Properties

Label 1764.3.bk.e.1745.1
Level $1764$
Weight $3$
Character 1764.1745
Analytic conductor $48.066$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(557,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.bk (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1745.1
Root \(-2.23256 - 1.28897i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1745
Dual form 1764.3.bk.e.557.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.46512 - 2.57794i) q^{5} +(-5.25600 + 3.03455i) q^{11} +12.5830 q^{13} +(14.9771 - 8.64704i) q^{17} +(-12.9373 + 22.4080i) q^{19} +(-2.09247 - 1.20809i) q^{23} +(0.791503 + 1.37092i) q^{25} -55.8014i q^{29} +(7.64575 + 13.2428i) q^{31} +(11.8745 - 20.5673i) q^{37} +15.4676i q^{41} +27.7490 q^{43} +(-24.6486 - 14.2309i) q^{47} +(40.4166 - 23.3345i) q^{53} +31.2915 q^{55} +(-69.8601 + 40.3337i) q^{59} +(-31.3542 + 54.3072i) q^{61} +(-56.1846 - 32.4382i) q^{65} +(-58.0405 - 100.529i) q^{67} +49.7896i q^{71} +(15.3542 + 26.5943i) q^{73} +(-71.3320 + 123.551i) q^{79} -28.5763i q^{83} -89.1660 q^{85} +(-145.668 - 84.1013i) q^{89} +(115.533 - 66.7028i) q^{95} -113.956 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{13} - 40 q^{19} - 36 q^{25} + 40 q^{31} - 32 q^{37} - 32 q^{43} + 208 q^{55} - 272 q^{61} - 168 q^{67} + 144 q^{73} - 232 q^{79} - 544 q^{85} - 192 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.46512 2.57794i −0.893023 0.515587i −0.0180929 0.999836i \(-0.505759\pi\)
−0.874930 + 0.484249i \(0.839093\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.25600 + 3.03455i −0.477818 + 0.275868i −0.719507 0.694486i \(-0.755632\pi\)
0.241689 + 0.970354i \(0.422299\pi\)
\(12\) 0 0
\(13\) 12.5830 0.967923 0.483962 0.875089i \(-0.339197\pi\)
0.483962 + 0.875089i \(0.339197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.9771 8.64704i 0.881006 0.508649i 0.0100162 0.999950i \(-0.496812\pi\)
0.870990 + 0.491301i \(0.163478\pi\)
\(18\) 0 0
\(19\) −12.9373 + 22.4080i −0.680908 + 1.17937i 0.293796 + 0.955868i \(0.405081\pi\)
−0.974704 + 0.223499i \(0.928252\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.09247 1.20809i −0.0909771 0.0525257i 0.453821 0.891093i \(-0.350060\pi\)
−0.544798 + 0.838567i \(0.683394\pi\)
\(24\) 0 0
\(25\) 0.791503 + 1.37092i 0.0316601 + 0.0548369i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 55.8014i 1.92418i −0.272724 0.962092i \(-0.587925\pi\)
0.272724 0.962092i \(-0.412075\pi\)
\(30\) 0 0
\(31\) 7.64575 + 13.2428i 0.246637 + 0.427188i 0.962591 0.270960i \(-0.0873411\pi\)
−0.715953 + 0.698148i \(0.754008\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.8745 20.5673i 0.320933 0.555872i −0.659748 0.751487i \(-0.729337\pi\)
0.980681 + 0.195615i \(0.0626704\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 15.4676i 0.377259i 0.982048 + 0.188629i \(0.0604045\pi\)
−0.982048 + 0.188629i \(0.939596\pi\)
\(42\) 0 0
\(43\) 27.7490 0.645326 0.322663 0.946514i \(-0.395422\pi\)
0.322663 + 0.946514i \(0.395422\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −24.6486 14.2309i −0.524438 0.302785i 0.214310 0.976766i \(-0.431250\pi\)
−0.738749 + 0.673981i \(0.764583\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 40.4166 23.3345i 0.762577 0.440274i −0.0676432 0.997710i \(-0.521548\pi\)
0.830220 + 0.557436i \(0.188215\pi\)
\(54\) 0 0
\(55\) 31.2915 0.568936
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −69.8601 + 40.3337i −1.18407 + 0.683623i −0.956952 0.290245i \(-0.906263\pi\)
−0.227117 + 0.973868i \(0.572930\pi\)
\(60\) 0 0
\(61\) −31.3542 + 54.3072i −0.514004 + 0.890281i 0.485864 + 0.874034i \(0.338505\pi\)
−0.999868 + 0.0162467i \(0.994828\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −56.1846 32.4382i −0.864378 0.499049i
\(66\) 0 0
\(67\) −58.0405 100.529i −0.866276 1.50043i −0.865774 0.500435i \(-0.833173\pi\)
−0.000502198 1.00000i \(-0.500160\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 49.7896i 0.701261i 0.936514 + 0.350631i \(0.114033\pi\)
−0.936514 + 0.350631i \(0.885967\pi\)
\(72\) 0 0
\(73\) 15.3542 + 26.5943i 0.210332 + 0.364306i 0.951818 0.306662i \(-0.0992121\pi\)
−0.741486 + 0.670968i \(0.765879\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −71.3320 + 123.551i −0.902937 + 1.56393i −0.0792742 + 0.996853i \(0.525260\pi\)
−0.823663 + 0.567080i \(0.808073\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 28.5763i 0.344293i −0.985071 0.172147i \(-0.944930\pi\)
