Properties

Label 1008.3.d.c.449.1
Level $1008$
Weight $3$
Character 1008.449
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(449,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(-2.57794i\) of defining polynomial
Character \(\chi\) \(=\) 1008.449
Dual form 1008.3.d.c.449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.15587i q^{5} +2.64575 q^{7} +6.06910i q^{11} -12.5830 q^{13} -17.2941i q^{17} +25.8745 q^{19} -2.41618i q^{23} -1.58301 q^{25} -55.8014i q^{29} -15.2915 q^{31} -13.6412i q^{35} -23.7490 q^{37} -15.4676i q^{41} -27.7490 q^{43} +28.4617i q^{47} +7.00000 q^{49} +46.6690i q^{53} +31.2915 q^{55} -80.6675i q^{59} -62.7085 q^{61} +64.8764i q^{65} -116.081 q^{67} -49.7896i q^{71} +30.7085 q^{73} +16.0573i q^{77} -142.664 q^{79} -28.5763i q^{83} -89.1660 q^{85} -168.203i q^{89} -33.2915 q^{91} -133.406i q^{95} +113.956 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{13} + 40 q^{19} + 36 q^{25} - 40 q^{31} + 32 q^{37} + 16 q^{43} + 28 q^{49} + 104 q^{55} - 272 q^{61} - 168 q^{67} + 144 q^{73} - 232 q^{79} - 272 q^{85} - 112 q^{91} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 5.15587i − 1.03117i −0.856837 0.515587i \(-0.827574\pi\)
0.856837 0.515587i \(-0.172426\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.06910i 0.551736i 0.961195 + 0.275868i \(0.0889653\pi\)
−0.961195 + 0.275868i \(0.911035\pi\)
\(12\) 0 0
\(13\) −12.5830 −0.967923 −0.483962 0.875089i \(-0.660803\pi\)
−0.483962 + 0.875089i \(0.660803\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 17.2941i − 1.01730i −0.860974 0.508649i \(-0.830145\pi\)
0.860974 0.508649i \(-0.169855\pi\)
\(18\) 0 0
\(19\) 25.8745 1.36182 0.680908 0.732369i \(-0.261585\pi\)
0.680908 + 0.732369i \(0.261585\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 2.41618i − 0.105051i −0.998620 0.0525257i \(-0.983273\pi\)
0.998620 0.0525257i \(-0.0167271\pi\)
\(24\) 0 0
\(25\) −1.58301 −0.0633202
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 55.8014i − 1.92418i −0.272724 0.962092i \(-0.587925\pi\)
0.272724 0.962092i \(-0.412075\pi\)
\(30\) 0 0
\(31\) −15.2915 −0.493274 −0.246637 0.969108i \(-0.579326\pi\)
−0.246637 + 0.969108i \(0.579326\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 13.6412i − 0.389747i
\(36\) 0 0
\(37\) −23.7490 −0.641865 −0.320933 0.947102i \(-0.603996\pi\)
−0.320933 + 0.947102i \(0.603996\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 15.4676i − 0.377259i −0.982048 0.188629i \(-0.939596\pi\)
0.982048 0.188629i \(-0.0604045\pi\)
\(42\) 0 0
\(43\) −27.7490 −0.645326 −0.322663 0.946514i \(-0.604578\pi\)
−0.322663 + 0.946514i \(0.604578\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 28.4617i 0.605569i 0.953059 + 0.302785i \(0.0979162\pi\)
−0.953059 + 0.302785i \(0.902084\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 46.6690i 0.880548i 0.897863 + 0.440274i \(0.145119\pi\)
−0.897863 + 0.440274i \(0.854881\pi\)
\(54\) 0 0
\(55\) 31.2915 0.568936
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 80.6675i − 1.36725i −0.729836 0.683623i \(-0.760403\pi\)
0.729836 0.683623i \(-0.239597\pi\)
\(60\) 0 0
\(61\) −62.7085 −1.02801 −0.514004 0.857788i \(-0.671838\pi\)
−0.514004 + 0.857788i \(0.671838\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 64.8764i 0.998098i
\(66\) 0 0
\(67\) −116.081 −1.73255 −0.866276 0.499565i \(-0.833493\pi\)
−0.866276 + 0.499565i \(0.833493\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 49.7896i − 0.701261i −0.936514 0.350631i \(-0.885967\pi\)
0.936514 0.350631i \(-0.114033\pi\)
\(72\) 0 0
\(73\) 30.7085 0.420664 0.210332 0.977630i \(-0.432545\pi\)
0.210332 + 0.977630i \(0.432545\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.0573i 0.208537i
\(78\) 0 0
\(79\) −142.664 −1.80587 −0.902937 0.429773i \(-0.858594\pi\)
−0.902937 + 0.429773i \(0.858594\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 28.5763i − 0.344293i −0.985071 0.172147i \(-0.944930\pi\)
0.985071 0.172147i \(-0.0550703\pi\)
\(84\) 0 0
\(85\) −89.1660 −1.04901
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 168.203i − 1.88992i −0.327189 0.944959i \(-0.606101\pi\)
0.327189 0.944959i \(-0.393899\pi\)
