Properties

Label 1764.2.j.h.1177.6
Level $1764$
Weight $2$
Character 1764.1177
Analytic conductor $14.086$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(589,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.589"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1177.6
Root \(1.68442 + 0.403398i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1177
Dual form 1764.2.j.h.589.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19156 - 1.25705i) q^{3} +(1.80173 + 3.12069i) q^{5} +(-0.160357 - 2.99571i) q^{9} +(3.01334 - 5.21926i) q^{11} +(2.55639 + 4.42780i) q^{13} +(6.06973 + 1.45363i) q^{15} +0.222013 q^{17} +3.42323 q^{19} +(0.509880 + 0.883137i) q^{23} +(-3.99245 + 6.91513i) q^{25} +(-3.95684 - 3.36800i) q^{27} +(-2.83679 + 4.91347i) q^{29} +(-2.52322 - 4.37035i) q^{31} +(-2.97030 - 10.0070i) q^{33} -3.37052 q^{37} +(8.61207 + 2.06249i) q^{39} +(-0.0955808 - 0.165551i) q^{41} +(1.71161 - 2.96460i) q^{43} +(9.05975 - 5.89788i) q^{45} +(-1.03506 + 1.79278i) q^{47} +(0.264542 - 0.279081i) q^{51} +5.30415 q^{53} +21.7169 q^{55} +(4.07899 - 4.30318i) q^{57} +(3.79814 + 6.57858i) q^{59} +(0.891408 - 1.54396i) q^{61} +(-9.21184 + 15.9554i) q^{65} +(-6.49235 - 11.2451i) q^{67} +(1.71770 + 0.411369i) q^{69} +5.89560 q^{71} +12.6104 q^{73} +(3.93542 + 13.2585i) q^{75} +(-6.30763 + 10.9251i) q^{79} +(-8.94857 + 0.960764i) q^{81} +(3.59946 - 6.23444i) q^{83} +(0.400007 + 0.692832i) q^{85} +(2.79627 + 9.42070i) q^{87} -8.89394 q^{89} +(-8.50033 - 2.03573i) q^{93} +(6.16773 + 10.6828i) q^{95} +(2.72991 - 4.72835i) q^{97} +(-16.1186 - 8.19016i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{3} + 2 q^{5} - 5 q^{9} + 2 q^{11} - 2 q^{13} + 7 q^{15} + 4 q^{17} + 14 q^{19} + 11 q^{23} - 9 q^{25} - 9 q^{27} + q^{29} + q^{31} + q^{33} - 20 q^{37} + 22 q^{39} + 33 q^{41} + 7 q^{43}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.19156 1.25705i 0.687949 0.725759i
\(4\) 0 0
\(5\) 1.80173 + 3.12069i 0.805757 + 1.39561i 0.915779 + 0.401684i \(0.131575\pi\)
−0.110021 + 0.993929i \(0.535092\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.160357 2.99571i −0.0534522 0.998570i
\(10\) 0 0
\(11\) 3.01334 5.21926i 0.908557 1.57367i 0.0924872 0.995714i \(-0.470518\pi\)
0.816070 0.577953i \(-0.196148\pi\)
\(12\) 0 0
\(13\) 2.55639 + 4.42780i 0.709015 + 1.22805i 0.965223 + 0.261429i \(0.0841936\pi\)
−0.256207 + 0.966622i \(0.582473\pi\)
\(14\) 0 0
\(15\) 6.06973 + 1.45363i 1.56720 + 0.375325i
\(16\) 0 0
\(17\) 0.222013 0.0538460 0.0269230 0.999638i \(-0.491429\pi\)
0.0269230 + 0.999638i \(0.491429\pi\)
\(18\) 0 0
\(19\) 3.42323 0.785343 0.392671 0.919679i \(-0.371551\pi\)