0.985071 0.172147i \(-0.0550703\pi\)
\(84\) 0 0
\(85\) −89.1660 −1.04901
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −145.668 84.1013i −1.63672 0.944959i −0.981953 0.189125i \(-0.939435\pi\)
−0.654764 0.755834i \(-0.727232\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 115.533 66.7028i 1.21613 0.702135i
\(96\) 0 0
\(97\) −113.956 −1.17480 −0.587400 0.809297i \(-0.699848\pi\)
−0.587400 + 0.809297i \(0.699848\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −34.8804 + 20.1382i −0.345351 + 0.199388i −0.662636 0.748942i \(-0.730562\pi\)
0.317285 + 0.948330i \(0.397229\pi\)
\(102\) 0 0
\(103\) 14.5608 25.2200i 0.141367 0.244854i −0.786645 0.617406i \(-0.788184\pi\)
0.928012 + 0.372551i \(0.121517\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −157.531 90.9506i −1.47225 0.850005i −0.472739 0.881202i \(-0.656735\pi\)
−0.999513 + 0.0311972i \(0.990068\pi\)
\(108\) 0 0
\(109\) 44.0810 + 76.3506i 0.404413 + 0.700464i 0.994253 0.107056i \(-0.0341424\pi\)
−0.589840 + 0.807520i \(0.700809\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 64.8190i 0.573620i −0.957988 0.286810i \(-0.907405\pi\)
0.957988 0.286810i \(-0.0925948\pi\)
\(114\) 0 0
\(115\) 6.22876 + 10.7885i 0.0541631 + 0.0938132i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −42.0830 + 72.8899i −0.347793 + 0.602396i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 120.735i 0.965880i
\(126\) 0 0
\(127\) −223.579 −1.76047 −0.880233 0.474543i \(-0.842613\pi\)
−0.880233 + 0.474543i \(0.842613\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −179.527 103.650i −1.37043 0.791220i −0.379451 0.925212i \(-0.623887\pi\)
−0.990982 + 0.133992i \(0.957220\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 152.225 87.8874i 1.11113 0.641514i 0.172011 0.985095i \(-0.444973\pi\)
0.939123 + 0.343581i \(0.111640\pi\)
\(138\) 0 0
\(139\) 117.166 0.842921 0.421460 0.906847i \(-0.361518\pi\)
0.421460 + 0.906847i \(0.361518\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −66.1362 + 38.1838i −0.462491 + 0.267019i
\(144\) 0 0
\(145\) −143.852 + 249.159i −0.992085 + 1.71834i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 161.354 + 93.1578i 1.08291 + 0.625220i 0.931681 0.363278i \(-0.118342\pi\)
0.151233 + 0.988498i \(0.451676\pi\)
\(150\) 0 0
\(151\) −91.0405 157.687i −0.602917 1.04428i −0.992377 0.123240i \(-0.960672\pi\)
0.389460 0.921044i \(-0.372662\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 78.8410i 0.508652i
\(156\) 0 0
\(157\) 34.1882 + 59.2158i 0.217759 + 0.377170i 0.954123 0.299416i \(-0.0967918\pi\)
−0.736363 + 0.676586i \(0.763458\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.3725 31.8222i 0.112715 0.195228i −0.804149 0.594428i \(-0.797379\pi\)
0.916864 + 0.399200i \(0.130712\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 240.708i 1.44137i 0.693264 + 0.720684i \(0.256172\pi\)
−0.693264 + 0.720684i \(0.743828\pi\)
\(168\) 0 0
\(169\) −10.6680 −0.0631241
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −295.340 170.514i −1.70717 0.985632i −0.938035 0.346540i \(-0.887356\pi\)
−0.769130 0.639092i \(-0.779310\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −119.866 + 69.2049i −0.669645 + 0.386620i −0.795942 0.605373i \(-0.793024\pi\)
0.126297 + 0.991992i \(0.459691\pi\)
\(180\) 0 0
\(181\) 135.328 0.747669 0.373834 0.927495i \(-0.378043\pi\)
0.373834 + 0.927495i \(0.378043\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −106.042 + 61.2234i −0.573200 + 0.330937i
\(186\) 0 0
\(187\) −52.4797 + 90.8976i −0.280640 + 0.486083i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −145.898 84.2344i −0.763866 0.441018i 0.0668163 0.997765i \(-0.478716\pi\)
−0.830682 + 0.556747i \(0.812049\pi\)
\(192\) 0 0
\(193\) −71.7490 124.273i −0.371757 0.643901i 0.618079 0.786116i \(-0.287911\pi\)
−0.989836 + 0.142215i \(0.954578\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 296.510i 1.50513i −0.658521 0.752563i \(-0.728817\pi\)
0.658521 0.752563i \(-0.271183\pi\)
\(198\) 0 0
\(199\) −71.1216 123.186i −0.357395 0.619026i 0.630130 0.776490i \(-0.283002\pi\)
−0.987525 + 0.157464i \(0.949668\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 39.8745 69.0647i 0.194510 0.336901i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 157.035i 0.751364i
\(210\) 0 0
\(211\) 110.996 0.526048 0.263024 0.964789i \(-0.415280\pi\)