\(90\) 0 0
\(91\) −33.2915 −0.365841
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 133.406i − 1.40427i
\(96\) 0 0
\(97\) 113.956 1.17480 0.587400 0.809297i \(-0.300152\pi\)
0.587400 + 0.809297i \(0.300152\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 40.2764i 0.398777i 0.979921 + 0.199388i \(0.0638955\pi\)
−0.979921 + 0.199388i \(0.936104\pi\)
\(102\) 0 0
\(103\) −29.1216 −0.282734 −0.141367 0.989957i \(-0.545150\pi\)
−0.141367 + 0.989957i \(0.545150\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 181.901i − 1.70001i −0.526774 0.850005i \(-0.676599\pi\)
0.526774 0.850005i \(-0.323401\pi\)
\(108\) 0 0
\(109\) −88.1621 −0.808826 −0.404413 0.914576i \(-0.632524\pi\)
−0.404413 + 0.914576i \(0.632524\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 64.8190i − 0.573620i −0.957988 0.286810i \(-0.907405\pi\)
0.957988 0.286810i \(-0.0925948\pi\)
\(114\) 0 0
\(115\) −12.4575 −0.108326
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 45.7558i − 0.384503i
\(120\) 0 0
\(121\) 84.1660 0.695587
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 120.735i − 0.965880i
\(126\) 0 0
\(127\) 223.579 1.76047 0.880233 0.474543i \(-0.157387\pi\)
0.880233 + 0.474543i \(0.157387\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 207.300i 1.58244i 0.611531 + 0.791220i \(0.290554\pi\)
−0.611531 + 0.791220i \(0.709446\pi\)
\(132\) 0 0
\(133\) 68.4575 0.514718
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 175.775i 1.28303i 0.767112 + 0.641514i \(0.221693\pi\)
−0.767112 + 0.641514i \(0.778307\pi\)
\(138\) 0 0
\(139\) 117.166 0.842921 0.421460 0.906847i \(-0.361518\pi\)
0.421460 + 0.906847i \(0.361518\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 76.3675i − 0.534039i
\(144\) 0 0
\(145\) −287.705 −1.98417
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 186.316i − 1.25044i −0.780448 0.625220i \(-0.785009\pi\)
0.780448 0.625220i \(-0.214991\pi\)
\(150\) 0 0
\(151\) −182.081 −1.20583 −0.602917 0.797804i \(-0.705995\pi\)
−0.602917 + 0.797804i \(0.705995\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 78.8410i 0.508652i
\(156\) 0 0
\(157\) 68.3765 0.435519 0.217759 0.976002i \(-0.430125\pi\)
0.217759 + 0.976002i \(0.430125\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 6.39261i − 0.0397057i
\(162\) 0 0
\(163\) 36.7451 0.225430 0.112715 0.993627i \(-0.464045\pi\)
0.112715 + 0.993627i \(0.464045\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 240.708i 1.44137i 0.693264 + 0.720684i \(0.256172\pi\)
−0.693264 + 0.720684i \(0.743828\pi\)
\(168\) 0 0
\(169\) −10.6680 −0.0631241
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 341.029i − 1.97126i −0.168905 0.985632i \(-0.554023\pi\)
0.168905 0.985632i \(-0.445977\pi\)
\(174\) 0 0
\(175\) −4.18824 −0.0239328
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 138.410i 0.773240i 0.922239 + 0.386620i \(0.126357\pi\)
−0.922239 + 0.386620i \(0.873643\pi\)
\(180\) 0 0
\(181\) −135.328 −0.747669 −0.373834 0.927495i \(-0.621957\pi\)
−0.373834 + 0.927495i \(0.621957\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 122.447i 0.661875i
\(186\) 0 0
\(187\) 104.959 0.561281
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 168.469i − 0.882036i −0.897498 0.441018i \(-0.854617\pi\)
0.897498 0.441018i \(-0.145383\pi\)
\(192\) 0 0
\(193\) 143.498 0.743513 0.371757 0.928330i \(-0.378756\pi\)
0.371757 + 0.928330i \(0.378756\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 296.510i − 1.50513i −0.658521 0.752563i \(-0.728817\pi\)
0.658521 0.752563i \(-0.271183\pi\)
\(198\) 0 0
\(199\) 142.243 0.714789 0.357395 0.933953i \(-0.383665\pi\)
0.357395 + 0.933953i \(0.383665\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 147.636i − 0.727273i
\(204\) 0 0
\(205\) −79.7490 −0.389020
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 157.035i 0.751364i
\(210\) 0 0
\(211\) −110.996 −0.526048 −0.263024 0.964789i \(-0.584720\pi\)
−0.263024 + 0.964789i \(0.584720\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 143.070i 0.665443i
\(216\) 0 0
\(217\) −40.4575 −0.186440
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 217.611i 0.984667i