0.392671 + 0.919679i \(0.371551\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.509880 + 0.883137i 0.106317 + 0.184147i 0.914276 0.405093i \(-0.132761\pi\)
−0.807958 + 0.589240i \(0.799427\pi\)
\(24\) 0 0
\(25\) −3.99245 + 6.91513i −0.798490 + 1.38303i
\(26\) 0 0
\(27\) −3.95684 3.36800i −0.761494 0.648172i
\(28\) 0 0
\(29\) −2.83679 + 4.91347i −0.526779 + 0.912408i 0.472734 + 0.881205i \(0.343267\pi\)
−0.999513 + 0.0312031i \(0.990066\pi\)
\(30\) 0 0
\(31\) −2.52322 4.37035i −0.453184 0.784938i 0.545398 0.838177i \(-0.316379\pi\)
−0.998582 + 0.0532395i \(0.983045\pi\)
\(32\) 0 0
\(33\) −2.97030 10.0070i −0.517062 1.74200i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.37052 −0.554110 −0.277055 0.960854i \(-0.589358\pi\)
−0.277055 + 0.960854i \(0.589358\pi\)
\(38\) 0 0
\(39\) 8.61207 + 2.06249i 1.37904 + 0.330262i
\(40\) 0 0
\(41\) −0.0955808 0.165551i −0.0149272 0.0258547i 0.858465 0.512872i \(-0.171418\pi\)
−0.873393 + 0.487017i \(0.838085\pi\)
\(42\) 0 0
\(43\) 1.71161 2.96460i 0.261019 0.452098i −0.705494 0.708716i \(-0.749275\pi\)
0.966513 + 0.256618i \(0.0826082\pi\)
\(44\) 0 0
\(45\) 9.05975 5.89788i 1.35055 0.879204i
\(46\) 0 0
\(47\) −1.03506 + 1.79278i −0.150980 + 0.261504i −0.931588 0.363516i \(-0.881576\pi\)
0.780608 + 0.625021i \(0.214909\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.264542 0.279081i 0.0370433 0.0390792i
\(52\) 0 0
\(53\) 5.30415 0.728581 0.364290 0.931285i \(-0.381312\pi\)
0.364290 + 0.931285i \(0.381312\pi\)
\(54\) 0 0
\(55\) 21.7169 2.92831
\(56\) 0 0
\(57\) 4.07899 4.30318i 0.540276 0.569969i
\(58\) 0 0
\(59\) 3.79814 + 6.57858i 0.494476 + 0.856458i 0.999980 0.00636650i \(-0.00202653\pi\)
−0.505503 + 0.862825i \(0.668693\pi\)
\(60\) 0 0
\(61\) 0.891408 1.54396i 0.114133 0.197684i −0.803300 0.595575i \(-0.796924\pi\)
0.917433 + 0.397891i \(0.130258\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.21184 + 15.9554i −1.14259 + 1.97902i
\(66\) 0 0
\(67\) −6.49235 11.2451i −0.793167 1.37380i −0.923997 0.382400i \(-0.875098\pi\)
0.130830 0.991405i \(-0.458236\pi\)
\(68\) 0 0
\(69\) 1.71770 + 0.411369i 0.206787 + 0.0495230i
\(70\) 0 0
\(71\) 5.89560 0.699679 0.349839 0.936810i \(-0.386236\pi\)
0.349839 + 0.936810i \(0.386236\pi\)
\(72\) 0 0
\(73\) 12.6104 1.47593 0.737967 0.674837i \(-0.235786\pi\)
0.737967 + 0.674837i \(0.235786\pi\)
\(74\) 0 0
\(75\) 3.93542 + 13.2585i 0.454423 + 1.53096i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.30763 + 10.9251i −0.709664 + 1.22917i 0.255318 + 0.966857i \(0.417820\pi\)
−0.964982 + 0.262317i \(0.915514\pi\)
\(80\) 0 0
\(81\) −8.94857 + 0.960764i −0.994286 + 0.106752i
\(82\) 0 0
