Properties

Label 2268.3.bg.c.2213.1
Level $2268$
Weight $3$
Character 2268.2213
Analytic conductor $61.799$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,3,Mod(701,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.701"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2268.bg (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.7985239569\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2213.1
Root \(-2.23256 + 1.28897i\) of defining polynomial
Character \(\chi\) \(=\) 2268.2213
Dual form 2268.3.bg.c.701.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.46512 + 2.57794i) q^{5} +(1.32288 - 2.29129i) q^{7} +(5.25600 + 3.03455i) q^{11} +(6.29150 + 10.8972i) q^{13} -17.2941i q^{17} -25.8745 q^{19} +(2.09247 - 1.20809i) q^{23} +(0.791503 - 1.37092i) q^{25} +(48.3254 + 27.9007i) q^{29} +(-7.64575 - 13.2428i) q^{31} +13.6412i q^{35} -23.7490 q^{37} +(-13.3953 + 7.73381i) q^{41} +(-13.8745 + 24.0314i) q^{43} +(24.6486 + 14.2309i) q^{47} +(-3.50000 - 6.06218i) q^{49} +46.6690i q^{53} -31.2915 q^{55} +(69.8601 - 40.3337i) q^{59} +(31.3542 - 54.3072i) q^{61} +(-56.1846 - 32.4382i) q^{65} +(-58.0405 - 100.529i) q^{67} +49.7896i q^{71} +30.7085 q^{73} +(13.9061 - 8.02867i) q^{77} +(-71.3320 + 123.551i) q^{79} +(-24.7478 - 14.2882i) q^{83} +(44.5830 + 77.2200i) q^{85} -168.203i q^{89} +33.2915 q^{91} +(115.533 - 66.7028i) q^{95} +(-56.9778 + 98.6884i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{13} - 80 q^{19} - 36 q^{25} - 40 q^{31} + 64 q^{37} + 16 q^{43} - 28 q^{49} - 208 q^{55} + 272 q^{61} - 168 q^{67} + 288 q^{73} - 232 q^{79} + 272 q^{85} + 224 q^{91} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.46512 + 2.57794i −0.893023 + 0.515587i −0.874930 0.484249i \(-0.839093\pi\)
−0.0180929 + 0.999836i \(0.505759\pi\)
\(6\) 0 0
\(7\) 1.32288 2.29129i 0.188982 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.25600 + 3.03455i 0.477818 + 0.275868i 0.719507 0.694486i \(-0.244368\pi\)
−0.241689 + 0.970354i \(0.577701\pi\)
\(12\) 0 0
\(13\) 6.29150 + 10.8972i 0.483962 + 0.838246i 0.999830 0.0184214i \(-0.00586405\pi\)
−0.515869 + 0.856668i \(0.672531\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.2941i 1.01730i −0.860974 0.508649i \(-0.830145\pi\)
0.860974 0.508649i \(-0.169855\pi\)
\(18\) 0 0
\(19\) −25.8745 −1.36182 −0.680908 0.732369i \(-0.738415\pi\)
−0.680908 + 0.732369i \(0.738415\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.09247 1.20809i 0.0909771 0.0525257i −0.453821 0.891093i \(-0.649940\pi\)
0.544798 + 0.838567i \(0.316606\pi\)
\(24\) 0 0
\(25\) 0.791503 1.37092i 0.0316601 0.0548369i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 48.3254 + 27.9007i 1.66639 + 0.962092i 0.969558 + 0.244860i \(0.0787420\pi\)
0.696834 + 0.717232i \(0.254591\pi\)
\(30\) 0 0
\(31\) −7.64575 13.2428i −0.246637 0.427188i 0.715953 0.698148i \(-0.245992\pi\)
−0.962591 + 0.270960i \(0.912659\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 13.6412i 0.389747i
\(36\) 0 0
\(37\) −23.7490 −0.641865 −0.320933 0.947102i \(-0.603996\pi\)
−0.320933 + 0.947102i \(0.603996\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −13.3953 + 7.73381i −0.326716 + 0.188629i −0.654382 0.756164i \(-0.727071\pi\)
0.327666 + 0.944794i \(0.393738\pi\)
\(42\) 0 0
\(43\) −13.8745 + 24.0314i −0.322663 + 0.558869i −0.981037 0.193823i \(-0.937911\pi\)
0.658374 + 0.752691i \(0.271245\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 24.6486 + 14.2309i 0.524438 + 0.302785i 0.738749 0.673981i \(-0.235417\pi\)
−0.214310 + 0.976766i \(0.568750\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 46.6690i 0.880548i 0.897863 + 0.440274i \(0.145119\pi\)
−0.897863 + 0.440274i \(0.854881\pi\)
\(54\) 0 0
\(55\) −31.2915 −0.568936
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 69.8601 40.3337i 1.18407 0.683623i 0.227117 0.973868i \(-0.427070\pi\)
0.956952 + 0.290245i \(0.0937368\pi\)
\(60\) 0 0
\(61\) 31.3542 54.3072i 0.514004 0.890281i −0.485864 0.874034i \(-0.661495\pi\)
0.999868 0.0162467i \(-0.00517172\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −56.1846 32.4382i −0.864378 0.499049i
\(66\) 0 0
\(67\) −58.0405 100.529i −0.866276 1.50043i −0.865774 0.500435i \(-0.833173\pi\)
−0.000502198 1.00000i \(-0.500160\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 49.7896i 0.701261i 0.936514 + 0.350631i \(0.114033\pi\)
−0.936514 + 0.350631i \(0.885967\pi\)
\(72\) 0 0
\(73\) 30.7085 0.420664 0.210332 0.977630i \(-0.432545\pi\)
0.210332 + 0.977630i \(0.432545\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.9061 8.02867i 0.180598 0.104268i
\(78\) 0 0
\(79\) −71.3320 + 123.551i −0.902937 + 1.56393i −0.0792742 + 0.996853i \(0.525260\pi\)