\(222\) 0 0
\(223\) 104.251 0.467493 0.233747 0.972298i \(-0.424901\pi\)
0.233747 + 0.972298i \(0.424901\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 163.161i 0.718773i 0.933189 + 0.359386i \(0.117014\pi\)
−0.933189 + 0.359386i \(0.882986\pi\)
\(228\) 0 0
\(229\) −278.413 −1.21578 −0.607889 0.794022i \(-0.707983\pi\)
−0.607889 + 0.794022i \(0.707983\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 404.042i 1.73408i 0.498235 + 0.867042i \(0.333982\pi\)
−0.498235 + 0.867042i \(0.666018\pi\)
\(234\) 0 0
\(235\) 146.745 0.624447
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 257.204i 1.07617i 0.842892 + 0.538083i \(0.180851\pi\)
−0.842892 + 0.538083i \(0.819149\pi\)
\(240\) 0 0
\(241\) 249.616 1.03575 0.517875 0.855456i \(-0.326723\pi\)
0.517875 + 0.855456i \(0.326723\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 36.0911i − 0.147311i
\(246\) 0 0
\(247\) −325.579 −1.31813
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 69.2909i − 0.276059i −0.990428 0.138030i \(-0.955923\pi\)
0.990428 0.138030i \(-0.0440769\pi\)
\(252\) 0 0
\(253\) 14.6640 0.0579606
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 255.873i 0.995614i 0.867288 + 0.497807i \(0.165861\pi\)
−0.867288 + 0.497807i \(0.834139\pi\)
\(258\) 0 0
\(259\) −62.8340 −0.242602
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 14.6690i − 0.0557756i −0.999611 0.0278878i \(-0.991122\pi\)
0.999611 0.0278878i \(-0.00887812\pi\)
\(264\) 0 0
\(265\) 240.620 0.907998
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 74.9792i − 0.278733i −0.990241 0.139367i \(-0.955493\pi\)
0.990241 0.139367i \(-0.0445066\pi\)
\(270\) 0 0
\(271\) 211.203 0.779345 0.389673 0.920953i \(-0.372588\pi\)
0.389673 + 0.920953i \(0.372588\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 9.60742i − 0.0349361i
\(276\) 0 0
\(277\) 408.494 1.47471 0.737354 0.675507i \(-0.236075\pi\)
0.737354 + 0.675507i \(0.236075\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 200.395i 0.713149i 0.934267 + 0.356575i \(0.116055\pi\)
−0.934267 + 0.356575i \(0.883945\pi\)
\(282\) 0 0
\(283\) −358.450 −1.26661 −0.633303 0.773904i \(-0.718301\pi\)
−0.633303 + 0.773904i \(0.718301\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 40.9235i − 0.142590i
\(288\) 0 0
\(289\) −10.0850 −0.0348961
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 325.352i 1.11042i 0.831711 + 0.555209i \(0.187362\pi\)
−0.831711 + 0.555209i \(0.812638\pi\)
\(294\) 0 0
\(295\) −415.911 −1.40987
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 30.4028i 0.101682i
\(300\) 0 0
\(301\) −73.4170 −0.243910
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 323.317i 1.06006i
\(306\) 0 0
\(307\) 338.037 1.10110 0.550548 0.834803i \(-0.314419\pi\)
0.550548 + 0.834803i \(0.314419\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 311.179i − 1.00057i −0.865859 0.500287i \(-0.833228\pi\)
0.865859 0.500287i \(-0.166772\pi\)
\(312\) 0 0
\(313\) 401.069 1.28137 0.640686 0.767803i \(-0.278650\pi\)
0.640686 + 0.767803i \(0.278650\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 84.1485i − 0.265453i −0.991153 0.132726i \(-0.957627\pi\)
0.991153 0.132726i \(-0.0423731\pi\)
\(318\) 0 0
\(319\) 338.664 1.06164
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 447.476i − 1.38537i
\(324\) 0 0
\(325\) 19.9190 0.0612891
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 75.3027i 0.228884i
\(330\) 0 0
\(331\) 223.498 0.675221 0.337610 0.941286i \(-0.390381\pi\)
0.337610 + 0.941286i \(0.390381\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 598.499i 1.78656i
\(336\) 0 0
\(337\) −234.583 −0.696092 −0.348046 0.937477i \(-0.613155\pi\)
−0.348046 + 0.937477i \(0.613155\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 92.8057i − 0.272157i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 83.6161i 0.240969i 0.992715 + 0.120484i \(0.0384447\pi\)
−0.992715 + 0.120484i \(0.961555\pi\)
\(348\) 0 0
\(349\) 298.959 0.856617 0.428309 0.903632i \(-0.359110\pi\)
0.428309 + 0.903632i \(0.359110\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 428.052i 1.21261i 0.795232 + 0.606306i \(0.207349\pi\)
