
\(880\) 2259.76 + 4769.51i 0.0865643 + 0.182705i
\(881\) −27095.7 −1.03618 −0.518092 0.855325i \(-0.673357\pi\)
−0.518092 + 0.855325i \(0.673357\pi\)
\(882\) 0 0
\(883\) −2484.93 + 2484.93i −0.0947049 + 0.0947049i −0.752872 0.658167i \(-0.771332\pi\)
0.658167 + 0.752872i \(0.271332\pi\)
\(884\) −724.775 478.638i −0.0275756 0.0182108i
\(885\) 0 0
\(886\) 31937.4 17182.0i 1.21101 0.651511i
\(887\) −26609.3 26609.3i −1.00727 1.00727i −0.999973 0.00730049i \(-0.997676\pi\)
−0.00730049 0.999973i \(-0.502324\pi\)
\(888\) 0 0
\(889\) 22025.7i 0.830955i
\(890\) 32129.1 + 8301.92i 1.21008 + 0.312675i
\(891\) 0 0
\(892\) −37024.0 + 7572.63i −1.38975 + 0.284249i
\(893\) −25763.6 25763.6i −0.965451 0.965451i
\(894\) 0 0
\(895\) −1743.45 44724.5i −0.0651141 1.67036i
\(896\) −34636.1 + 11225.9i −1.29142 + 0.418563i
\(897\) 0 0
\(898\) 2752.00 9161.12i 0.102267 0.340435i
\(899\) −6445.42 −0.239118
\(900\) 0 0
\(901\) 3018.27 0.111602
\(902\) −1267.06 + 4217.90i −0.0467721 + 0.155699i
\(903\) 0 0
\(904\) −2883.74 + 31928.9i −0.106097 + 1.17471i
\(905\) −849.225 21785.1i −0.0311925 0.800177i
\(906\) 0 0
\(907\) 23802.0 + 23802.0i 0.871369 + 0.871369i 0.992622 0.121252i \(-0.0386910\pi\)
−0.121252 + 0.992622i \(0.538691\pi\)
\(908\) 1868.80 + 9136.92i 0.0683022 + 0.333942i
\(909\) 0 0
\(910\) 2920.27 + 754.577i 0.106380 + 0.0274879i
\(911\) 36580.4i 1.33036i 0.746681 + 0.665182i \(0.231646\pi\)
−0.746681 + 0.665182i \(0.768354\pi\)
\(912\) 0 0
\(913\) −3121.41 3121.41i −0.113147 0.113147i
\(914\) −36246.2 + 19500.0i −1.31173 + 0.705694i
\(915\) 0 0
\(916\) 19892.5 30122.2i 0.717540 1.08653i
\(917\) 28803.0 28803.0i 1.03725 1.03725i
\(918\) 0 0
\(919\) −32910.8 −1.18131 −0.590657 0.806923i \(-0.701131\pi\)
−0.590657 + 0.806923i \(0.701131\pi\)
\(920\) 1298.52 25383.8i 0.0465337 0.909650i
\(921\) 0 0
\(922\) −14384.5 4321.11i −0.513806 0.154347i
\(923\) −1648.66 + 1648.66i −0.0587935 + 0.0587935i
\(924\) 0 0
\(925\) −28800.5 + 33679.0i −1.02373 + 1.19715i
\(926\) 27077.3 14567.3i 0.960924 0.516966i
\(927\) 0 0
\(928\) −6168.30 + 691.737i −0.218195 + 0.0244692i
\(929\) 2662.19i 0.0940190i 0.998894 + 0.0470095i \(0.0149691\pi\)
−0.998894 + 0.0470095i \(0.985031\pi\)
\(930\) 0 0
\(931\) 39266.6i 1.38229i
\(932\) 663.293 + 3242.96i 0.0233121 + 0.113977i
\(933\) 0 0
\(934\) −8596.18 15978.4i −0.301152 0.559774i
\(935\) 1602.55 1732.56i 0.0560524 0.0605998i
\(936\) 0 0
\(937\) 37885.5 37885.5i 1.32088 1.32088i 0.407818 0.913063i \(-0.366290\pi\)
0.913063 0.407818i \(-0.133710\pi\)
\(938\) 1005.21 3346.24i 0.0349907 0.116480i
\(939\) 0 0
\(940\) 23304.4 5720.57i 0.808621 0.198494i
\(941\) 6516.65 0.225756 0.112878 0.993609i \(-0.463993\pi\)
0.112878 + 0.993609i \(0.463993\pi\)
\(942\) 0 0
\(943\) 14997.4 14997.4i 0.517904 0.517904i
\(944\) −2539.83 5949.10i −0.0875681 0.205113i
\(945\) 0 0
\(946\) 653.234 + 1214.22i 0.0224508 + 0.0417310i
\(947\) 10250.1 + 10250.1i 0.351724 + 0.351724i 0.860751 0.509026i \(-0.169994\pi\)
−0.509026 + 0.860751i \(0.669994\pi\)
\(948\) 0 0
\(949\) 200.854i 0.00687037i
\(950\) 46921.1 + 10192.3i 1.60244 + 0.348086i
\(951\) 0 0
\(952\) 10430.5 + 12501.7i 0.355099 + 0.425611i