\(83\) 3.59946 6.23444i 0.395092 0.684319i −0.598021 0.801480i \(-0.704046\pi\)
0.993113 + 0.117161i \(0.0373795\pi\)
\(84\) 0 0
\(85\) 0.400007 + 0.692832i 0.0433868 + 0.0751482i
\(86\) 0 0
\(87\) 2.79627 + 9.42070i 0.299791 + 1.01001i
\(88\) 0 0
\(89\) −8.89394 −0.942756 −0.471378 0.881931i \(-0.656243\pi\)
−0.471378 + 0.881931i \(0.656243\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −8.50033 2.03573i −0.881443 0.211095i
\(94\) 0 0
\(95\) 6.16773 + 10.6828i 0.632796 + 1.09603i
\(96\) 0 0
\(97\) 2.72991 4.72835i 0.277181 0.480091i −0.693502 0.720454i \(-0.743933\pi\)
0.970683 + 0.240364i \(0.0772667\pi\)
\(98\) 0 0
\(99\) −16.1186 8.19016i −1.61998 0.823142i
\(100\) 0 0
\(101\) −1.98645 + 3.44063i −0.197659 + 0.342355i −0.947769 0.318958i \(-0.896667\pi\)
0.750110 + 0.661313i \(0.230001\pi\)
\(102\) 0 0
\(103\) 1.77894 + 3.08121i 0.175284 + 0.303601i 0.940260 0.340458i \(-0.110582\pi\)
−0.764975 + 0.644059i \(0.777249\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.46069 0.237884 0.118942 0.992901i \(-0.462050\pi\)
0.118942 + 0.992901i \(0.462050\pi\)
\(108\) 0 0
\(109\) 5.95255 0.570151 0.285075 0.958505i \(-0.407981\pi\)
0.285075 + 0.958505i \(0.407981\pi\)
\(110\) 0 0
\(111\) −4.01619 + 4.23692i −0.381200 + 0.402150i
\(112\) 0 0
\(113\) 3.52974 + 6.11370i 0.332050 + 0.575128i 0.982914 0.184067i \(-0.0589263\pi\)
−0.650863 + 0.759195i \(0.725593\pi\)
\(114\) 0 0
\(115\) −1.83733 + 3.18235i −0.171332 + 0.296755i
\(116\) 0 0
\(117\) 12.8545 8.36824i 1.18840 0.773644i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.6605 21.9286i −1.15095 1.99351i
\(122\) 0 0
\(123\) −0.321996 0.0771142i −0.0290334 0.00695315i
\(124\) 0 0
\(125\) −10.7560 −0.962042
\(126\) 0 0
\(127\) 2.76393 0.245259 0.122629 0.992453i \(-0.460867\pi\)
0.122629 + 0.992453i \(0.460867\pi\)
\(128\) 0 0
\(129\) −1.68716 5.68410i −0.148546 0.500457i
\(130\) 0 0
\(131\) 4.22748 + 7.32221i 0.369357 + 0.639744i 0.989465 0.144772i \(-0.0462448\pi\)
−0.620108 + 0.784516i \(0.712911\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.38132 18.4163i 0.291018 1.58502i
\(136\) 0 0
\(137\) −9.04286 + 15.6627i −0.772584 + 1.33815i 0.163559 + 0.986534i \(0.447703\pi\)
−0.936143 + 0.351621i \(0.885631\pi\)
\(138\) 0 0
\(139\) −6.00936 10.4085i −0.509707 0.882839i −0.999937 0.0112454i \(-0.996420\pi\)
0.490230 0.871593i \(-0.336913\pi\)
\(140\) 0 0
\(141\) 1.02028 + 3.43734i 0.0859229 + 0.289477i
\(142\) 0 0
\(143\) 30.8131 2.57672
\(144\) 0 0
\(145\) −20.4445 −1.69782
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.49026 + 4.31325i 0.204010 + 0.353355i 0.949817 0.312807i \(-0.101269\pi\)