−0.823663 + 0.567080i \(0.808073\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −24.7478 14.2882i −0.298167 0.172147i 0.343452 0.939170i \(-0.388404\pi\)
−0.641619 + 0.767023i \(0.721737\pi\)
\(84\) 0 0
\(85\) 44.5830 + 77.2200i 0.524506 + 0.908471i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 168.203i 1.88992i −0.327189 0.944959i \(-0.606101\pi\)
0.327189 0.944959i \(-0.393899\pi\)
\(90\) 0 0
\(91\) 33.2915 0.365841
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 115.533 66.7028i 1.21613 0.702135i
\(96\) 0 0
\(97\) −56.9778 + 98.6884i −0.587400 + 1.01741i 0.407172 + 0.913352i \(0.366515\pi\)
−0.994572 + 0.104055i \(0.966818\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −34.8804 20.1382i −0.345351 0.199388i 0.317285 0.948330i \(-0.397229\pi\)
−0.662636 + 0.748942i \(0.730562\pi\)
\(102\) 0 0
\(103\) −14.5608 25.2200i −0.141367 0.244854i 0.786645 0.617406i \(-0.211816\pi\)
−0.928012 + 0.372551i \(0.878483\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 181.901i 1.70001i 0.526774 + 0.850005i \(0.323401\pi\)
−0.526774 + 0.850005i \(0.676599\pi\)
\(108\) 0 0
\(109\) −88.1621 −0.808826 −0.404413 0.914576i \(-0.632524\pi\)
−0.404413 + 0.914576i \(0.632524\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −56.1349 + 32.4095i −0.496769 + 0.286810i −0.727378 0.686237i \(-0.759261\pi\)
0.230609 + 0.973046i \(0.425928\pi\)
\(114\) 0 0
\(115\) −6.22876 + 10.7885i −0.0541631 + 0.0938132i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −39.6257 22.8779i −0.332989 0.192251i
\(120\) 0 0
\(121\) −42.0830 72.8899i −0.347793 0.602396i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 120.735i 0.965880i
\(126\) 0 0
\(127\) −223.579 −1.76047 −0.880233 0.474543i \(-0.842613\pi\)
−0.880233 + 0.474543i \(0.842613\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −179.527 + 103.650i −1.37043 + 0.791220i −0.990982 0.133992i \(-0.957220\pi\)
−0.379451 + 0.925212i \(0.623887\pi\)
\(132\) 0 0
\(133\) −34.2288 + 59.2859i −0.257359 + 0.445759i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −152.225 87.8874i −1.11113 0.641514i −0.172011 0.985095i \(-0.555027\pi\)
−0.939123 + 0.343581i \(0.888360\pi\)
\(138\) 0 0
\(139\) 58.5830 + 101.469i 0.421460 + 0.729991i 0.996083 0.0884279i \(-0.0281843\pi\)
−0.574622 + 0.818419i \(0.694851\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 76.3675i 0.534039i
\(144\) 0 0
\(145\) −287.705 −1.98417
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −161.354 + 93.1578i −1.08291 + 0.625220i −0.931681 0.363278i \(-0.881658\pi\)
−0.151233 + 0.988498i \(0.548324\pi\)
\(150\) 0 0
\(151\) −91.0405 + 157.687i −0.602917 + 1.04428i 0.389460 + 0.921044i \(0.372662\pi\)
−0.992377 + 0.123240i \(0.960672\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 68.2783 + 39.4205i 0.440505 + 0.254326i
\(156\) 0 0
\(157\) −34.1882 59.2158i −0.217759 0.377170i 0.736363 0.676586i \(-0.236542\pi\)
−0.954123 + 0.299416i \(0.903208\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.39261i 0.0397057i
\(162\) 0 0
\(163\) −36.7451 −0.225430 −0.112715 0.993627i \(-0.535955\pi\)
−0.112715 + 0.993627i \(0.535955\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −208.460 + 120.354i −1.24826 + 0.720684i −0.970762 0.240042i \(-0.922839\pi\)
−0.277498 + 0.960726i \(0.589505\pi\)
\(168\) 0 0
\(169\) 5.33399 9.23874i 0.0315621 0.0546671i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 295.340 + 170.514i 1.70717 + 0.985632i 0.938035 + 0.346540i \(0.112644\pi\)
0.769130 + 0.639092i \(0.220690\pi\)
\(174\) 0 0
\(175\) −2.09412 3.62712i −0.0119664 0.0207264i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 138.410i 0.773240i −0.922239 0.386620i \(-0.873643\pi\)
0.922239 0.386620i \(-0.126357\pi\)
\(180\) 0 0
\(181\) −135.328 −0.747669 −0.373834 0.927495i \(-0.621957\pi\)
−0.373834 + 0.927495i \(0.621957\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 106.042 61.2234i 0.573200 0.330937i
\(186\) 0 0
\(187\) 52.4797 90.8976i 0.280640 0.486083i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −145.898 84.2344i −0.763866 0.441018i 0.0668163 0.997765i \(-0.478716\pi\)
−0.830682 + 0.556747i \(0.812049\pi\)
\(192\) 0 0
\(193\) −71.7490 124.273i −0.371757 0.643901i 0.618079 0.786116i \(-0.287911\pi\)
−0.989836 + 0.142215i \(0.954578\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 296.510i 1.50513i −0.658521 0.752563i \(-0.728817\pi\)
0.658521 0.752563i \(-0.271183\pi\)
\(198\) 0 0
\(199\) −142.243 −0.714789 −0.357395 0.933953i \(-0.616335\pi\)
−0.357395 + 0.933953i \(0.616335\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 127.857 73.8182i 0.629837 0.363637i
\(204\) 0 0
\(205\) 39.8745 69.0647i 0.194510 0.336901i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −135.996 78.5175i −0.650700 0.375682i
\(210\) 0 0
\(211\) −55.4980 96.1254i −0.263024 0.455571i 0.704020 0.710180i \(-0.251386\pi\)