−0.795232 + 0.606306i \(0.792651\pi\)
\(354\) 0 0
\(355\) −256.708 −0.723123
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 144.536i 0.402608i 0.979529 + 0.201304i \(0.0645179\pi\)
−0.979529 + 0.201304i \(0.935482\pi\)
\(360\) 0 0
\(361\) 308.490 0.854543
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 158.329i − 0.433778i
\(366\) 0 0
\(367\) 610.243 1.66279 0.831394 0.555684i \(-0.187543\pi\)
0.831394 + 0.555684i \(0.187543\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 123.475i 0.332816i
\(372\) 0 0
\(373\) 0.332021 0.000890137 0 0.000445068 1.00000i \(-0.499858\pi\)
0.000445068 1.00000i \(0.499858\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 702.149i 1.86246i
\(378\) 0 0
\(379\) 393.652 1.03866 0.519330 0.854574i \(-0.326182\pi\)
0.519330 + 0.854574i \(0.326182\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 540.699i − 1.41175i −0.708338 0.705874i \(-0.750555\pi\)
0.708338 0.705874i \(-0.249445\pi\)
\(384\) 0 0
\(385\) 82.7895 0.215038
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 474.397i − 1.21953i −0.792582 0.609765i \(-0.791264\pi\)
0.792582 0.609765i \(-0.208736\pi\)
\(390\) 0 0
\(391\) −41.7856 −0.106869
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 735.557i 1.86217i
\(396\) 0 0
\(397\) 400.288 1.00828 0.504141 0.863622i \(-0.331809\pi\)
0.504141 + 0.863622i \(0.331809\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 651.065i − 1.62360i −0.583933 0.811802i \(-0.698487\pi\)
0.583933 0.811802i \(-0.301513\pi\)
\(402\) 0 0
\(403\) 192.413 0.477452
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 144.135i − 0.354140i
\(408\) 0 0
\(409\) −189.114 −0.462381 −0.231190 0.972909i \(-0.574262\pi\)
−0.231190 + 0.972909i \(0.574262\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 213.426i − 0.516770i
\(414\) 0 0
\(415\) −147.336 −0.355026
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 829.772i 1.98036i 0.139791 + 0.990181i \(0.455357\pi\)
−0.139791 + 0.990181i \(0.544643\pi\)
\(420\) 0 0
\(421\) −226.324 −0.537587 −0.268794 0.963198i \(-0.586625\pi\)
−0.268794 + 0.963198i \(0.586625\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 27.3766i 0.0644156i
\(426\) 0 0
\(427\) −165.911 −0.388551
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 436.460i 1.01267i 0.862338 + 0.506334i \(0.169000\pi\)
−0.862338 + 0.506334i \(0.831000\pi\)
\(432\) 0 0
\(433\) 404.243 0.933587 0.466793 0.884366i \(-0.345409\pi\)
0.466793 + 0.884366i \(0.345409\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 62.5175i − 0.143061i
\(438\) 0 0
\(439\) 182.818 0.416442 0.208221 0.978082i \(-0.433233\pi\)
0.208221 + 0.978082i \(0.433233\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 331.212i − 0.747658i −0.927498 0.373829i \(-0.878045\pi\)
0.927498 0.373829i \(-0.121955\pi\)
\(444\) 0 0
\(445\) −867.231 −1.94883
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 12.8425i − 0.0286025i −0.999898 0.0143013i \(-0.995448\pi\)
0.999898 0.0143013i \(-0.00455239\pi\)
\(450\) 0 0
\(451\) 93.8745 0.208147
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 171.647i 0.377245i
\(456\) 0 0
\(457\) −310.672 −0.679807 −0.339904 0.940460i \(-0.610394\pi\)
−0.339904 + 0.940460i \(0.610394\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 389.770i 0.845489i 0.906249 + 0.422744i \(0.138933\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(462\) 0 0
\(463\) −152.081 −0.328469 −0.164234 0.986421i \(-0.552515\pi\)
−0.164234 + 0.986421i \(0.552515\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 86.8679i − 0.186013i −0.995666 0.0930063i \(-0.970352\pi\)
0.995666 0.0930063i \(-0.0296477\pi\)
\(468\) 0 0
\(469\) −307.122 −0.654843
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 168.412i − 0.356050i
\(474\) 0 0
\(475\) −40.9595 −0.0862305
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 549.643i 1.14748i 0.819038 + 0.573740i \(0.194508\pi\)
−0.819038 + 0.573740i \(0.805492\pi\)
\(480\) 0 0
\(481\) 298.834 0.621276
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 587.540i − 1.21142i
\(486\) 0 0
\(487\) 690.745 1.41837 0.709184 0.705024i \(-0.249064\pi\)
