| L(s)  = 1 | + (0.631 + 2.93i)3-s     + (2.17 + 4.50i)5-s     + (−1.60 + 5.98i)7-s     + (−8.20 + 3.70i)9-s     + (−6.53 − 11.3i)11-s     + (−2.42 − 9.03i)13-s     + (−11.8 + 9.21i)15-s     + (19.2 + 19.2i)17-s     + 18.2i·19-s     + (−18.5 − 0.920i)21-s     + (−2.47 − 9.22i)23-s     + (−15.5 + 19.5i)25-s     + (−16.0 − 21.7i)27-s     + (16.8 − 9.72i)29-s     + (−16.5 + 28.5i)31-s    + ⋯ | 
| L(s)  = 1 | + (0.210 + 0.977i)3-s     + (0.434 + 0.900i)5-s     + (−0.228 + 0.854i)7-s     + (−0.911 + 0.411i)9-s     + (−0.593 − 1.02i)11-s     + (−0.186 − 0.695i)13-s     + (−0.789 + 0.614i)15-s     + (1.13 + 1.13i)17-s     + 0.961i·19-s     + (−0.883 − 0.0438i)21-s     + (−0.107 − 0.401i)23-s     + (−0.623 + 0.782i)25-s     + (−0.594 − 0.804i)27-s     + (0.580 − 0.335i)29-s     + (−0.532 + 0.922i)31-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.526 - 0.850i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.526 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{3}{2})\) | \(\approx\) | \(0.711958 + 1.27812i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.711958 + 1.27812i\) | 
    
        
      | \(L(2)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 3 | \( 1 + (-0.631 - 2.93i)T \) | 
|  | 5 | \( 1 + (-2.17 - 4.50i)T \) | 
| good | 7 | \( 1 + (1.60 - 5.98i)T + (-42.4 - 24.5i)T^{2} \) | 
|  | 11 | \( 1 + (6.53 + 11.3i)T + (-60.5 + 104. i)T^{2} \) | 
|  | 13 | \( 1 + (2.42 + 9.03i)T + (-146. + 84.5i)T^{2} \) | 
|  | 17 | \( 1 + (-19.2 - 19.2i)T + 289iT^{2} \) | 
|  | 19 | \( 1 - 18.2iT - 361T^{2} \) | 
|  | 23 | \( 1 + (2.47 + 9.22i)T + (-458. + 264.5i)T^{2} \) | 
|  | 29 | \( 1 + (-16.8 + 9.72i)T + (420.5 - 728. i)T^{2} \) | 
|  | 31 | \( 1 + (16.5 - 28.5i)T + (-480.5 - 832. i)T^{2} \) | 
|  | 37 | \( 1 + (-48.9 - 48.9i)T + 1.36e3iT^{2} \) | 
|  | 41 | \( 1 + (-22.2 + 38.5i)T + (-840.5 - 1.45e3i)T^{2} \) | 
|  | 43 | \( 1 + (-22.3 - 6.00i)T + (1.60e3 + 924.5i)T^{2} \) | 
|  | 47 | \( 1 + (-14.7 + 54.9i)T + (-1.91e3 - 1.10e3i)T^{2} \) | 
|  | 53 | \( 1 + (-33.8 + 33.8i)T - 2.80e3iT^{2} \) | 
|  | 59 | \( 1 + (-59.5 - 34.3i)T + (1.74e3 + 3.01e3i)T^{2} \) | 
|  | 61 | \( 1 + (16.7 + 29.0i)T + (-1.86e3 + 3.22e3i)T^{2} \) | 
|  | 67 | \( 1 + (16.7 - 4.49i)T + (3.88e3 - 2.24e3i)T^{2} \) | 
|  | 71 | \( 1 + 27.5T + 5.04e3T^{2} \) | 
|  | 73 | \( 1 + (-58.6 + 58.6i)T - 5.32e3iT^{2} \) | 
|  | 79 | \( 1 + (121. - 69.8i)T + (3.12e3 - 5.40e3i)T^{2} \) | 
|  | 83 | \( 1 + (40.2 + 10.7i)T + (5.96e3 + 3.44e3i)T^{2} \) | 
|  | 89 | \( 1 + 58.9iT - 7.92e3T^{2} \) | 
|  | 97 | \( 1 + (-35.9 + 134. i)T + (-8.14e3 - 4.70e3i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.76432971978257599348197182443, −11.59645505661185395892090155338, −10.39281435922636592285568725399, −10.14818258527609947095764106052, −8.751525181843014520903210777731, −7.902917621566940280794704809159, −6.02914068101435089887885432820, −5.50763878578761514595218210554, −3.58601825875703391383922745734, −2.65735161323103259375491734630, 
0.877015705408865635481356688770, 2.47488578422964824475784797734, 4.43811764074418788488347478917, 5.70524131125693469595473618797, 7.14032425196927125003548265306, 7.70305993063958839655902782039, 9.155440790214131054045530891195, 9.829393698917546773574517814166, 11.33249974481976262829739708080, 12.36460218490917676700985102581