−0.745807 + 0.666162i \(0.767936\pi\)
\(150\) 0 0
\(151\) 0.0921906 0.159679i 0.00750237 0.0129945i −0.862250 0.506483i \(-0.830945\pi\)
0.869752 + 0.493489i \(0.164279\pi\)
\(152\) 0 0
\(153\) −0.0356012 0.665086i −0.00287819 0.0537690i
\(154\) 0 0
\(155\) 9.09232 15.7484i 0.730313 1.26494i
\(156\) 0 0
\(157\) 2.16698 + 3.75332i 0.172944 + 0.299548i 0.939448 0.342692i \(-0.111339\pi\)
−0.766504 + 0.642240i \(0.778005\pi\)
\(158\) 0 0
\(159\) 6.32022 6.66759i 0.501226 0.528774i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −23.7304 −1.85871 −0.929353 0.369193i \(-0.879634\pi\)
−0.929353 + 0.369193i \(0.879634\pi\)
\(164\) 0 0
\(165\) 25.8771 27.2993i 2.01453 2.12524i
\(166\) 0 0
\(167\) −1.59445 2.76166i −0.123382 0.213704i 0.797717 0.603032i \(-0.206041\pi\)
−0.921099 + 0.389328i \(0.872707\pi\)
\(168\) 0 0
\(169\) −6.57027 + 11.3800i −0.505405 + 0.875388i
\(170\) 0 0
\(171\) −0.548937 10.2550i −0.0419783 0.784220i
\(172\) 0 0
\(173\) 10.6530 18.4515i 0.809932 1.40284i −0.102978 0.994684i \(-0.532837\pi\)
0.912910 0.408160i \(-0.133830\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.7953 + 3.06433i 0.961757 + 0.230329i
\(178\) 0 0
\(179\) −0.500285 −0.0373931 −0.0186965 0.999825i \(-0.505952\pi\)
−0.0186965 + 0.999825i \(0.505952\pi\)
\(180\) 0 0
\(181\) −5.88424 −0.437372 −0.218686 0.975795i \(-0.570177\pi\)
−0.218686 + 0.975795i \(0.570177\pi\)
\(182\) 0 0
\(183\) −0.878674 2.96028i −0.0649534 0.218830i
\(184\) 0 0
\(185\) −6.07276 10.5183i −0.446478 0.773323i
\(186\) 0 0
\(187\) 0.669001 1.15874i 0.0489222 0.0847357i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.94466 6.83235i 0.285425 0.494371i −0.687287 0.726386i \(-0.741198\pi\)
0.972712 + 0.232015i \(0.0745318\pi\)
\(192\) 0 0
\(193\) −9.50508 16.4633i −0.684190 1.18505i −0.973691 0.227875i \(-0.926822\pi\)
0.289500 0.957178i \(-0.406511\pi\)
\(194\) 0 0
\(195\) 9.08025 + 30.5916i 0.650250 + 2.19071i
\(196\) 0 0
\(197\) −9.72107 −0.692597 −0.346299 0.938124i \(-0.612562\pi\)
−0.346299 + 0.938124i \(0.612562\pi\)
\(198\) 0 0
\(199\) −15.0916 −1.06982 −0.534908 0.844910i \(-0.679654\pi\)
−0.534908 + 0.844910i \(0.679654\pi\)
\(200\) 0 0
\(201\) −21.8717 5.23800i −1.54271 0.369460i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.344421 0.596555i 0.0240554 0.0416652i
\(206\) 0 0
\(207\) 2.56386 1.66907i 0.178201 0.116008i
\(208\) 0 0
\(209\) 10.3154 17.8667i 0.713529 1.23587i
\(210\) 0 0
\(211\) −8.75173 15.1584i −0.602494 1.04355i −0.992442 0.122713i \(-0.960840\pi\)
0.389948 0.920837i \(-0.372493\pi\)
\(212\) 0 0
\(213\) 7.02498 7.41107i 0.481343 0.507798i
\(214\) 0 0
\(215\) 12.3355 0.841271