0.709184 + 0.705024i \(0.249064\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 732.380i − 1.49161i −0.666165 0.745804i \(-0.732066\pi\)
0.666165 0.745804i \(-0.267934\pi\)
\(492\) 0 0
\(493\) −965.033 −1.95747
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 131.731i − 0.265052i
\(498\) 0 0
\(499\) 454.405 0.910632 0.455316 0.890330i \(-0.349526\pi\)
0.455316 + 0.890330i \(0.349526\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 304.594i 0.605554i 0.953061 + 0.302777i \(0.0979138\pi\)
−0.953061 + 0.302777i \(0.902086\pi\)
\(504\) 0 0
\(505\) 207.660 0.411208
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 74.1436i − 0.145665i −0.997344 0.0728326i \(-0.976796\pi\)
0.997344 0.0728326i \(-0.0232039\pi\)
\(510\) 0 0
\(511\) 81.2470 0.158996
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 150.147i 0.291548i
\(516\) 0 0
\(517\) −172.737 −0.334115
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 214.511i 0.411730i 0.978580 + 0.205865i \(0.0660007\pi\)
−0.978580 + 0.205865i \(0.933999\pi\)
\(522\) 0 0
\(523\) −932.486 −1.78296 −0.891478 0.453064i \(-0.850331\pi\)
−0.891478 + 0.453064i \(0.850331\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 264.452i 0.501807i
\(528\) 0 0
\(529\) 523.162 0.988964
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 194.629i 0.365158i
\(534\) 0 0
\(535\) −937.859 −1.75301
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 42.4837i 0.0788195i
\(540\) 0 0
\(541\) −186.340 −0.344436 −0.172218 0.985059i \(-0.555093\pi\)
−0.172218 + 0.985059i \(0.555093\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 454.552i 0.834041i
\(546\) 0 0
\(547\) −792.170 −1.44821 −0.724104 0.689691i \(-0.757747\pi\)
−0.724104 + 0.689691i \(0.757747\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1443.83i − 2.62039i
\(552\) 0 0
\(553\) −377.454 −0.682556
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 399.627i − 0.717463i −0.933441 0.358732i \(-0.883209\pi\)
0.933441 0.358732i \(-0.116791\pi\)
\(558\) 0 0
\(559\) 349.166 0.624626
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 349.379i 0.620567i 0.950644 + 0.310283i \(0.100424\pi\)
−0.950644 + 0.310283i \(0.899576\pi\)
\(564\) 0 0
\(565\) −334.199 −0.591502
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 755.362i − 1.32753i −0.747943 0.663763i \(-0.768958\pi\)
0.747943 0.663763i \(-0.231042\pi\)
\(570\) 0 0
\(571\) −95.1503 −0.166638 −0.0833190 0.996523i \(-0.526552\pi\)
−0.0833190 + 0.996523i \(0.526552\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.82483i 0.00665187i
\(576\) 0 0
\(577\) 756.065 1.31034 0.655169 0.755482i \(-0.272597\pi\)
0.655169 + 0.755482i \(0.272597\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 75.6059i − 0.130131i
\(582\) 0 0
\(583\) −283.239 −0.485830
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 688.642i − 1.17316i −0.809893 0.586578i \(-0.800475\pi\)
0.809893 0.586578i \(-0.199525\pi\)
\(588\) 0 0
\(589\) −395.660 −0.671749
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1016.01i 1.71334i 0.515866 + 0.856669i \(0.327470\pi\)
−0.515866 + 0.856669i \(0.672530\pi\)
\(594\) 0 0
\(595\) −235.911 −0.396489
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 590.259i 0.985408i 0.870197 + 0.492704i \(0.163991\pi\)
−0.870197 + 0.492704i \(0.836009\pi\)
\(600\) 0 0
\(601\) 300.761 0.500434 0.250217 0.968190i \(-0.419498\pi\)
0.250217 + 0.968190i \(0.419498\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 433.949i − 0.717271i
\(606\) 0 0
\(607\) −696.413 −1.14730 −0.573652 0.819099i \(-0.694474\pi\)
−0.573652 + 0.819099i \(0.694474\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 358.134i − 0.586144i
\(612\) 0 0
\(613\) 557.393 0.909288 0.454644 0.890673i \(-0.349767\pi\)
0.454644 + 0.890673i \(0.349767\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 91.9868i − 0.149087i −0.997218 0.0745436i \(-0.976250\pi\)
0.997218 0.0745436i \(-0.0237500\pi\)
\(618\) 0 0
\(619\) 1117.42 1.80520 0.902599 0.430483i \(-0.141657\pi\)
0.902599 + 0.430483i \(0.141657\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 445.022i − 0.714322i
\(624\) 0 0
\(625\) −662.069 −1.05931