0.263024 + 0.964789i \(0.415280\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −123.903 71.5352i −0.576291 0.332722i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 188.457 108.806i 0.852747 0.492334i
\(222\) 0 0
\(223\) 104.251 0.467493 0.233747 0.972298i \(-0.424901\pi\)
0.233747 + 0.972298i \(0.424901\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 141.302 81.5807i 0.622475 0.359386i −0.155357 0.987858i \(-0.549653\pi\)
0.777832 + 0.628472i \(0.216319\pi\)
\(228\) 0 0
\(229\) −139.207 + 241.113i −0.607889 + 1.05289i 0.383699 + 0.923458i \(0.374650\pi\)
−0.991588 + 0.129436i \(0.958683\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −349.910 202.021i −1.50176 0.867042i −0.999998 0.00203732i \(-0.999352\pi\)
−0.501763 0.865005i \(-0.667315\pi\)
\(234\) 0 0
\(235\) 73.3725 + 127.085i 0.312224 + 0.540787i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 257.204i 1.07617i −0.842892 0.538083i \(-0.819149\pi\)
0.842892 0.538083i \(-0.180851\pi\)
\(240\) 0 0
\(241\) 124.808 + 216.173i 0.517875 + 0.896985i 0.999784 + 0.0207645i \(0.00661002\pi\)
−0.481910 + 0.876221i \(0.660057\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −162.790 + 281.960i −0.659067 + 1.14154i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 69.2909i 0.276059i −0.990428 0.138030i \(-0.955923\pi\)
0.990428 0.138030i \(-0.0440769\pi\)
\(252\) 0 0
\(253\) 14.6640 0.0579606
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 221.592 + 127.936i 0.862227 + 0.497807i 0.864757 0.502190i \(-0.167472\pi\)
−0.00253044 + 0.999997i \(0.500805\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.7037 7.33449i 0.0483031 0.0278878i −0.475654 0.879632i \(-0.657789\pi\)
0.523957 + 0.851745i \(0.324455\pi\)
\(264\) 0 0
\(265\) −240.620 −0.907998
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 64.9339 37.4896i 0.241390 0.139367i −0.374425 0.927257i \(-0.622160\pi\)
0.615815 + 0.787890i \(0.288827\pi\)
\(270\) 0 0
\(271\) −105.601 + 182.907i −0.389673 + 0.674933i −0.992405 0.123010i \(-0.960745\pi\)
0.602733 + 0.797943i \(0.294079\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.32027 4.80371i −0.0302555 0.0174680i
\(276\) 0 0
\(277\) −204.247 353.766i −0.737354 1.27713i −0.953683 0.300814i \(-0.902742\pi\)
0.216329 0.976321i \(-0.430592\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 200.395i 0.713149i 0.934267 + 0.356575i \(0.116055\pi\)
−0.934267 + 0.356575i \(0.883945\pi\)
\(282\) 0 0
\(283\) 179.225 + 310.426i 0.633303 + 1.09691i 0.986872 + 0.161505i \(0.0516347\pi\)
−0.353569 + 0.935409i \(0.615032\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.04249 8.73384i 0.0174481 0.0302209i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 325.352i 1.11042i −0.831711 0.555209i \(-0.812638\pi\)
0.831711 0.555209i \(-0.187362\pi\)
\(294\) 0 0
\(295\) 415.911 1.40987
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.3296 15.2014i −0.0880589 0.0508408i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 280.001 161.658i 0.918035 0.530028i
\(306\) 0 0
\(307\) 338.037 1.10110 0.550548 0.834803i \(-0.314419\pi\)
0.550548 + 0.834803i \(0.314419\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −269.489 + 155.589i −0.866523 + 0.500287i −0.866191 0.499713i \(-0.833439\pi\)
−0.000331809 1.00000i \(0.500106\pi\)
\(312\) 0 0
\(313\) 200.535 347.336i 0.640686 1.10970i −0.344594 0.938752i \(-0.611984\pi\)
0.985280 0.170948i \(-0.0546831\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 72.8747 + 42.0742i 0.229889 + 0.132726i 0.610521 0.792000i \(-0.290960\pi\)
−0.380632 + 0.924727i \(0.624294\pi\)
\(318\) 0 0
\(319\) 169.332 + 293.292i 0.530821 + 0.919410i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 447.476i 1.38537i
\(324\) 0 0
\(325\) 9.95948 + 17.2503i 0.0306446 + 0.0530779i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 111.749 193.555i 0.337610 0.584758i −0.646372 0.763022i \(-0.723715\pi\)
0.983983 + 0.178264i \(0.0570481\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 598.499i 1.78656i
\(336\) 0 0
\(337\) −234.583 −0.696092 −0.348046 0.937477i \(-0.613155\pi\)
−0.348046 + 0.937477i \(0.613155\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −80.3721 46.4028i −0.235695 0.136079i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −72.4136 + 41.8080i −0.208685 + 0.120484i −0.600700 0.799474i \(-0.705111\pi\)
0.392015 + 0.919959i \(0.371778\pi\)
\(348\) 0 0
\(349\) −298.959 −0.856617 −0.428309 0.903632i \(-0.640890\pi\)