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 15.0261 15.8519i 1.01537 1.07117i
\(220\) 0 0
\(221\) 0.567551 + 0.983028i 0.0381776 + 0.0661256i
\(222\) 0 0
\(223\) −5.00337 + 8.66610i −0.335051 + 0.580325i −0.983495 0.180938i \(-0.942087\pi\)
0.648444 + 0.761262i \(0.275420\pi\)
\(224\) 0 0
\(225\) 21.3559 + 10.8513i 1.42373 + 0.723423i
\(226\) 0 0
\(227\) −1.13317 + 1.96270i −0.0752110 + 0.130269i −0.901178 0.433449i \(-0.857296\pi\)
0.825967 + 0.563718i \(0.190630\pi\)
\(228\) 0 0
\(229\) −2.51228 4.35140i −0.166016 0.287549i 0.770999 0.636836i \(-0.219757\pi\)
−0.937016 + 0.349287i \(0.886424\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.4479 1.01202 0.506011 0.862527i \(-0.331119\pi\)
0.506011 + 0.862527i \(0.331119\pi\)
\(234\) 0 0
\(235\) −7.45962 −0.486612
\(236\) 0 0
\(237\) 6.21752 + 20.9470i 0.403871 + 1.36065i
\(238\) 0 0
\(239\) −4.62691 8.01404i −0.299290 0.518385i 0.676684 0.736274i \(-0.263416\pi\)
−0.975974 + 0.217889i \(0.930083\pi\)
\(240\) 0 0
\(241\) −8.16387 + 14.1402i −0.525881 + 0.910853i 0.473664 + 0.880705i \(0.342931\pi\)
−0.999545 + 0.0301474i \(0.990402\pi\)
\(242\) 0 0
\(243\) −9.45505 + 12.3936i −0.606542 + 0.795051i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.75111 + 15.1574i 0.556820 + 0.964440i
\(248\) 0 0
\(249\) −3.54804 11.9534i −0.224848 0.757518i
\(250\) 0 0
\(251\) −7.54803 −0.476427 −0.238214 0.971213i \(-0.576562\pi\)
−0.238214 + 0.971213i \(0.576562\pi\)
\(252\) 0 0
\(253\) 6.14577 0.386381
\(254\) 0 0
\(255\) 1.34756 + 0.322724i 0.0843874 + 0.0202097i
\(256\) 0 0
\(257\) 12.6463 + 21.9041i 0.788856 + 1.36634i 0.926668 + 0.375880i \(0.122659\pi\)
−0.137813 + 0.990458i \(0.544007\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 15.1742 + 7.71030i 0.939261 + 0.477256i
\(262\) 0 0
\(263\) −11.7490 + 20.3499i −0.724474 + 1.25483i 0.234716 + 0.972064i \(0.424584\pi\)
−0.959190 + 0.282762i \(0.908749\pi\)
\(264\) 0 0
\(265\) 9.55663 + 16.5526i 0.587059 + 1.01682i
\(266\) 0 0
\(267\) −10.5977 + 11.1801i −0.648568 + 0.684214i
\(268\) 0 0
\(269\) −27.8156 −1.69595 −0.847975 0.530037i \(-0.822178\pi\)
−0.847975 + 0.530037i \(0.822178\pi\)
\(270\) 0 0
\(271\) −19.1567 −1.16369 −0.581843 0.813301i \(-0.697668\pi\)
−0.581843 + 0.813301i \(0.697668\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 24.0612 + 41.6753i 1.45095 + 2.51312i
\(276\) 0 0
\(277\) −13.7905 + 23.8859i −0.828593 + 1.43516i 0.0705495 + 0.997508i \(0.477525\pi\)
−0.899142 + 0.437657i \(0.855809\pi\)
\(278\) 0 0
\(279\) −12.6877 + 8.25966i −0.759592 + 0.494493i
\(280\) 0 0
\(281\) 0.192591 0.333577i 0.0114890 0.0198995i −0.860224 0.509917i \(-0.829676\pi\)