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 410.717i 0.652969i
\(630\) 0 0
\(631\) −962.219 −1.52491 −0.762456 0.647040i \(-0.776007\pi\)
−0.762456 + 0.647040i \(0.776007\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1152.74i − 1.81535i
\(636\) 0 0
\(637\) −88.0810 −0.138275
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 224.442i 0.350144i 0.984556 + 0.175072i \(0.0560158\pi\)
−0.984556 + 0.175072i \(0.943984\pi\)
\(642\) 0 0
\(643\) 332.384 0.516927 0.258464 0.966021i \(-0.416784\pi\)
0.258464 + 0.966021i \(0.416784\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 910.554i − 1.40735i −0.710523 0.703674i \(-0.751542\pi\)
0.710523 0.703674i \(-0.248458\pi\)
\(648\) 0 0
\(649\) 489.579 0.754359
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 148.304i 0.227112i 0.993532 + 0.113556i \(0.0362241\pi\)
−0.993532 + 0.113556i \(0.963776\pi\)
\(654\) 0 0
\(655\) 1068.81 1.63177
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 45.5636i − 0.0691405i −0.999402 0.0345703i \(-0.988994\pi\)
0.999402 0.0345703i \(-0.0110063\pi\)
\(660\) 0 0
\(661\) 404.214 0.611520 0.305760 0.952109i \(-0.401090\pi\)
0.305760 + 0.952109i \(0.401090\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 352.958i − 0.530764i
\(666\) 0 0
\(667\) −134.826 −0.202138
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 380.584i − 0.567190i
\(672\) 0 0
\(673\) 1016.49 1.51038 0.755190 0.655506i \(-0.227544\pi\)
0.755190 + 0.655506i \(0.227544\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 232.547i 0.343496i 0.985141 + 0.171748i \(0.0549414\pi\)
−0.985141 + 0.171748i \(0.945059\pi\)
\(678\) 0 0
\(679\) 301.498 0.444032
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 118.245i − 0.173126i −0.996246 0.0865628i \(-0.972412\pi\)
0.996246 0.0865628i \(-0.0275883\pi\)
\(684\) 0 0
\(685\) 906.272 1.32302
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 587.237i − 0.852303i
\(690\) 0 0
\(691\) −48.2510 −0.0698278 −0.0349139 0.999390i \(-0.511116\pi\)
−0.0349139 + 0.999390i \(0.511116\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 604.093i − 0.869198i
\(696\) 0 0
\(697\) −267.498 −0.383785
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 236.466i − 0.337326i −0.985674 0.168663i \(-0.946055\pi\)
0.985674 0.168663i \(-0.0539450\pi\)
\(702\) 0 0
\(703\) −614.494 −0.874103
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 106.561i 0.150723i
\(708\) 0 0
\(709\) −1341.98 −1.89277 −0.946387 0.323036i \(-0.895297\pi\)
−0.946387 + 0.323036i \(0.895297\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 36.9470i 0.0518191i
\(714\) 0 0
\(715\) −393.741 −0.550687
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 284.617i − 0.395852i −0.980217 0.197926i \(-0.936579\pi\)
0.980217 0.197926i \(-0.0634205\pi\)
\(720\) 0 0
\(721\) −77.0484 −0.106863
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 88.3338i 0.121840i
\(726\) 0 0
\(727\) −430.450 −0.592090 −0.296045 0.955174i \(-0.595668\pi\)
−0.296045 + 0.955174i \(0.595668\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 479.894i 0.656489i
\(732\) 0 0
\(733\) −387.814 −0.529078 −0.264539 0.964375i \(-0.585220\pi\)
−0.264539 + 0.964375i \(0.585220\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 704.508i − 0.955913i
\(738\) 0 0
\(739\) −352.907 −0.477547 −0.238773 0.971075i \(-0.576745\pi\)
−0.238773 + 0.971075i \(0.576745\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1068.60i − 1.43822i −0.694897 0.719109i \(-0.744550\pi\)
0.694897 0.719109i \(-0.255450\pi\)
\(744\) 0 0
\(745\) −960.620 −1.28942
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 481.265i − 0.642544i
\(750\) 0 0
\(751\) −1224.15 −1.63002 −0.815011 0.579446i \(-0.803269\pi\)
−0.815011 + 0.579446i \(0.803269\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 938.786i 1.24343i
\(756\) 0 0
\(757\) −96.3399 −0.127265 −0.0636327 0.997973i \(-0.520269\pi\)
−0.0636327 + 0.997973i \(0.520269\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 948.889i − 1.24690i −0.781864 0.623449i \(-0.785731\pi\)
0.781864 0.623449i \(-0.214269\pi\)
\(762\) 0 0
\(763\) −233.255 −0.305708