−0.967044 + 0.254609i \(0.918053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 143.070i 0.665443i
\(216\) 0 0
\(217\) −40.4575 −0.186440
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 188.457 108.806i 0.852747 0.492334i
\(222\) 0 0
\(223\) 52.1255 90.2840i 0.233747 0.404861i −0.725161 0.688579i \(-0.758235\pi\)
0.958908 + 0.283718i \(0.0915681\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 141.302 + 81.5807i 0.622475 + 0.359386i 0.777832 0.628472i \(-0.216319\pi\)
−0.155357 + 0.987858i \(0.549653\pi\)
\(228\) 0 0
\(229\) 139.207 + 241.113i 0.607889 + 1.05289i 0.991588 + 0.129436i \(0.0413167\pi\)
−0.383699 + 0.923458i \(0.625350\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 404.042i 1.73408i 0.498235 + 0.867042i \(0.333982\pi\)
−0.498235 + 0.867042i \(0.666018\pi\)
\(234\) 0 0
\(235\) −146.745 −0.624447
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −222.745 + 128.602i −0.931988 + 0.538083i −0.887440 0.460924i \(-0.847518\pi\)
−0.0445480 + 0.999007i \(0.514185\pi\)
\(240\) 0 0
\(241\) −124.808 + 216.173i −0.517875 + 0.896985i 0.481910 + 0.876221i \(0.339943\pi\)
−0.999784 + 0.0207645i \(0.993390\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 31.2558 + 18.0455i 0.127575 + 0.0736553i
\(246\) 0 0
\(247\) −162.790 281.960i −0.659067 1.14154i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 69.2909i 0.276059i 0.990428 + 0.138030i \(0.0440769\pi\)
−0.990428 + 0.138030i \(0.955923\pi\)
\(252\) 0 0
\(253\) 14.6640 0.0579606
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 221.592 127.936i 0.862227 0.497807i −0.00253044 0.999997i \(-0.500805\pi\)
0.864757 + 0.502190i \(0.167472\pi\)
\(258\) 0 0
\(259\) −31.4170 + 54.4158i −0.121301 + 0.210100i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.7037 7.33449i −0.0483031 0.0278878i 0.475654 0.879632i \(-0.342211\pi\)
−0.523957 + 0.851745i \(0.675545\pi\)
\(264\) 0 0
\(265\) −120.310 208.383i −0.453999 0.786350i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 74.9792i 0.278733i −0.990241 0.139367i \(-0.955493\pi\)
0.990241 0.139367i \(-0.0445066\pi\)
\(270\) 0 0
\(271\) −211.203 −0.779345 −0.389673 0.920953i \(-0.627412\pi\)
−0.389673 + 0.920953i \(0.627412\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.32027 4.80371i 0.0302555 0.0174680i
\(276\) 0 0
\(277\) −204.247 + 353.766i −0.737354 + 1.27713i 0.216329 + 0.976321i \(0.430592\pi\)
−0.953683 + 0.300814i \(0.902742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −173.547 100.197i −0.617605 0.356575i 0.158331 0.987386i \(-0.449389\pi\)
−0.775936 + 0.630812i \(0.782722\pi\)
\(282\) 0 0
\(283\) −179.225 310.426i −0.633303 1.09691i −0.986872 0.161505i \(-0.948365\pi\)
0.353569 0.935409i \(-0.384968\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 40.9235i 0.142590i
\(288\) 0 0
\(289\) −10.0850 −0.0348961
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 281.763 162.676i 0.961650 0.555209i 0.0649693 0.997887i \(-0.479305\pi\)
0.896680 + 0.442679i \(0.145972\pi\)
\(294\) 0 0
\(295\) −207.956 + 360.190i −0.704934 + 1.22098i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 26.3296 + 15.2014i 0.0880589 + 0.0508408i
\(300\) 0 0
\(301\) 36.7085 + 63.5810i 0.121955 + 0.211233i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 323.317i 1.06006i
\(306\) 0 0
\(307\) −338.037 −1.10110 −0.550548 0.834803i \(-0.685581\pi\)
−0.550548 + 0.834803i \(0.685581\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 269.489 155.589i 0.866523 0.500287i 0.000331809 1.00000i \(-0.499894\pi\)
0.866191 + 0.499713i \(0.166561\pi\)
\(312\) 0 0
\(313\) −200.535 + 347.336i −0.640686 + 1.10970i 0.344594 + 0.938752i \(0.388016\pi\)
−0.985280 + 0.170948i \(0.945317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 72.8747 + 42.0742i 0.229889 + 0.132726i 0.610521 0.792000i \(-0.290960\pi\)
−0.380632 + 0.924727i \(0.624294\pi\)
\(318\) 0 0
\(319\) 169.332 + 293.292i 0.530821 + 0.919410i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 447.476i 1.38537i
\(324\) 0 0
\(325\) 19.9190 0.0612891
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 65.2140 37.6513i 0.198219 0.114442i
\(330\) 0 0
\(331\) 111.749 193.555i 0.337610 0.584758i −0.646372 0.763022i \(-0.723715\pi\)
0.983983 + 0.178264i \(0.0570481\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 518.315 + 299.249i 1.54721 + 0.893282i
\(336\) 0 0
\(337\) 117.292 + 203.155i 0.348046 + 0.602833i 0.985902 0.167322i \(-0.0535120\pi\)
−0.637856 + 0.770155i \(0.720179\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 92.8057i 0.272157i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −72.4136 + 41.8080i −0.208685 + 0.120484i −0.600700 0.799474i \(-0.705111\pi\)
0.392015 + 0.919959i \(0.371778\pi\)