−0.428309 + 0.903632i \(0.640890\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −370.704 + 214.026i −1.05015 + 0.606306i −0.922692 0.385538i \(-0.874016\pi\)
−0.127460 + 0.991844i \(0.540683\pi\)
\(354\) 0 0
\(355\) 128.354 222.316i 0.361561 0.626242i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 125.172 + 72.2681i 0.348669 + 0.201304i 0.664099 0.747645i \(-0.268815\pi\)
−0.315430 + 0.948949i \(0.602149\pi\)
\(360\) 0 0
\(361\) −154.245 267.160i −0.427272 0.740056i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 158.329i 0.433778i
\(366\) 0 0
\(367\) −305.122 528.486i −0.831394 1.44002i −0.896933 0.442166i \(-0.854210\pi\)
0.0655391 0.997850i \(-0.479123\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.166010 + 0.287539i −0.000445068 + 0.000770881i −0.866248 0.499615i \(-0.833475\pi\)
0.865803 + 0.500385i \(0.166808\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 702.149i 1.86246i
\(378\) 0 0
\(379\) −393.652 −1.03866 −0.519330 0.854574i \(-0.673818\pi\)
−0.519330 + 0.854574i \(0.673818\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 468.259 + 270.350i 1.22261 + 0.705874i 0.965473 0.260502i \(-0.0838880\pi\)
0.257135 + 0.966375i \(0.417221\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −410.840 + 237.199i −1.05614 + 0.609765i −0.924363 0.381513i \(-0.875403\pi\)
−0.131781 + 0.991279i \(0.542070\pi\)
\(390\) 0 0
\(391\) −41.7856 −0.106869
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 637.011 367.779i 1.61269 0.931085i
\(396\) 0 0
\(397\) 200.144 346.659i 0.504141 0.873197i −0.495848 0.868409i \(-0.665143\pi\)
0.999989 0.00478767i \(-0.00152397\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 563.839 + 325.533i 1.40608 + 0.811802i 0.995008 0.0997999i \(-0.0318203\pi\)
0.411075 + 0.911602i \(0.365154\pi\)
\(402\) 0 0
\(403\) 96.2065 + 166.635i 0.238726 + 0.413485i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 144.135i 0.354140i
\(408\) 0 0
\(409\) −94.5568 163.777i −0.231190 0.400433i 0.726968 0.686671i \(-0.240929\pi\)
−0.958159 + 0.286238i \(0.907595\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −73.6680 + 127.597i −0.177513 + 0.307462i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 829.772i 1.98036i 0.139791 + 0.990181i \(0.455357\pi\)
−0.139791 + 0.990181i \(0.544643\pi\)
\(420\) 0 0
\(421\) −226.324 −0.537587 −0.268794 0.963198i \(-0.586625\pi\)
−0.268794 + 0.963198i \(0.586625\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 23.7088 + 13.6883i 0.0557855 + 0.0322078i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −377.985 + 218.230i −0.876996 + 0.506334i −0.869667 0.493640i \(-0.835666\pi\)
−0.00732893 + 0.999973i \(0.502333\pi\)
\(432\) 0 0
\(433\) −404.243 −0.933587 −0.466793 0.884366i \(-0.654591\pi\)
−0.466793 + 0.884366i \(0.654591\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 54.1417 31.2587i 0.123894 0.0715303i
\(438\) 0 0
\(439\) −91.4091 + 158.325i −0.208221 + 0.360650i −0.951154 0.308716i \(-0.900101\pi\)
0.742933 + 0.669366i \(0.233434\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −286.838 165.606i −0.647491 0.373829i 0.140003 0.990151i \(-0.455289\pi\)
−0.787494 + 0.616322i \(0.788622\pi\)
\(444\) 0 0
\(445\) 433.616 + 751.044i 0.974417 + 1.68774i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.8425i 0.0286025i −0.999898 0.0143013i \(-0.995448\pi\)
0.999898 0.0143013i \(-0.00455239\pi\)
\(450\) 0 0
\(451\) −46.9373 81.2977i −0.104074 0.180261i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 155.336 269.050i 0.339904 0.588730i −0.644511 0.764595i \(-0.722939\pi\)
0.984414 + 0.175865i \(0.0562722\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 389.770i 0.845489i −0.906249 0.422744i \(-0.861067\pi\)
0.906249 0.422744i \(-0.138933\pi\)
\(462\) 0 0
\(463\) 152.081 0.328469 0.164234 0.986421i \(-0.447485\pi\)
0.164234 + 0.986421i \(0.447485\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 75.2298 + 43.4339i 0.161092 + 0.0930063i 0.578379 0.815768i \(-0.303686\pi\)
−0.417287 + 0.908775i \(0.637019\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −145.849 + 84.2058i −0.308348 + 0.178025i
\(474\) 0 0
\(475\) −40.9595 −0.0862305
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 476.005 274.821i 0.993747 0.573740i 0.0873545 0.996177i \(-0.472159\pi\)
0.906392 + 0.422437i \(0.138825\pi\)
\(480\) 0 0
