Newspace parameters
| Level: | \( N \) | \(=\) | \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 180.u (of order \(12\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.90464475849\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(12\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13.1 | 0 | −2.93271 | + | 0.631853i | 0 | −4.98610 | + | 0.372540i | 0 | 5.98052 | + | 1.60248i | 0 | 8.20152 | − | 3.70608i | 0 | ||||||||||
| 13.2 | 0 | −2.69602 | − | 1.31586i | 0 | 4.02568 | + | 2.96545i | 0 | −4.41867 | − | 1.18398i | 0 | 5.53700 | + | 7.09518i | 0 | ||||||||||
| 13.3 | 0 | −2.08827 | − | 2.15386i | 0 | −2.95142 | − | 4.03598i | 0 | −4.02302 | − | 1.07796i | 0 | −0.278258 | + | 8.99570i | 0 | ||||||||||
| 13.4 | 0 | −1.80382 | + | 2.39713i | 0 | 1.85957 | + | 4.64134i | 0 | 3.33405 | + | 0.893356i | 0 | −2.49245 | − | 8.64799i | 0 | ||||||||||
| 13.5 | 0 | −1.70695 | + | 2.46705i | 0 | 2.79014 | − | 4.14911i | 0 | −10.5029 | − | 2.81425i | 0 | −3.17264 | − | 8.42226i | 0 | ||||||||||
| 13.6 | 0 | −0.412115 | − | 2.97156i | 0 | −3.05431 | + | 3.95868i | 0 | −2.46810 | − | 0.661325i | 0 | −8.66032 | + | 2.44925i | 0 | ||||||||||
| 13.7 | 0 | 0.165444 | − | 2.99543i | 0 | 4.61203 | − | 1.93111i | 0 | 9.89538 | + | 2.65146i | 0 | −8.94526 | − | 0.991152i | 0 | ||||||||||
| 13.8 | 0 | 0.594985 | + | 2.94041i | 0 | −1.82257 | − | 4.65599i | 0 | 12.3966 | + | 3.32166i | 0 | −8.29199 | + | 3.49900i | 0 | ||||||||||
| 13.9 | 0 | 1.55644 | + | 2.56466i | 0 | −4.88163 | + | 1.08150i | 0 | −10.5922 | − | 2.83818i | 0 | −4.15500 | + | 7.98348i | 0 | ||||||||||
| 13.10 | 0 | 2.49269 | − | 1.66927i | 0 | −0.806137 | − | 4.93459i | 0 | −4.69726 | − | 1.25863i | 0 | 3.42704 | − | 8.32198i | 0 | ||||||||||
| 13.11 | 0 | 2.62769 | + | 1.44749i | 0 | 4.94178 | + | 0.760767i | 0 | 0.709316 | + | 0.190061i | 0 | 4.80952 | + | 7.60713i | 0 | ||||||||||
| 13.12 | 0 | 2.83660 | − | 0.976571i | 0 | −2.32510 | + | 4.42650i | 0 | 4.38636 | + | 1.17532i | 0 | 7.09262 | − | 5.54029i | 0 | ||||||||||
| 97.1 | 0 | −2.93271 | − | 0.631853i | 0 | −4.98610 | − | 0.372540i | 0 | 5.98052 | − | 1.60248i | 0 | 8.20152 | + | 3.70608i | 0 | ||||||||||
| 97.2 | 0 | −2.69602 | + | 1.31586i | 0 | 4.02568 | − | 2.96545i | 0 | −4.41867 | + | 1.18398i | 0 | 5.53700 | − | 7.09518i | 0 | ||||||||||
| 97.3 | 0 | −2.08827 | + | 2.15386i | 0 | −2.95142 | + | 4.03598i | 0 | −4.02302 | + | 1.07796i | 0 | −0.278258 | − | 8.99570i | 0 | ||||||||||
| 97.4 | 0 | −1.80382 | − | 2.39713i | 0 | 1.85957 | − | 4.64134i | 0 | 3.33405 | − | 0.893356i | 0 | −2.49245 | + | 8.64799i | 0 | ||||||||||
| 97.5 | 0 | −1.70695 | − | 2.46705i | 0 | 2.79014 | + | 4.14911i | 0 | −10.5029 | + | 2.81425i | 0 | −3.17264 | + | 8.42226i | 0 | ||||||||||
| 97.6 | 0 | −0.412115 | + | 2.97156i | 0 | −3.05431 | − | 3.95868i | 0 | −2.46810 | + | 0.661325i | 0 | −8.66032 | − | 2.44925i | 0 | ||||||||||
| 97.7 | 0 | 0.165444 | + | 2.99543i | 0 | 4.61203 | + | 1.93111i | 0 | 9.89538 | − | 2.65146i | 0 | −8.94526 | + | 0.991152i | 0 | ||||||||||
| 97.8 | 0 | 0.594985 | − | 2.94041i | 0 | −1.82257 | + | 4.65599i | 0 | 12.3966 | − | 3.32166i | 0 | −8.29199 | − | 3.49900i | 0 | ||||||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.c | odd | 4 | 1 | inner |
| 9.c | even | 3 | 1 | inner |
| 45.k | odd | 12 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 180.3.u.a | ✓ | 48 |
| 3.b | odd | 2 | 1 | 540.3.v.a | 48 | ||
| 5.c | odd | 4 | 1 | inner | 180.3.u.a | ✓ | 48 |
| 9.c | even | 3 | 1 | inner | 180.3.u.a | ✓ | 48 |
| 9.c | even | 3 | 1 | 1620.3.l.f | 24 | ||
| 9.d | odd | 6 | 1 | 540.3.v.a | 48 | ||
| 9.d | odd | 6 | 1 | 1620.3.l.g | 24 | ||
| 15.e | even | 4 | 1 | 540.3.v.a | 48 | ||
| 45.k | odd | 12 | 1 | inner | 180.3.u.a | ✓ | 48 |
| 45.k | odd | 12 | 1 | 1620.3.l.f | 24 | ||
| 45.l | even | 12 | 1 | 540.3.v.a | 48 | ||
| 45.l | even | 12 | 1 | 1620.3.l.g | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 180.3.u.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
| 180.3.u.a | ✓ | 48 | 5.c | odd | 4 | 1 | inner |
| 180.3.u.a | ✓ | 48 | 9.c | even | 3 | 1 | inner |
| 180.3.u.a | ✓ | 48 | 45.k | odd | 12 | 1 | inner |
| 540.3.v.a | 48 | 3.b | odd | 2 | 1 | ||
| 540.3.v.a | 48 | 9.d | odd | 6 | 1 | ||
| 540.3.v.a | 48 | 15.e | even | 4 | 1 | ||
| 540.3.v.a | 48 | 45.l | even | 12 | 1 | ||
| 1620.3.l.f | 24 | 9.c | even | 3 | 1 | ||
| 1620.3.l.f | 24 | 45.k | odd | 12 | 1 | ||
| 1620.3.l.g | 24 | 9.d | odd | 6 | 1 | ||
| 1620.3.l.g | 24 | 45.l | even | 12 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(180, [\chi])\).