\(348\) 0 0
\(349\) −149.480 + 258.907i −0.428309 + 0.741852i −0.996723 0.0808900i \(-0.974224\pi\)
0.568414 + 0.822742i \(0.307557\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −370.704 214.026i −1.05015 0.606306i −0.127460 0.991844i \(-0.540683\pi\)
−0.922692 + 0.385538i \(0.874016\pi\)
\(354\) 0 0
\(355\) −128.354 222.316i −0.361561 0.626242i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 144.536i 0.402608i −0.979529 0.201304i \(-0.935482\pi\)
0.979529 0.201304i \(-0.0645179\pi\)
\(360\) 0 0
\(361\) 308.490 0.854543
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −137.117 + 79.1645i −0.375663 + 0.216889i
\(366\) 0 0
\(367\) 305.122 528.486i 0.831394 1.44002i −0.0655391 0.997850i \(-0.520877\pi\)
0.896933 0.442166i \(-0.145790\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 106.932 + 61.7373i 0.288227 + 0.166408i
\(372\) 0 0
\(373\) −0.166010 0.287539i −0.000445068 0.000770881i 0.865803 0.500385i \(-0.166808\pi\)
−0.866248 + 0.499615i \(0.833475\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 702.149i 1.86246i
\(378\) 0 0
\(379\) −393.652 −1.03866 −0.519330 0.854574i \(-0.673818\pi\)
−0.519330 + 0.854574i \(0.673818\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 468.259 270.350i 1.22261 0.705874i 0.257135 0.966375i \(-0.417221\pi\)
0.965473 + 0.260502i \(0.0838880\pi\)
\(384\) 0 0
\(385\) −41.3948 + 71.6978i −0.107519 + 0.186228i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 410.840 + 237.199i 1.05614 + 0.609765i 0.924363 0.381513i \(-0.124597\pi\)
0.131781 + 0.991279i \(0.457930\pi\)
\(390\) 0 0
\(391\) −20.8928 36.1874i −0.0534343 0.0925509i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 735.557i 1.86217i
\(396\) 0 0
\(397\) 400.288 1.00828 0.504141 0.863622i \(-0.331809\pi\)
0.504141 + 0.863622i \(0.331809\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −563.839 + 325.533i −1.40608 + 0.811802i −0.995008 0.0997999i \(-0.968180\pi\)
−0.411075 + 0.911602i \(0.634846\pi\)
\(402\) 0 0
\(403\) 96.2065 166.635i 0.238726 0.413485i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −124.825 72.0676i −0.306695 0.177070i
\(408\) 0 0
\(409\) 94.5568 + 163.777i 0.231190 + 0.400433i 0.958159 0.286238i \(-0.0924047\pi\)
−0.726968 + 0.686671i \(0.759071\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 213.426i 0.516770i
\(414\) 0 0
\(415\) 147.336 0.355026
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −718.603 + 414.886i −1.71504 + 0.990181i −0.787626 + 0.616153i \(0.788690\pi\)
−0.927417 + 0.374028i \(0.877976\pi\)
\(420\) 0 0
\(421\) 113.162 196.002i 0.268794 0.465564i −0.699757 0.714381i \(-0.746708\pi\)
0.968551 + 0.248817i \(0.0800417\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23.7088 13.6883i −0.0557855 0.0322078i
\(426\) 0 0
\(427\) −82.9555 143.683i −0.194275 0.336495i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 436.460i 1.01267i −0.862338 0.506334i \(-0.831000\pi\)
0.862338 0.506334i \(-0.169000\pi\)
\(432\) 0 0
\(433\) 404.243 0.933587 0.466793 0.884366i \(-0.345409\pi\)
0.466793 + 0.884366i \(0.345409\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −54.1417 + 31.2587i −0.123894 + 0.0715303i
\(438\) 0 0
\(439\) 91.4091 158.325i 0.208221 0.360650i −0.742933 0.669366i \(-0.766566\pi\)
0.951154 + 0.308716i \(0.0998993\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −286.838 165.606i −0.647491 0.373829i 0.140003 0.990151i \(-0.455289\pi\)
−0.787494 + 0.616322i \(0.788622\pi\)
\(444\) 0 0
\(445\) 433.616 + 751.044i 0.974417 + 1.68774i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.8425i 0.0286025i −0.999898 0.0143013i \(-0.995448\pi\)
0.999898 0.0143013i \(-0.00455239\pi\)
\(450\) 0 0
\(451\) −93.8745 −0.208147
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −148.650 + 85.8233i −0.326704 + 0.188623i
\(456\) 0 0
\(457\) 155.336 269.050i 0.339904 0.588730i −0.644511 0.764595i \(-0.722939\pi\)
0.984414 + 0.175865i \(0.0562722\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −337.551 194.885i −0.732215 0.422744i 0.0870172 0.996207i \(-0.472266\pi\)
−0.819232 + 0.573463i \(0.805600\pi\)
\(462\) 0 0
\(463\) −76.0405 131.706i −0.164234 0.284462i 0.772149 0.635442i \(-0.219182\pi\)
−0.936383 + 0.350980i \(0.885849\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 86.8679i 0.186013i 0.995666 + 0.0930063i \(0.0296477\pi\)
−0.995666 + 0.0930063i \(0.970352\pi\)
\(468\) 0 0
\(469\) −307.122 −0.654843
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −145.849 + 84.2058i −0.308348 + 0.178025i
\(474\) 0 0
\(475\) −20.4797 + 35.4720i −0.0431152 + 0.0746778i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 476.005 + 274.821i 0.993747 + 0.573740i 0.906392 0.422437i \(-0.138825\pi\)
0.0873545 + 0.996177i \(0.472159\pi\)