\(481\) 149.417 258.798i 0.310638 0.538041i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 508.825 + 293.770i 1.04912 + 0.605711i
\(486\) 0 0
\(487\) 345.373 + 598.203i 0.709184 + 1.22834i 0.965160 + 0.261659i \(0.0842697\pi\)
−0.255976 + 0.966683i \(0.582397\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 732.380i 1.49161i 0.666165 + 0.745804i \(0.267934\pi\)
−0.666165 + 0.745804i \(0.732066\pi\)
\(492\) 0 0
\(493\) −482.516 835.743i −0.978735 1.69522i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 227.203 393.526i 0.455316 0.788630i −0.543390 0.839480i \(-0.682860\pi\)
0.998706 + 0.0508499i \(0.0161930\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 304.594i 0.605554i 0.953061 + 0.302777i \(0.0979138\pi\)
−0.953061 + 0.302777i \(0.902086\pi\)
\(504\) 0 0
\(505\) 207.660 0.411208
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −64.2102 37.0718i −0.126150 0.0728326i 0.435597 0.900142i \(-0.356537\pi\)
−0.561747 + 0.827309i \(0.689871\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −130.031 + 75.0735i −0.252488 + 0.145774i
\(516\) 0 0
\(517\) 172.737 0.334115
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −185.772 + 107.256i −0.356568 + 0.205865i −0.667574 0.744543i \(-0.732667\pi\)
0.311006 + 0.950408i \(0.399334\pi\)
\(522\) 0 0
\(523\) 466.243 807.557i 0.891478 1.54409i 0.0533746 0.998575i \(-0.483002\pi\)
0.838104 0.545511i \(-0.183664\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 229.022 + 132.226i 0.434578 + 0.250904i
\(528\) 0 0
\(529\) −261.581 453.072i −0.494482 0.856468i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 194.629i 0.365158i
\(534\) 0 0
\(535\) 468.929 + 812.210i 0.876504 + 1.51815i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 93.1699 161.375i 0.172218 0.298290i −0.766977 0.641675i \(-0.778240\pi\)
0.939195 + 0.343384i \(0.111573\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 454.552i 0.834041i
\(546\) 0 0
\(547\) 792.170 1.44821 0.724104 0.689691i \(-0.242253\pi\)
0.724104 + 0.689691i \(0.242253\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1250.40 + 721.916i 2.26932 + 1.31019i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −346.087 + 199.814i −0.621342 + 0.358732i −0.777391 0.629017i \(-0.783457\pi\)
0.156050 + 0.987749i \(0.450124\pi\)
\(558\) 0 0
\(559\) 349.166 0.624626
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 302.571 174.690i 0.537427 0.310283i −0.206609 0.978424i \(-0.566243\pi\)
0.744035 + 0.668140i \(0.232909\pi\)
\(564\) 0 0
\(565\) −167.099 + 289.425i −0.295751 + 0.512256i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 654.163 + 377.681i 1.14967 + 0.663763i 0.948807 0.315856i \(-0.102292\pi\)
0.200864 + 0.979619i \(0.435625\pi\)
\(570\) 0 0
\(571\) −47.5751 82.4025i −0.0833190 0.144313i 0.821355 0.570418i \(-0.193219\pi\)
−0.904674 + 0.426105i \(0.859885\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.82483i 0.00665187i
\(576\) 0 0
\(577\) 378.033 + 654.772i 0.655169 + 1.13479i 0.981851 + 0.189652i \(0.0607360\pi\)
−0.326682 + 0.945134i \(0.605931\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −141.620 + 245.292i −0.242915 + 0.420742i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 688.642i 1.17316i −0.809893 0.586578i \(-0.800475\pi\)
0.809893 0.586578i \(-0.199525\pi\)
\(588\) 0 0
\(589\) −395.660 −0.671749
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 879.890 + 508.005i 1.48379 + 0.856669i 0.999830 0.0184184i \(-0.00586309\pi\)
0.483964 + 0.875088i \(0.339196\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −511.180 + 295.130i −0.853388 + 0.492704i −0.861793 0.507261i \(-0.830658\pi\)
0.00840423 + 0.999965i \(0.497325\pi\)
\(600\) 0 0
\(601\) −300.761 −0.500434 −0.250217 0.968190i \(-0.580502\pi\)
−0.250217 + 0.968190i \(0.580502\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 375.811 216.975i 0.621175 0.358636i
\(606\) 0 0
\(607\) 348.207 603.111i 0.573652 0.993594i −0.422535 0.906347i \(-0.638860\pi\)
0.996187 0.0872472i \(-0.0278070\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −310.153 179.067i −0.507616 0.293072i
\(612\) 0 0
\(613\) −278.697 482.717i −0.454644 0.787466i 0.544024 0.839070i \(-0.316900\pi\)
−0.998668 + 0.0516035i \(0.983567\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 91.9868i 0.149087i −0.997218 0.0745436i \(-0.976250\pi\)
0.997218 0.0745436i \(-0.0237500\pi\)
\(618\) 0 0
\(619\) −558.708 967.712i −0.902599 1.56335i −0.824109 0.566432i \(-0.808324\pi\)