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1015.04i 1.32339i
\(768\) 0 0
\(769\) −998.633 −1.29861 −0.649306 0.760527i \(-0.724941\pi\)
−0.649306 + 0.760527i \(0.724941\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 86.4704i − 0.111863i −0.998435 0.0559317i \(-0.982187\pi\)
0.998435 0.0559317i \(-0.0178129\pi\)
\(774\) 0 0
\(775\) 24.2065 0.0312342
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 400.217i − 0.513757i
\(780\) 0 0
\(781\) 302.178 0.386911
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 352.540i − 0.449096i
\(786\) 0 0
\(787\) 489.814 0.622382 0.311191 0.950347i \(-0.399272\pi\)
0.311191 + 0.950347i \(0.399272\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 171.495i − 0.216808i
\(792\) 0 0
\(793\) 789.061 0.995033
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 500.193i 0.627595i 0.949490 + 0.313798i \(0.101601\pi\)
−0.949490 + 0.313798i \(0.898399\pi\)
\(798\) 0 0
\(799\) 492.219 0.616044
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 186.373i 0.232096i
\(804\) 0 0
\(805\) −32.9595 −0.0409435
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 310.515i − 0.383826i −0.981412 0.191913i \(-0.938531\pi\)
0.981412 0.191913i \(-0.0614691\pi\)
\(810\) 0 0
\(811\) 45.9190 0.0566202 0.0283101 0.999599i \(-0.490987\pi\)
0.0283101 + 0.999599i \(0.490987\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 189.453i − 0.232458i
\(816\) 0 0
\(817\) −717.992 −0.878815
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1208.66i − 1.47218i −0.676883 0.736091i \(-0.736670\pi\)
0.676883 0.736091i \(-0.263330\pi\)
\(822\) 0 0
\(823\) 119.182 0.144814 0.0724069 0.997375i \(-0.476932\pi\)
0.0724069 + 0.997375i \(0.476932\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 872.026i − 1.05445i −0.849727 0.527223i \(-0.823233\pi\)
0.849727 0.527223i \(-0.176767\pi\)
\(828\) 0 0
\(829\) 737.822 0.890015 0.445007 0.895527i \(-0.353201\pi\)
0.445007 + 0.895527i \(0.353201\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 121.059i − 0.145328i
\(834\) 0 0
\(835\) 1241.06 1.48630
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 896.131i 1.06809i 0.845455 + 0.534047i \(0.179329\pi\)
−0.845455 + 0.534047i \(0.820671\pi\)
\(840\) 0 0
\(841\) −2272.79 −2.70249
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 55.0027i 0.0650920i
\(846\) 0 0
\(847\) 222.682 0.262907
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 57.3819i 0.0674288i
\(852\) 0 0
\(853\) 311.875 0.365621 0.182810 0.983148i \(-0.441481\pi\)
0.182810 + 0.983148i \(0.441481\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 360.891i 0.421109i 0.977582 + 0.210555i \(0.0675270\pi\)
−0.977582 + 0.210555i \(0.932473\pi\)
\(858\) 0 0
\(859\) −1211.10 −1.40989 −0.704946 0.709261i \(-0.749029\pi\)
−0.704946 + 0.709261i \(0.749029\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 511.500i 0.592699i 0.955079 + 0.296350i \(0.0957694\pi\)
−0.955079 + 0.296350i \(0.904231\pi\)
\(864\) 0 0
\(865\) −1758.30 −2.03272
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 865.843i − 0.996367i
\(870\) 0 0
\(871\) 1460.65 1.67698
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 319.435i − 0.365068i
\(876\) 0 0
\(877\) 134.591 0.153467 0.0767337 0.997052i \(-0.475551\pi\)
0.0767337 + 0.997052i \(0.475551\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 405.447i 0.460212i 0.973166 + 0.230106i \(0.0739073\pi\)
−0.973166 + 0.230106i \(0.926093\pi\)
\(882\) 0 0
\(883\) 552.235 0.625408 0.312704 0.949851i \(-0.398765\pi\)
0.312704 + 0.949851i \(0.398765\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1204.00i 1.35738i 0.734423 + 0.678692i \(0.237453\pi\)
−0.734423 + 0.678692i \(0.762547\pi\)
\(888\) 0 0
\(889\) 591.535 0.665393
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 736.434i 0.824674i
\(894\) 0 0
\(895\) 713.624 0.797345
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 853.286i 0.949151i
\(900\) 0 0
\(901\) 807.098 0.895780
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 697.734i 0.770977i
\(906\) 0 0
\(907\) −1320.41 −1.45580 −0.727901 0.685682i \(-0.759504\pi\)