\(480\) 0 0
\(481\) −149.417 258.798i −0.310638 0.538041i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 587.540i 1.21142i
\(486\) 0 0
\(487\) −690.745 −1.41837 −0.709184 0.705024i \(-0.750936\pi\)
−0.709184 + 0.705024i \(0.750936\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 634.259 366.190i 1.29177 0.745804i 0.312803 0.949818i \(-0.398732\pi\)
0.978968 + 0.204014i \(0.0653988\pi\)
\(492\) 0 0
\(493\) 482.516 835.743i 0.978735 1.69522i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 114.082 + 65.8654i 0.229542 + 0.132526i
\(498\) 0 0
\(499\) 227.203 + 393.526i 0.455316 + 0.788630i 0.998706 0.0508499i \(-0.0161930\pi\)
−0.543390 + 0.839480i \(0.682860\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 304.594i 0.605554i −0.953061 0.302777i \(-0.902086\pi\)
0.953061 0.302777i \(-0.0979138\pi\)
\(504\) 0 0
\(505\) 207.660 0.411208
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −64.2102 + 37.0718i −0.126150 + 0.0728326i −0.561747 0.827309i \(-0.689871\pi\)
0.435597 + 0.900142i \(0.356537\pi\)
\(510\) 0 0
\(511\) 40.6235 70.3620i 0.0794981 0.137695i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 130.031 + 75.0735i 0.252488 + 0.145774i
\(516\) 0 0
\(517\) 86.3686 + 149.595i 0.167057 + 0.289352i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 214.511i 0.411730i 0.978580 + 0.205865i \(0.0660007\pi\)
−0.978580 + 0.205865i \(0.933999\pi\)
\(522\) 0 0
\(523\) 932.486 1.78296 0.891478 0.453064i \(-0.149669\pi\)
0.891478 + 0.453064i \(0.149669\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −229.022 + 132.226i −0.434578 + 0.250904i
\(528\) 0 0
\(529\) −261.581 + 453.072i −0.494482 + 0.856468i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −168.554 97.3145i −0.316236 0.182579i
\(534\) 0 0
\(535\) −468.929 812.210i −0.876504 1.51815i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 42.4837i 0.0788195i
\(540\) 0 0
\(541\) −186.340 −0.344436 −0.172218 0.985059i \(-0.555093\pi\)
−0.172218 + 0.985059i \(0.555093\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 393.654 227.276i 0.722301 0.417020i
\(546\) 0 0
\(547\) −396.085 + 686.039i −0.724104 + 1.25419i 0.235238 + 0.971938i \(0.424413\pi\)
−0.959342 + 0.282247i \(0.908920\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1250.40 721.916i −2.26932 1.31019i
\(552\) 0 0
\(553\) 188.727 + 326.884i 0.341278 + 0.591111i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 399.627i 0.717463i −0.933441 0.358732i \(-0.883209\pi\)
0.933441 0.358732i \(-0.116791\pi\)
\(558\) 0 0
\(559\) −349.166 −0.624626
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −302.571 + 174.690i −0.537427 + 0.310283i −0.744035 0.668140i \(-0.767091\pi\)
0.206609 + 0.978424i \(0.433757\pi\)
\(564\) 0 0
\(565\) 167.099 289.425i 0.295751 0.512256i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 654.163 + 377.681i 1.14967 + 0.663763i 0.948807 0.315856i \(-0.102292\pi\)
0.200864 + 0.979619i \(0.435625\pi\)
\(570\) 0 0
\(571\) −47.5751 82.4025i −0.0833190 0.144313i 0.821355 0.570418i \(-0.193219\pi\)
−0.904674 + 0.426105i \(0.859885\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.82483i 0.00665187i
\(576\) 0 0
\(577\) 756.065 1.31034 0.655169 0.755482i \(-0.272597\pi\)
0.655169 + 0.755482i \(0.272597\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −65.4766 + 37.8030i −0.112696 + 0.0650653i
\(582\) 0 0
\(583\) −141.620 + 245.292i −0.242915 + 0.420742i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −596.382 344.321i −1.01598 0.586578i −0.103045 0.994677i \(-0.532859\pi\)
−0.912938 + 0.408099i \(0.866192\pi\)
\(588\) 0 0
\(589\) 197.830 + 342.652i 0.335874 + 0.581752i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1016.01i 1.71334i 0.515866 + 0.856669i \(0.327470\pi\)
−0.515866 + 0.856669i \(0.672530\pi\)
\(594\) 0 0
\(595\) 235.911 0.396489
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −511.180 + 295.130i −0.853388 + 0.492704i −0.861793 0.507261i \(-0.830658\pi\)
0.00840423 + 0.999965i \(0.497325\pi\)
\(600\) 0 0
\(601\) −150.380 + 260.467i −0.250217 + 0.433389i −0.963585 0.267401i \(-0.913835\pi\)
0.713368 + 0.700789i \(0.247169\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 375.811 + 216.975i 0.621175 + 0.358636i
\(606\) 0 0
\(607\) −348.207 603.111i −0.573652 0.993594i −0.996187 0.0872472i \(-0.972193\pi\)
0.422535 0.906347i \(-0.361140\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 358.134i 0.586144i
\(612\) 0 0
\(613\) 557.393 0.909288 0.454644 0.890673i \(-0.349767\pi\)
0.454644 + 0.890673i \(0.349767\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −79.6629 + 45.9934i −0.129113 + 0.0745436i −0.563165 0.826344i \(-0.690417\pi\)
0.434052 + 0.900888i \(0.357083\pi\)
\(618\) 0 0
\(619\) 558.708 967.712i 0.902599 1.56335i 0.0784898 0.996915i \(-0.474990\pi\)