−0.0784898 0.996915i \(-0.525010\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 331.035 573.369i 0.529655 0.917390i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 410.717i 0.652969i
\(630\) 0 0
\(631\) 962.219 1.52491 0.762456 0.647040i \(-0.223993\pi\)
0.762456 + 0.647040i \(0.223993\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 998.306 + 576.372i 1.57214 + 0.907673i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 194.373 112.221i 0.303233 0.175072i −0.340661 0.940186i \(-0.610651\pi\)
0.643895 + 0.765114i \(0.277318\pi\)
\(642\) 0 0
\(643\) 332.384 0.516927 0.258464 0.966021i \(-0.416784\pi\)
0.258464 + 0.966021i \(0.416784\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −788.563 + 455.277i −1.21880 + 0.703674i −0.964661 0.263494i \(-0.915125\pi\)
−0.254138 + 0.967168i \(0.581792\pi\)
\(648\) 0 0
\(649\) 244.790 423.988i 0.377180 0.653294i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −128.435 74.1519i −0.196684 0.113556i 0.398424 0.917202i \(-0.369557\pi\)
−0.595108 + 0.803646i \(0.702891\pi\)
\(654\) 0 0
\(655\) 534.405 + 925.617i 0.815886 + 1.41316i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 45.5636i 0.0691405i 0.999402 + 0.0345703i \(0.0110063\pi\)
−0.999402 + 0.0345703i \(0.988994\pi\)
\(660\) 0 0
\(661\) 202.107 + 350.060i 0.305760 + 0.529591i 0.977430 0.211259i \(-0.0677562\pi\)
−0.671670 + 0.740850i \(0.734423\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −67.4131 + 116.763i −0.101069 + 0.175057i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 380.584i 0.567190i
\(672\) 0 0
\(673\) 1016.49 1.51038 0.755190 0.655506i \(-0.227544\pi\)
0.755190 + 0.655506i \(0.227544\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 201.391 + 116.273i 0.297476 + 0.171748i 0.641308 0.767283i \(-0.278392\pi\)
−0.343832 + 0.939031i \(0.611725\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 102.403 59.1224i 0.149931 0.0865628i −0.423158 0.906056i \(-0.639078\pi\)
0.573089 + 0.819493i \(0.305745\pi\)
\(684\) 0 0
\(685\) −906.272 −1.32302
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 508.562 293.618i 0.738116 0.426152i
\(690\) 0 0
\(691\) 24.1255 41.7866i 0.0349139 0.0604726i −0.848040 0.529931i \(-0.822218\pi\)
0.882954 + 0.469459i \(0.155551\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −523.160 302.046i −0.752748 0.434599i
\(696\) 0 0
\(697\) 133.749 + 231.660i 0.191892 + 0.332367i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 236.466i 0.337326i −0.985674 0.168663i \(-0.946055\pi\)
0.985674 0.168663i \(-0.0539450\pi\)
\(702\) 0 0
\(703\) 307.247 + 532.167i 0.437051 + 0.756995i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 670.988 1162.19i 0.946387 1.63919i 0.193436 0.981113i \(-0.438037\pi\)
0.752951 0.658077i \(-0.228630\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 36.9470i 0.0518191i
\(714\) 0 0
\(715\) 393.741 0.550687
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 246.486 + 142.309i 0.342818 + 0.197926i 0.661517 0.749930i \(-0.269913\pi\)
−0.318700 + 0.947856i \(0.603246\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 76.4993 44.1669i 0.105516 0.0609199i
\(726\) 0 0
\(727\) −430.450 −0.592090 −0.296045 0.955174i \(-0.595668\pi\)
−0.296045 + 0.955174i \(0.595668\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 415.600 239.947i 0.568536 0.328245i
\(732\) 0 0
\(733\) −193.907 + 335.857i −0.264539 + 0.458195i −0.967443 0.253090i \(-0.918553\pi\)
0.702904 + 0.711285i \(0.251886\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 610.121 + 352.254i 0.827845 + 0.477956i
\(738\) 0 0
\(739\) −176.454 305.627i −0.238773 0.413568i 0.721589 0.692322i \(-0.243412\pi\)
−0.960363 + 0.278754i \(0.910079\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1068.60i 1.43822i 0.694897 + 0.719109i \(0.255450\pi\)
−0.694897 + 0.719109i \(0.744550\pi\)
\(744\) 0 0
\(745\) −480.310 831.921i −0.644711 1.11667i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −612.073 + 1060.14i −0.815011 + 1.41164i 0.0943092 + 0.995543i \(0.469936\pi\)
−0.909320 + 0.416097i \(0.863398\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 938.786i 1.24343i
\(756\) 0 0
\(757\) −96.3399 −0.127265 −0.0636327 0.997973i \(-0.520269\pi\)
−0.0636327 + 0.997973i \(0.520269\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −821.762 474.445i −1.07985 0.623449i −0.148990 0.988839i \(-0.547602\pi\)