−0.727901 + 0.685682i \(0.759504\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 965.020i 1.05930i 0.848217 + 0.529649i \(0.177676\pi\)
−0.848217 + 0.529649i \(0.822324\pi\)
\(912\) 0 0
\(913\) 173.433 0.189959
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 548.463i 0.598106i
\(918\) 0 0
\(919\) −720.089 −0.783557 −0.391779 0.920060i \(-0.628140\pi\)
−0.391779 + 0.920060i \(0.628140\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 626.502i 0.678767i
\(924\) 0 0
\(925\) 37.5948 0.0406430
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 931.689i − 1.00289i −0.865188 0.501447i \(-0.832801\pi\)
0.865188 0.501447i \(-0.167199\pi\)
\(930\) 0 0
\(931\) 181.122 0.194545
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 541.158i − 0.578778i
\(936\) 0 0
\(937\) 1370.97 1.46315 0.731575 0.681760i \(-0.238785\pi\)
0.731575 + 0.681760i \(0.238785\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 227.485i 0.241748i 0.992668 + 0.120874i \(0.0385697\pi\)
−0.992668 + 0.120874i \(0.961430\pi\)
\(942\) 0 0
\(943\) −37.3725 −0.0396315
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 658.944i 0.695823i 0.937527 + 0.347911i \(0.113109\pi\)
−0.937527 + 0.347911i \(0.886891\pi\)
\(948\) 0 0
\(949\) −386.405 −0.407171
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 217.669i − 0.228404i −0.993458 0.114202i \(-0.963569\pi\)
0.993458 0.114202i \(-0.0364311\pi\)
\(954\) 0 0
\(955\) −868.604 −0.909533
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 465.056i 0.484939i
\(960\) 0 0
\(961\) −727.170 −0.756680
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 739.857i − 0.766692i
\(966\) 0 0
\(967\) 1018.75 1.05352 0.526760 0.850014i \(-0.323407\pi\)
0.526760 + 0.850014i \(0.323407\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 408.547i 0.420749i 0.977621 + 0.210374i \(0.0674683\pi\)
−0.977621 + 0.210374i \(0.932532\pi\)
\(972\) 0 0
\(973\) 309.992 0.318594
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 452.365i 0.463015i 0.972833 + 0.231507i \(0.0743657\pi\)
−0.972833 + 0.231507i \(0.925634\pi\)
\(978\) 0 0
\(979\) 1020.84 1.04274
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1732.56i − 1.76252i −0.472628 0.881262i \(-0.656695\pi\)
0.472628 0.881262i \(-0.343305\pi\)
\(984\) 0 0
\(985\) −1528.77 −1.55205
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 67.0466i 0.0677923i
\(990\) 0 0
\(991\) −394.745 −0.398330 −0.199165 0.979966i \(-0.563823\pi\)
−0.199165 + 0.979966i \(0.563823\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 733.387i − 0.737072i
\(996\) 0 0
\(997\) 165.349 0.165846 0.0829232 0.996556i \(-0.473574\pi\)
0.0829232 + 0.996556i \(0.473574\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.d.c.449.1 4
3.2 odd 2 inner 1008.3.d.c.449.4 4
4.3 odd 2 252.3.c.a.197.1 4
8.3 odd 2 4032.3.d.h.449.4 4
8.5 even 2 4032.3.d.e.449.4 4
12.11 even 2 252.3.c.a.197.4 yes 4
24.5 odd 2 4032.3.d.e.449.1 4
24.11 even 2 4032.3.d.h.449.1 4
28.3 even 6 1764.3.bk.e.1745.1 8
28.11 odd 6 1764.3.bk.d.1745.4 8
28.19 even 6 1764.3.bk.e.557.4 8
28.23 odd 6 1764.3.bk.d.557.1 8
28.27 even 2 1764.3.c.f.197.4 4
36.7 odd 6 2268.3.bg.c.701.4 8
36.11 even 6 2268.3.bg.c.701.1 8
36.23 even 6 2268.3.bg.c.2213.4 8
36.31 odd 6 2268.3.bg.c.2213.1 8
84.11 even 6 1764.3.bk.d.1745.1 8
84.23 even 6 1764.3.bk.d.557.4 8
84.47 odd 6 1764.3.bk.e.557.1 8
84.59 odd 6 1764.3.bk.e.1745.4 8
84.83 odd 2 1764.3.c.f.197.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.c.a.197.1 4 4.3 odd 2
252.3.c.a.197.4 yes 4 12.11 even 2
1008.3.d.c.449.1 4 1.1 even 1 trivial
1008.3.d.c.449.4 4 3.2 odd 2 inner
1764.3.c.f.197.1 4 84.83 odd 2
1764.3.c.f.197.4 4 28.27 even 2
1764.3.bk.d.557.1 8 28.23 odd 6
1764.3.bk.d.557.4 8 84.23 even 6
1764.3.bk.d.1745.1 8 84.11 even 6
1764.3.bk.d.1745.4 8 28.11 odd 6
1764.3.bk.e.557.1 8 84.47 odd 6
1764.3.bk.e.557.4 8 28.19 even 6
1764.3.bk.e.1745.1 8 28.3 even 6
1764.3.bk.e.1745.4 8 84.59 odd 6
2268.3.bg.c.701.1 8 36.11 even 6
2268.3.bg.c.701.4 8 36.7 odd 6
2268.3.bg.c.2213.1 8 36.31 odd 6
2268.3.bg.c.2213.4 8 36.23 even 6
4032.3.d.e.449.1 4 24.5 odd 2
4032.3.d.e.449.4 4 8.5 even 2
4032.3.d.h.449.1 4 24.11 even 2
4032.3.d.h.449.4 4 8.3 odd 2