0.824109 0.566432i \(-0.191676\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −385.401 222.511i −0.618621 0.357161i
\(624\) 0 0
\(625\) 331.035 + 573.369i 0.529655 + 0.917390i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 410.717i 0.652969i
\(630\) 0 0
\(631\) 962.219 1.52491 0.762456 0.647040i \(-0.223993\pi\)
0.762456 + 0.647040i \(0.223993\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 998.306 576.372i 1.57214 0.907673i
\(636\) 0 0
\(637\) 44.0405 76.2804i 0.0691374 0.119749i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −194.373 112.221i −0.303233 0.175072i 0.340661 0.940186i \(-0.389349\pi\)
−0.643895 + 0.765114i \(0.722682\pi\)
\(642\) 0 0
\(643\) 166.192 + 287.853i 0.258464 + 0.447672i 0.965831 0.259174i \(-0.0834504\pi\)
−0.707367 + 0.706847i \(0.750117\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 910.554i 1.40735i 0.710523 + 0.703674i \(0.248458\pi\)
−0.710523 + 0.703674i \(0.751542\pi\)
\(648\) 0 0
\(649\) 489.579 0.754359
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 128.435 74.1519i 0.196684 0.113556i −0.398424 0.917202i \(-0.630443\pi\)
0.595108 + 0.803646i \(0.297109\pi\)
\(654\) 0 0
\(655\) 534.405 925.617i 0.815886 1.41316i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.4592 22.7818i −0.0598775 0.0345703i 0.469762 0.882793i \(-0.344340\pi\)
−0.529640 + 0.848223i \(0.677673\pi\)
\(660\) 0 0
\(661\) −202.107 350.060i −0.305760 0.529591i 0.671670 0.740850i \(-0.265577\pi\)
−0.977430 + 0.211259i \(0.932244\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 352.958i 0.530764i
\(666\) 0 0
\(667\) 134.826 0.202138
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 329.596 190.292i 0.491201 0.283595i
\(672\) 0 0
\(673\) −508.243 + 880.303i −0.755190 + 1.30803i 0.190089 + 0.981767i \(0.439122\pi\)
−0.945280 + 0.326261i \(0.894211\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −201.391 116.273i −0.297476 0.171748i 0.343832 0.939031i \(-0.388275\pi\)
−0.641308 + 0.767283i \(0.721608\pi\)
\(678\) 0 0
\(679\) 150.749 + 261.105i 0.222016 + 0.384543i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 118.245i 0.173126i 0.996246 + 0.0865628i \(0.0275883\pi\)
−0.996246 + 0.0865628i \(0.972412\pi\)
\(684\) 0 0
\(685\) 906.272 1.32302
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −508.562 + 293.618i −0.738116 + 0.426152i
\(690\) 0 0
\(691\) −24.1255 + 41.7866i −0.0349139 + 0.0604726i −0.882954 0.469459i \(-0.844449\pi\)
0.848040 + 0.529931i \(0.177782\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −523.160 302.046i −0.752748 0.434599i
\(696\) 0 0
\(697\) 133.749 + 231.660i 0.191892 + 0.332367i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 236.466i 0.337326i −0.985674 0.168663i \(-0.946055\pi\)
0.985674 0.168663i \(-0.0539450\pi\)
\(702\) 0 0
\(703\) 614.494 0.874103
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −92.2849 + 53.2807i −0.130530 + 0.0753617i
\(708\) 0 0
\(709\) 670.988 1162.19i 0.946387 1.63919i 0.193436 0.981113i \(-0.438037\pi\)
0.752951 0.658077i \(-0.228630\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.9971 18.4735i −0.0448767 0.0259096i
\(714\) 0 0
\(715\) −196.871 340.990i −0.275343 0.476909i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 284.617i 0.395852i 0.980217 + 0.197926i \(0.0634205\pi\)
−0.980217 + 0.197926i \(0.936579\pi\)
\(720\) 0 0
\(721\) −77.0484 −0.106863
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 76.4993 44.1669i 0.105516 0.0609199i
\(726\) 0 0
\(727\) −215.225 + 372.780i −0.296045 + 0.512765i −0.975227 0.221204i \(-0.929001\pi\)
0.679182 + 0.733970i \(0.262335\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 415.600 + 239.947i 0.568536 + 0.328245i
\(732\) 0 0
\(733\) 193.907 + 335.857i 0.264539 + 0.458195i 0.967443 0.253090i \(-0.0814468\pi\)
−0.702904 + 0.711285i \(0.748114\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 704.508i 0.955913i
\(738\) 0 0
\(739\) 352.907 0.477547 0.238773 0.971075i \(-0.423255\pi\)
0.238773 + 0.971075i \(0.423255\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 925.432 534.298i 1.24553 0.719109i 0.275318 0.961353i \(-0.411217\pi\)
0.970215 + 0.242244i \(0.0778834\pi\)
\(744\) 0 0
\(745\) 480.310 831.921i 0.644711 1.11667i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 416.788 + 240.633i 0.556459 + 0.321272i
\(750\) 0 0
\(751\) −612.073 1060.14i −0.815011 1.41164i −0.909320 0.416097i \(-0.863398\pi\)
0.0943092 0.995543i \(-0.469936\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 938.786i 1.24343i
\(756\) 0 0
\(757\) −96.3399 −0.127265 −0.0636327 0.997973i \(-0.520269\pi\)
−0.0636327 + 0.997973i \(0.520269\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −821.762 + 474.445i −1.07985 + 0.623449i −0.930855 0.365390i \(-0.880936\pi\)