\(953\) −19249.8 19249.8i −0.654314 0.654314i 0.299715 0.954029i \(-0.403109\pi\)
−0.954029 + 0.299715i \(0.903109\pi\)
\(954\) 0 0
\(955\) −16297.5 + 635.308i −0.552225 + 0.0215268i
\(956\) 19527.7 + 12896.0i 0.660637 + 0.436281i
\(957\) 0 0
\(958\) −29715.0 8926.38i −1.00214 0.301042i
\(959\) 29336.9 0.987838
\(960\) 0 0
\(961\) −5543.06 −0.186065
\(962\) 3643.09 + 1094.39i 0.122098 + 0.0366782i
\(963\) 0 0
\(964\) 28434.3 + 18777.8i 0.950007 + 0.627379i
\(965\) −24314.7 + 26287.2i −0.811105 + 0.876907i
\(966\) 0 0
\(967\) 3744.56 + 3744.56i 0.124526 + 0.124526i 0.766623 0.642097i \(-0.221935\pi\)
−0.642097 + 0.766623i \(0.721935\pi\)
\(968\) −18505.4 22180.0i −0.614449 0.736460i
\(969\) 0 0
\(970\) 12182.3 + 20671.5i 0.403248 + 0.684250i
\(971\) 29491.0i 0.974677i 0.873213 + 0.487338i \(0.162032\pi\)
−0.873213 + 0.487338i \(0.837968\pi\)
\(972\) 0 0
\(973\) 22475.4 + 22475.4i 0.740524 + 0.740524i
\(974\) −24136.1 44863.7i −0.794016 1.47590i
\(975\) 0 0
\(976\) 5832.75 + 13662.2i 0.191293 + 0.448070i
\(977\) −13592.2 + 13592.2i −0.445092 + 0.445092i −0.893719 0.448627i \(-0.851913\pi\)
0.448627 + 0.893719i \(0.351913\pi\)
\(978\) 0 0
\(979\) 7740.14 0.252682
\(980\) −22118.6 13399.8i −0.720972 0.436777i
\(981\) 0 0
\(982\) 8559.36 28493.2i 0.278147 0.925921i
\(983\) −12087.1 + 12087.1i −0.392185 + 0.392185i −0.875466 0.483280i \(-0.839445\pi\)
0.483280 + 0.875466i \(0.339445\pi\)
\(984\) 0 0
\(985\) −24290.7 22467.9i −0.785752 0.726790i
\(986\) 1315.01 + 2444.31i 0.0424730 + 0.0789478i
\(987\) 0 0
\(988\) −825.910 4038.03i −0.0265949 0.130027i
\(989\) 6640.01i 0.213488i
\(990\) 0 0
\(991\) 52539.6i 1.68413i 0.539374 + 0.842066i \(0.318661\pi\)
−0.539374 + 0.842066i \(0.681339\pi\)
\(992\) −33814.9 + 3792.13i −1.08228 + 0.121371i
\(993\) 0 0
\(994\) 38489.6 20706.9i 1.22818 0.660749i
\(995\) 909.194 + 23323.5i 0.0289682 + 0.743119i
\(996\) 0 0
\(997\) 12067.7 12067.7i 0.383337 0.383337i −0.488966 0.872303i \(-0.662626\pi\)
0.872303 + 0.488966i \(0.162626\pi\)
\(998\) −6623.82 1989.80i −0.210094 0.0631121i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.4.k.e.163.1 12
3.2 odd 2 20.4.e.b.3.6 yes 12
4.3 odd 2 inner 180.4.k.e.163.4 12
5.2 odd 4 inner 180.4.k.e.127.4 12
12.11 even 2 20.4.e.b.3.3 12
15.2 even 4 20.4.e.b.7.3 yes 12
15.8 even 4 100.4.e.e.7.4 12
15.14 odd 2 100.4.e.e.43.1 12
20.7 even 4 inner 180.4.k.e.127.1 12
24.5 odd 2 320.4.n.k.63.4 12
24.11 even 2 320.4.n.k.63.3 12
60.23 odd 4 100.4.e.e.7.1 12
60.47 odd 4 20.4.e.b.7.6 yes 12
60.59 even 2 100.4.e.e.43.4 12
120.77 even 4 320.4.n.k.127.3 12
120.107 odd 4 320.4.n.k.127.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.4.e.b.3.3 12 12.11 even 2
20.4.e.b.3.6 yes 12 3.2 odd 2
20.4.e.b.7.3 yes 12 15.2 even 4
20.4.e.b.7.6 yes 12 60.47 odd 4
100.4.e.e.7.1 12 60.23 odd 4
100.4.e.e.7.4 12 15.8 even 4
100.4.e.e.43.1 12 15.14 odd 2
100.4.e.e.43.4 12 60.59 even 2
180.4.k.e.127.1 12 20.7 even 4 inner
180.4.k.e.127.4 12 5.2 odd 4 inner
180.4.k.e.163.1 12 1.1 even 1 trivial
180.4.k.e.163.4 12 4.3 odd 2 inner
320.4.n.k.63.3 12 24.11 even 2
320.4.n.k.63.4 12 24.5 odd 2
320.4.n.k.127.3 12 120.77 even 4
320.4.n.k.127.4 12 120.107 odd 4