−0.930855 + 0.365390i \(0.880936\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −879.050 + 507.520i −1.14609 + 0.661694i
\(768\) 0 0
\(769\) 998.633 1.29861 0.649306 0.760527i \(-0.275059\pi\)
0.649306 + 0.760527i \(0.275059\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 74.8855 43.2352i 0.0968765 0.0559317i −0.450779 0.892636i \(-0.648854\pi\)
0.547656 + 0.836704i \(0.315520\pi\)
\(774\) 0 0
\(775\) −12.1033 + 20.9635i −0.0156171 + 0.0270496i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −346.598 200.108i −0.444927 0.256879i
\(780\) 0 0
\(781\) −151.089 261.694i −0.193456 0.335075i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 352.540i 0.449096i
\(786\) 0 0
\(787\) −244.907 424.192i −0.311191 0.538998i 0.667430 0.744673i \(-0.267394\pi\)
−0.978620 + 0.205675i \(0.934061\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −394.531 + 683.347i −0.497517 + 0.861724i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 500.193i 0.627595i −0.949490 0.313798i \(-0.898399\pi\)
0.949490 0.313798i \(-0.101601\pi\)
\(798\) 0 0
\(799\) −492.219 −0.616044
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −161.404 93.1865i −0.201001 0.116048i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −268.914 + 155.257i −0.332403 + 0.191913i −0.656907 0.753971i \(-0.728136\pi\)
0.324505 + 0.945884i \(0.394802\pi\)
\(810\) 0 0
\(811\) 45.9190 0.0566202 0.0283101 0.999599i \(-0.490987\pi\)
0.0283101 + 0.999599i \(0.490987\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −164.071 + 94.7264i −0.201314 + 0.116229i
\(816\) 0 0
\(817\) −358.996 + 621.799i −0.439408 + 0.761076i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1046.73 + 604.330i 1.27495 + 0.736091i 0.975915 0.218153i \(-0.0700030\pi\)
0.299032 + 0.954243i \(0.403336\pi\)
\(822\) 0 0
\(823\) 59.5909 + 103.214i 0.0724069 + 0.125412i 0.899956 0.435981i \(-0.143599\pi\)
−0.827549 + 0.561394i \(0.810265\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 872.026i 1.05445i 0.849727 + 0.527223i \(0.176767\pi\)
−0.849727 + 0.527223i \(0.823233\pi\)
\(828\) 0 0
\(829\) 368.911 + 638.973i 0.445007 + 0.770775i 0.998053 0.0623758i \(-0.0198677\pi\)
−0.553045 + 0.833151i \(0.686534\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 620.531 1074.79i 0.743151 1.28717i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 896.131i 1.06809i 0.845455 + 0.534047i \(0.179329\pi\)
−0.845455 + 0.534047i \(0.820671\pi\)
\(840\) 0 0
\(841\) −2272.79 −2.70249
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 47.6338 + 27.5014i 0.0563713 + 0.0325460i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −49.6942 + 28.6910i −0.0583950 + 0.0337144i
\(852\) 0 0
\(853\) −311.875 −0.365621 −0.182810 0.983148i \(-0.558519\pi\)
−0.182810 + 0.983148i \(0.558519\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −312.540 + 180.445i −0.364691 + 0.210555i −0.671137 0.741334i \(-0.734194\pi\)
0.306445 + 0.951888i \(0.400860\pi\)
\(858\) 0 0
\(859\) 605.549 1048.84i 0.704946 1.22100i −0.261764 0.965132i \(-0.584304\pi\)
0.966711 0.255871i \(-0.0823623\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 442.972 + 255.750i 0.513293 + 0.296350i 0.734186 0.678948i \(-0.237564\pi\)
−0.220893 + 0.975298i \(0.570897\pi\)
\(864\) 0 0
\(865\) 879.150 + 1522.73i 1.01636 + 1.76038i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 865.843i 0.996367i
\(870\) 0 0
\(871\) −730.324 1264.96i −0.838489 1.45231i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −67.2954 + 116.559i −0.0767337 + 0.132907i −0.901839 0.432072i \(-0.857782\pi\)
0.825105 + 0.564979i \(0.191116\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 405.447i 0.460212i −0.973166 0.230106i \(-0.926093\pi\)
0.973166 0.230106i \(-0.0739073\pi\)
\(882\) 0 0
\(883\) −552.235 −0.625408 −0.312704 0.949851i \(-0.601235\pi\)
−0.312704 + 0.949851i \(0.601235\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1042.69 602.000i −1.17553 0.678692i −0.220554 0.975375i \(-0.570786\pi\)
−0.954976 + 0.296682i \(0.904120\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 637.770 368.217i 0.714188 0.412337i
\(894\) 0 0
\(895\) 713.624 0.797345
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 738.968 426.643i 0.821989 0.474575i
\(900\) 0 0
\(901\) 403.549 698.967i 0.447890 0.775768i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −604.255 348.867i −0.667686 0.385488i
\(906\) 0 0
