L(s) = 1 | + (−2.70 − 0.813i)2-s + (6.67 + 4.40i)4-s + (0.435 + 11.1i)5-s + (−17.7 − 17.7i)7-s + (−14.4 − 17.3i)8-s + (7.91 − 30.6i)10-s − 7.37i·11-s + (−2.68 − 2.68i)13-s + (33.6 + 62.6i)14-s + (25.1 + 58.8i)16-s + (20.2 − 20.2i)17-s + 135.·19-s + (−46.3 + 76.4i)20-s + (−6.00 + 19.9i)22-s + (71.0 − 71.0i)23-s + ⋯ |
L(s) = 1 | + (−0.957 − 0.287i)2-s + (0.834 + 0.551i)4-s + (0.0389 + 0.999i)5-s + (−0.959 − 0.959i)7-s + (−0.640 − 0.767i)8-s + (0.250 − 0.968i)10-s − 0.202i·11-s + (−0.0572 − 0.0572i)13-s + (0.643 + 1.19i)14-s + (0.392 + 0.919i)16-s + (0.288 − 0.288i)17-s + 1.63·19-s + (−0.518 + 0.855i)20-s + (−0.0581 + 0.193i)22-s + (0.644 − 0.644i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.455 + 0.890i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.746703 - 0.456914i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.746703 - 0.456914i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.70 + 0.813i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.435 - 11.1i)T \) |
good | 7 | \( 1 + (17.7 + 17.7i)T + 343iT^{2} \) |
| 11 | \( 1 + 7.37iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (2.68 + 2.68i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (-20.2 + 20.2i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 - 135.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-71.0 + 71.0i)T - 1.21e4iT^{2} \) |
| 29 | \( 1 + 34.2iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 187. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-250. + 250. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 211.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-46.7 + 46.7i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (189. + 189. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (-74.5 - 74.5i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + 101.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 232.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (34.7 + 34.7i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 614. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (37.4 + 37.4i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 + 1.00e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-423. + 423. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 1.04e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (536. - 536. i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.67719349097749723609835417517, −10.86455978618609006237156049027, −9.987264017757222182136350902491, −9.357535002953016805000992203941, −7.71159818047494749745990905975, −7.10832023047965947757255040426, −6.05790346906341806459008706374, −3.71333006078073232492712894277, −2.72587740330261801329146070847, −0.62086139859664446584339775164,
1.21450569063159624181578801281, 2.98186846075398722290006816655, 5.17030127436919343475963706356, 6.06976085006662542409690081194, 7.37345060731740307555708394793, 8.503701720092380482719429405643, 9.382493202793180344366414411651, 9.880182228132555757697691542805, 11.44116894654339269510669581200, 12.23365349741359740969069113080