−0.148990 + 0.988839i \(0.547602\pi\)
\(762\) 0 0
\(763\) −116.627 + 202.005i −0.152854 + 0.264751i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 879.050 + 507.520i 1.14609 + 0.661694i
\(768\) 0 0
\(769\) 499.316 + 864.841i 0.649306 + 1.12463i 0.983289 + 0.182052i \(0.0582739\pi\)
−0.333983 + 0.942579i \(0.608393\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 86.4704i 0.111863i −0.998435 0.0559317i \(-0.982187\pi\)
0.998435 0.0559317i \(-0.0178129\pi\)
\(774\) 0 0
\(775\) −24.2065 −0.0312342
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 346.598 200.108i 0.444927 0.256879i
\(780\) 0 0
\(781\) −151.089 + 261.694i −0.193456 + 0.335075i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 305.309 + 176.270i 0.388928 + 0.224548i
\(786\) 0 0
\(787\) 244.907 + 424.192i 0.311191 + 0.538998i 0.978620 0.205675i \(-0.0659388\pi\)
−0.667430 + 0.744673i \(0.732606\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 171.495i 0.216808i
\(792\) 0 0
\(793\) 789.061 0.995033
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 433.180 250.097i 0.543514 0.313798i −0.202988 0.979181i \(-0.565065\pi\)
0.746502 + 0.665384i \(0.231732\pi\)
\(798\) 0 0
\(799\) 246.110 426.275i 0.308022 0.533510i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 161.404 + 93.1865i 0.201001 + 0.116048i
\(804\) 0 0
\(805\) 16.4797 + 28.5437i 0.0204717 + 0.0354581i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 310.515i 0.383826i −0.981412 0.191913i \(-0.938531\pi\)
0.981412 0.191913i \(-0.0614691\pi\)
\(810\) 0 0
\(811\) −45.9190 −0.0566202 −0.0283101 0.999599i \(-0.509013\pi\)
−0.0283101 + 0.999599i \(0.509013\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 164.071 94.7264i 0.201314 0.116229i
\(816\) 0 0
\(817\) 358.996 621.799i 0.439408 0.761076i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1046.73 + 604.330i 1.27495 + 0.736091i 0.975915 0.218153i \(-0.0700030\pi\)
0.299032 + 0.954243i \(0.403336\pi\)
\(822\) 0 0
\(823\) 59.5909 + 103.214i 0.0724069 + 0.125412i 0.899956 0.435981i \(-0.143599\pi\)
−0.827549 + 0.561394i \(0.810265\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 872.026i 1.05445i 0.849727 + 0.527223i \(0.176767\pi\)
−0.849727 + 0.527223i \(0.823233\pi\)
\(828\) 0 0
\(829\) 737.822 0.890015 0.445007 0.895527i \(-0.353201\pi\)
0.445007 + 0.895527i \(0.353201\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −104.840 + 60.5293i −0.125858 + 0.0726642i
\(834\) 0 0
\(835\) 620.531 1074.79i 0.743151 1.28717i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 776.072 + 448.065i 0.924996 + 0.534047i 0.885226 0.465162i \(-0.154004\pi\)
0.0397708 + 0.999209i \(0.487337\pi\)
\(840\) 0 0
\(841\) 1136.40 + 1968.29i 1.35124 + 2.34042i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 55.0027i 0.0650920i
\(846\) 0 0
\(847\) −222.682 −0.262907
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −49.6942 + 28.6910i −0.0583950 + 0.0337144i
\(852\) 0 0
\(853\) −155.937 + 270.091i −0.182810 + 0.316637i −0.942836 0.333256i \(-0.891853\pi\)
0.760026 + 0.649893i \(0.225186\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −312.540 180.445i −0.364691 0.210555i 0.306445 0.951888i \(-0.400860\pi\)
−0.671137 + 0.741334i \(0.734194\pi\)
\(858\) 0 0
\(859\) −605.549 1048.84i −0.704946 1.22100i −0.966711 0.255871i \(-0.917638\pi\)
0.261764 0.965132i \(-0.415696\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 511.500i 0.592699i −0.955079 0.296350i \(-0.904231\pi\)
0.955079 0.296350i \(-0.0957694\pi\)
\(864\) 0 0
\(865\) −1758.30 −2.03272
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −749.842 + 432.921i −0.862879 + 0.498183i
\(870\) 0 0
\(871\) 730.324 1264.96i 0.838489 1.45231i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −276.639 159.717i −0.316158 0.182534i
\(876\) 0 0
\(877\) −67.2954 116.559i −0.0767337 0.132907i 0.825105 0.564979i \(-0.191116\pi\)
−0.901839 + 0.432072i \(0.857782\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 405.447i 0.460212i 0.973166 + 0.230106i \(0.0739073\pi\)
−0.973166 + 0.230106i \(0.926093\pi\)
\(882\) 0 0
\(883\) −552.235 −0.625408 −0.312704 0.949851i \(-0.601235\pi\)
−0.312704 + 0.949851i \(0.601235\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1042.69 + 602.000i −1.17553 + 0.678692i −0.954976 0.296682i \(-0.904120\pi\)
−0.220554 + 0.975375i \(0.570786\pi\)
\(888\) 0 0
\(889\) −295.767 + 512.284i −0.332697 + 0.576247i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −637.770 368.217i −0.714188 0.412337i
\(894\) 0 0
\(895\) 356.812 + 618.016i 0.398672 + 0.690521i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 853.286i 0.949151i
\(900\) 0 0
\(901\) 807.098 0.895780