0.871713 + 0.490017i \(0.163010\pi\)
\(282\) 0 0
\(283\) −7.49904 12.9887i −0.445772 0.772099i 0.552334 0.833623i \(-0.313737\pi\)
−0.998106 + 0.0615239i \(0.980404\pi\)
\(284\) 0 0
\(285\) 20.7781 + 4.97610i 1.23079 + 0.294759i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9507 −0.997101
\(290\) 0 0
\(291\) −2.69091 9.06576i −0.157744 0.531444i
\(292\) 0 0
\(293\) −11.2323 19.4550i −0.656200 1.13657i −0.981592 0.190992i \(-0.938830\pi\)
0.325392 0.945579i \(-0.394504\pi\)
\(294\) 0 0
\(295\) −13.6865 + 23.7056i −0.796856 + 1.38019i
\(296\) 0 0
\(297\) −29.5018 + 10.5028i −1.71187 + 0.609436i
\(298\) 0 0
\(299\) −2.60690 + 4.51529i −0.150761 + 0.261126i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.95807 + 6.59679i 0.112488 + 0.378976i
\(304\) 0 0
\(305\) 6.42430 0.367854
\(306\) 0 0
\(307\) −6.90792 −0.394256 −0.197128 0.980378i \(-0.563161\pi\)
−0.197128 + 0.980378i \(0.563161\pi\)
\(308\) 0 0
\(309\) 5.99296 + 1.43524i 0.340928 + 0.0816480i
\(310\) 0 0
\(311\) 11.5890 + 20.0727i 0.657152 + 1.13822i 0.981350 + 0.192231i \(0.0615722\pi\)
−0.324198 + 0.945989i \(0.605094\pi\)
\(312\) 0 0
\(313\) 8.21883 14.2354i 0.464556 0.804635i −0.534625 0.845089i \(-0.679547\pi\)
0.999181 + 0.0404546i \(0.0128806\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.18401 12.4431i 0.403494 0.698873i −0.590651 0.806927i \(-0.701129\pi\)
0.994145 + 0.108055i \(0.0344622\pi\)
\(318\) 0 0
\(319\) 17.0965 + 29.6119i 0.957218 + 1.65795i
\(320\) 0 0
\(321\) 2.93207 3.09322i 0.163652 0.172646i
\(322\) 0 0
\(323\) 0.760001 0.0422876
\(324\) 0 0
\(325\) −40.8251 −2.26457
\(326\) 0 0
\(327\) 7.09284 7.48266i 0.392235 0.413792i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.87582 + 3.24902i −0.103105 + 0.178582i −0.912962 0.408044i \(-0.866211\pi\)
0.809858 + 0.586626i \(0.199544\pi\)
\(332\) 0 0
\(333\) 0.540485 + 10.0971i 0.0296184 + 0.553318i
\(334\) 0 0
\(335\) 23.3949 40.5211i 1.27820 2.21391i
\(336\) 0 0
\(337\) −2.77171 4.80074i −0.150984 0.261513i 0.780605 0.625024i \(-0.214911\pi\)
−0.931590 + 0.363512i \(0.881578\pi\)
\(338\) 0 0
\(339\) 11.8911 + 2.84778i 0.645838 + 0.154670i
\(340\) 0 0
\(341\) −30.4133 −1.64697
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.81108 + 6.10158i 0.0975053 + 0.328498i
\(346\) 0 0
\(347\) −3.77609 6.54037i −0.202711 0.351106i 0.746690 0.665172i \(-0.231642\pi\)
−0.949401 + 0.314066i \(0.898309\pi\)
\(348\) 0 0
\(349\) 9.10179 15.7648i 0.487207 0.843868i −0.512684 0.858577i \(-0.671349\pi\)
0.999892 + 0.0147092i \(0.00468224\pi\)
\(350\) 0 0
\(351\) 4.79761 26.1300i 0.256077 1.39472i
\(352\) 0 0