\(907\) −660.207 1143.51i −0.727901 1.26076i −0.957769 0.287540i \(-0.907163\pi\)
0.229867 0.973222i \(-0.426171\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 965.020i 1.05930i −0.848217 0.529649i \(-0.822324\pi\)
0.848217 0.529649i \(-0.177676\pi\)
\(912\) 0 0
\(913\) 86.7164 + 150.197i 0.0949796 + 0.164509i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −360.044 + 623.615i −0.391779 + 0.678580i −0.992684 0.120740i \(-0.961473\pi\)
0.600906 + 0.799320i \(0.294807\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 626.502i 0.678767i
\(924\) 0 0
\(925\) 37.5948 0.0406430
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −806.867 465.845i −0.868532 0.501447i −0.00167220 0.999999i \(-0.500532\pi\)
−0.866860 + 0.498551i \(0.833866\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 468.656 270.579i 0.501237 0.289389i
\(936\) 0 0
\(937\) −1370.97 −1.46315 −0.731575 0.681760i \(-0.761215\pi\)
−0.731575 + 0.681760i \(0.761215\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −197.008 + 113.743i −0.209360 + 0.120874i −0.601014 0.799239i \(-0.705236\pi\)
0.391654 + 0.920113i \(0.371903\pi\)
\(942\) 0 0
\(943\) 18.6863 32.3656i 0.0198158 0.0343219i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 570.662 + 329.472i 0.602600 + 0.347911i 0.770064 0.637967i \(-0.220224\pi\)
−0.167464 + 0.985878i \(0.553558\pi\)
\(948\) 0 0
\(949\) 193.203 + 334.637i 0.203585 + 0.352620i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 217.669i 0.228404i −0.993458 0.114202i \(-0.963569\pi\)
0.993458 0.114202i \(-0.0364311\pi\)
\(954\) 0 0
\(955\) 434.302 + 752.233i 0.454766 + 0.787679i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 363.585 629.748i 0.378340 0.655305i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 739.857i 0.766692i
\(966\) 0 0
\(967\) −1018.75 −1.05352 −0.526760 0.850014i \(-0.676593\pi\)
−0.526760 + 0.850014i \(0.676593\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −353.812 204.273i −0.364379 0.210374i 0.306621 0.951832i \(-0.400802\pi\)
−0.671000 + 0.741457i \(0.734135\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 391.760 226.183i 0.400982 0.231507i −0.285925 0.958252i \(-0.592301\pi\)
0.686908 + 0.726745i \(0.258968\pi\)
\(978\) 0 0
\(979\) 1020.84 1.04274
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1500.44 + 866.281i −1.52639 + 0.881262i −0.526881 + 0.849939i \(0.676639\pi\)
−0.999509 + 0.0313233i \(0.990028\pi\)
\(984\) 0 0
\(985\) −764.383 + 1323.95i −0.776023 + 1.34411i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −58.0641 33.5233i −0.0587099 0.0338962i
\(990\) 0 0
\(991\) −197.373 341.859i −0.199165 0.344964i 0.749093 0.662465i \(-0.230490\pi\)
−0.948258 + 0.317501i \(0.897156\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 733.387i 0.737072i
\(996\) 0 0
\(997\) 82.6745 + 143.196i 0.0829232 + 0.143627i 0.904504 0.426464i \(-0.140241\pi\)
−0.821581 + 0.570092i \(0.806908\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.bk.e.1745.1 8
3.2 odd 2 inner 1764.3.bk.e.1745.4 8
7.2 even 3 1764.3.c.f.197.4 4
7.3 odd 6 1764.3.bk.d.557.1 8
7.4 even 3 inner 1764.3.bk.e.557.4 8
7.5 odd 6 252.3.c.a.197.1 4
7.6 odd 2 1764.3.bk.d.1745.4 8
21.2 odd 6 1764.3.c.f.197.1 4
21.5 even 6 252.3.c.a.197.4 yes 4
21.11 odd 6 inner 1764.3.bk.e.557.1 8
21.17 even 6 1764.3.bk.d.557.4 8
21.20 even 2 1764.3.bk.d.1745.1 8
28.19 even 6 1008.3.d.c.449.1 4
56.5 odd 6 4032.3.d.h.449.4 4
56.19 even 6 4032.3.d.e.449.4 4
63.5 even 6 2268.3.bg.c.2213.4 8
63.40 odd 6 2268.3.bg.c.2213.1 8
63.47 even 6 2268.3.bg.c.701.1 8
63.61 odd 6 2268.3.bg.c.701.4 8
84.47 odd 6 1008.3.d.c.449.4 4
168.5 even 6 4032.3.d.h.449.1 4
168.131 odd 6 4032.3.d.e.449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.c.a.197.1 4 7.5 odd 6
252.3.c.a.197.4 yes 4 21.5 even 6
1008.3.d.c.449.1 4 28.19 even 6
1008.3.d.c.449.4 4 84.47 odd 6
1764.3.c.f.197.1 4 21.2 odd 6
1764.3.c.f.197.4 4 7.2 even 3
1764.3.bk.d.557.1 8 7.3 odd 6
1764.3.bk.d.557.4 8 21.17 even 6
1764.3.bk.d.1745.1 8 21.20 even 2
1764.3.bk.d.1745.4 8 7.6 odd 2
1764.3.bk.e.557.1 8 21.11 odd 6 inner
1764.3.bk.e.557.4 8 7.4 even 3 inner
1764.3.bk.e.1745.1 8 1.1 even 1 trivial
1764.3.bk.e.1745.4 8 3.2 odd 2 inner
2268.3.bg.c.701.1 8 63.47 even 6
2268.3.bg.c.701.4 8 63.61 odd 6
2268.3.bg.c.2213.1 8 63.40 odd 6
2268.3.bg.c.2213.4 8 63.5 even 6
4032.3.d.e.449.1 4 168.131 odd 6
4032.3.d.e.449.4 4 56.19 even 6
4032.3.d.h.449.1 4 168.5 even 6
4032.3.d.h.449.4 4 56.5 odd 6