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 604.255 348.867i 0.667686 0.385488i
\(906\) 0 0
\(907\) −660.207 + 1143.51i −0.727901 + 1.26076i 0.229867 + 0.973222i \(0.426171\pi\)
−0.957769 + 0.287540i \(0.907163\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 835.732 + 482.510i 0.917379 + 0.529649i 0.882798 0.469753i \(-0.155657\pi\)
0.0345810 + 0.999402i \(0.488990\pi\)
\(912\) 0 0
\(913\) −86.7164 150.197i −0.0949796 0.164509i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 548.463i 0.598106i
\(918\) 0 0
\(919\) 720.089 0.783557 0.391779 0.920060i \(-0.371860\pi\)
0.391779 + 0.920060i \(0.371860\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −542.567 + 313.251i −0.587830 + 0.339384i
\(924\) 0 0
\(925\) −18.7974 + 32.5581i −0.0203215 + 0.0351979i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 806.867 + 465.845i 0.868532 + 0.501447i 0.866860 0.498551i \(-0.166134\pi\)
0.00167220 + 0.999999i \(0.499468\pi\)
\(930\) 0 0
\(931\) 90.5608 + 156.856i 0.0972726 + 0.168481i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 541.158i 0.578778i
\(936\) 0 0
\(937\) 1370.97 1.46315 0.731575 0.681760i \(-0.238785\pi\)
0.731575 + 0.681760i \(0.238785\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 197.008 113.743i 0.209360 0.120874i −0.391654 0.920113i \(-0.628097\pi\)
0.601014 + 0.799239i \(0.294764\pi\)
\(942\) 0 0
\(943\) −18.6863 + 32.3656i −0.0198158 + 0.0343219i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 570.662 + 329.472i 0.602600 + 0.347911i 0.770064 0.637967i \(-0.220224\pi\)
−0.167464 + 0.985878i \(0.553558\pi\)
\(948\) 0 0
\(949\) 193.203 + 334.637i 0.203585 + 0.352620i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 217.669i 0.228404i −0.993458 0.114202i \(-0.963569\pi\)
0.993458 0.114202i \(-0.0364311\pi\)
\(954\) 0 0
\(955\) 868.604 0.909533
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −402.750 + 232.528i −0.419969 + 0.242469i
\(960\) 0 0
\(961\) 363.585 629.748i 0.378340 0.655305i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 640.735 + 369.929i 0.663974 + 0.383346i
\(966\) 0 0
\(967\) 509.376 + 882.266i 0.526760 + 0.912374i 0.999514 + 0.0311800i \(0.00992650\pi\)
−0.472754 + 0.881194i \(0.656740\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 408.547i 0.420749i −0.977621 0.210374i \(-0.932532\pi\)
0.977621 0.210374i \(-0.0674683\pi\)
\(972\) 0 0
\(973\) 309.992 0.318594
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 391.760 226.183i 0.400982 0.231507i −0.285925 0.958252i \(-0.592301\pi\)
0.686908 + 0.726745i \(0.258968\pi\)
\(978\) 0 0
\(979\) 510.420 884.073i 0.521368 0.903036i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1500.44 866.281i −1.52639 0.881262i −0.999509 0.0313233i \(-0.990028\pi\)
−0.526881 0.849939i \(-0.676639\pi\)
\(984\) 0 0
\(985\) 764.383 + 1323.95i 0.776023 + 1.34411i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 67.0466i 0.0677923i
\(990\) 0 0
\(991\) 394.745 0.398330 0.199165 0.979966i \(-0.436177\pi\)
0.199165 + 0.979966i \(0.436177\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 635.132 366.694i 0.638323 0.368536i
\(996\) 0 0
\(997\) −82.6745 + 143.196i −0.0829232 + 0.143627i −0.904504 0.426464i \(-0.859759\pi\)
0.821581 + 0.570092i \(0.193092\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.3.bg.c.2213.1 8
3.2 odd 2 inner 2268.3.bg.c.2213.4 8
9.2 odd 6 252.3.c.a.197.4 yes 4
9.4 even 3 inner 2268.3.bg.c.701.4 8
9.5 odd 6 inner 2268.3.bg.c.701.1 8
9.7 even 3 252.3.c.a.197.1 4
36.7 odd 6 1008.3.d.c.449.1 4
36.11 even 6 1008.3.d.c.449.4 4
63.2 odd 6 1764.3.bk.d.557.4 8
63.11 odd 6 1764.3.bk.d.1745.1 8
63.16 even 3 1764.3.bk.d.557.1 8
63.20 even 6 1764.3.c.f.197.1 4
63.25 even 3 1764.3.bk.d.1745.4 8
63.34 odd 6 1764.3.c.f.197.4 4
63.38 even 6 1764.3.bk.e.1745.4 8
63.47 even 6 1764.3.bk.e.557.1 8
63.52 odd 6 1764.3.bk.e.1745.1 8
63.61 odd 6 1764.3.bk.e.557.4 8
72.11 even 6 4032.3.d.e.449.1 4
72.29 odd 6 4032.3.d.h.449.1 4
72.43 odd 6 4032.3.d.e.449.4 4
72.61 even 6 4032.3.d.h.449.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.c.a.197.1 4 9.7 even 3
252.3.c.a.197.4 yes 4 9.2 odd 6
1008.3.d.c.449.1 4 36.7 odd 6
1008.3.d.c.449.4 4 36.11 even 6
1764.3.c.f.197.1 4 63.20 even 6
1764.3.c.f.197.4 4 63.34 odd 6
1764.3.bk.d.557.1 8 63.16 even 3
1764.3.bk.d.557.4 8 63.2 odd 6
1764.3.bk.d.1745.1 8 63.11 odd 6
1764.3.bk.d.1745.4 8 63.25 even 3
1764.3.bk.e.557.1 8 63.47 even 6
1764.3.bk.e.557.4 8 63.61 odd 6
1764.3.bk.e.1745.1 8 63.52 odd 6
1764.3.bk.e.1745.4 8 63.38 even 6
2268.3.bg.c.701.1 8 9.5 odd 6 inner
2268.3.bg.c.701.4 8 9.4 even 3 inner
2268.3.bg.c.2213.1 8 1.1 even 1 trivial
2268.3.bg.c.2213.4 8 3.2 odd 2 inner
4032.3.d.e.449.1 4 72.11 even 6
4032.3.d.e.449.4 4 72.43 odd 6
4032.3.d.h.449.1 4 72.29 odd 6
4032.3.d.h.449.4 4 72.61 even 6