\(353\) −0.266224 + 0.461114i −0.0141697 + 0.0245426i −0.873023 0.487678i \(-0.837844\pi\)
0.858854 + 0.512221i \(0.171177\pi\)
\(354\) 0 0
\(355\) 10.6223 + 18.3983i 0.563771 + 0.976481i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.1099 −1.37803 −0.689014 0.724748i \(-0.741956\pi\)
−0.689014 + 0.724748i \(0.741956\pi\)
\(360\) 0 0
\(361\) −7.28150 −0.383237
\(362\) 0 0
\(363\) −42.6511 10.2144i −2.23860 0.536118i
\(364\) 0 0
\(365\) 22.7205 + 39.3530i 1.18924 + 2.05983i
\(366\) 0 0
\(367\) 10.5921 18.3461i 0.552904 0.957658i −0.445159 0.895451i \(-0.646853\pi\)
0.998063 0.0622062i \(-0.0198137\pi\)
\(368\) 0 0
\(369\) −0.480615 + 0.312880i −0.0250198 + 0.0162879i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −9.00427 15.5959i −0.466223 0.807523i 0.533032 0.846095i \(-0.321052\pi\)
−0.999256 + 0.0385721i \(0.987719\pi\)
\(374\) 0 0
\(375\) −12.8164 + 13.5208i −0.661836 + 0.698211i
\(376\) 0 0
\(377\) −29.0078 −1.49398
\(378\) 0 0
\(379\) −15.9120 −0.817343 −0.408672 0.912681i \(-0.634008\pi\)
−0.408672 + 0.912681i \(0.634008\pi\)
\(380\) 0 0
\(381\) 3.29339 3.47440i 0.168725 0.177999i
\(382\) 0 0
\(383\) −0.154293 0.267243i −0.00788400 0.0136555i 0.862056 0.506812i \(-0.169176\pi\)
−0.869940 + 0.493157i \(0.835843\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.15556 4.65211i −0.465404 0.236480i
\(388\) 0 0
\(389\) −2.38753 + 4.13533i −0.121053 + 0.209669i −0.920183 0.391488i \(-0.871960\pi\)
0.799130 + 0.601158i \(0.205294\pi\)
\(390\) 0 0
\(391\) 0.113200 + 0.196068i 0.00572476 + 0.00991557i
\(392\) 0 0
\(393\) 14.2417 + 3.41071i 0.718399 + 0.172048i
\(394\) 0 0
\(395\) −45.4585 −2.28727
\(396\) 0 0
\(397\) −9.50058 −0.476820 −0.238410 0.971165i \(-0.576626\pi\)
−0.238410 + 0.971165i \(0.576626\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.67088 + 16.7505i 0.482941 + 0.836478i 0.999808 0.0195874i \(-0.00623526\pi\)
−0.516867 + 0.856066i \(0.672902\pi\)
\(402\) 0 0
\(403\) 12.9007 22.3446i 0.642629 1.11307i
\(404\) 0 0
\(405\) −19.1211 26.1946i −0.950137 1.30162i
\(406\) 0 0
\(407\) −10.1565 + 17.5916i −0.503441 + 0.871985i
\(408\) 0 0
\(409\) −5.34036 9.24977i −0.264064 0.457372i 0.703254 0.710939i \(-0.251730\pi\)
−0.967318 + 0.253567i \(0.918396\pi\)
\(410\) 0 0
\(411\) 8.91368 + 30.0304i 0.439679 + 1.48129i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 25.9410 1.27339
\(416\) 0 0
\(417\) −20.2446 4.84833i −0.991381 0.237424i
\(418\) 0 0
\(419\) 17.5274 + 30.3583i 0.856267 + 1.48310i 0.875464 + 0.483283i \(0.160556\pi\)
−0.0191966 + 0.999816i \(0.506111\pi\)
\(420\) 0 0
\(421\) 15.8653 27.4795i 0.773226 1.33927i −0.162560 0.986699i \(-0.551975\pi\)
0.935786 0.352568i \(-0.114692\pi\)
\(422\) 0 0
\(423\) 5.53664 + 2.81327i 0.269201 + 0.136786i
\(424\) 0 0
\(425\) −0.886375 + 1.53525i −0.0429955 + 0.0744704i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 36.7158 38.7337i 1.77265 1.87008i
\(430\) 0 0
\(431\) 34.9536 1.68366 0.841829 0.539745i \(-0.181479\pi\)
0.841829 + 0.539745i \(0.181479\pi\)
\(432\) 0 0
\(433\) 28.3369 1.36178 0.680891 0.732385i \(-0.261593\pi\)
0.680891 + 0.732385i \(0.261593\pi\)
\(434\) 0 0
\(435\) −24.3609 + 25.6998i −1.16802 + 1.23221i
\(436\) 0 0
\(437\) 1.74543 + 3.02318i 0.0834955 + 0.144618i
\(438\) 0 0
\(439\) −4.85457 + 8.40837i −0.231696 + 0.401310i −0.958307 0.285739i \(-0.907761\pi\)
0.726611 + 0.687049i \(0.241094\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.03961 8.72885i 0.239439 0.414720i −0.721114 0.692816i \(-0.756370\pi\)
0.960553 + 0.278096i \(0.0897032\pi\)
\(444\) 0 0
\(445\) −16.0245 27.7552i −0.759633 1.31572i
\(446\) 0 0
\(447\) 8.38927 + 2.00913i 0.396799 + 0.0950285i
\(448\) 0 0
\(449\) −28.9202 −1.36483 −0.682414 0.730966i \(-0.739070\pi\)
−0.682414 + 0.730966i \(0.739070\pi\)
\(450\) 0 0
\(451\) −1.15207 −0.0542489
\(452\) 0 0
\(453\) −0.0908736 0.306156i −0.00426961 0.0143845i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.10680 7.11318i 0.192108 0.332741i −0.753841 0.657057i \(-0.771801\pi\)
0.945949 + 0.324317i \(0.105134\pi\)
\(458\) 0 0
\(459\) −0.878469 0.747739i −0.0410034 0.0349015i
\(460\) 0 0
\(461\) −14.0516 + 24.3381i −0.654448 + 1.13354i 0.327584 + 0.944822i \(0.393766\pi\)
−0.982032 + 0.188715i \(0.939568\pi\)
\(462\) 0 0
\(463\) 1.54897 + 2.68289i 0.0719866 + 0.124684i 0.899772 0.436361i \(-0.143733\pi\)
−0.827785 + 0.561045i \(0.810399\pi\)
\(464\) 0 0
\(465\) −8.96243 30.1947i −0.415623 1.40024i
\(466\) 0 0
\(467\) 11.5191 0.533040 0.266520 0.963829i \(-0.414126\pi\)
0.266520 + 0.963829i \(0.414126\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7.30021 + 1.74831i 0.336376 + 0.0805579i
\(472\) 0 0
\(473\) −10.3154 17.8667i −0.474301 0.821513i
\(474\) 0 0
\(475\) −13.6671 + 23.6721i −0.627088 + 1.08615i
\(476\) 0 0
\(477\) −0.850555 15.8897i −0.0389442 0.727539i
\(478\) 0 0
\(479\) −20.3542 + 35.2545i −0.930007 + 1.61082i −0.146704 + 0.989180i \(0.546867\pi\)
−0.783303 + 0.621640i \(0.786467\pi\)
\(480\) 0 0
\(481\) −8.61637 14.9240i −0.392873 0.680475i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.6742 0.893361
\(486\) 0 0
\(487\) −33.5910 −1.52215 −0.761077 0.648662i \(-0.775329\pi\)
−0.761077 + 0.648662i \(0.775329\pi\)
\(488\) 0 0
\(489\) −28.2762 + 29.8303i −1.27869 + 1.34897i
\(490\) 0 0
\(491\) −3.22990 5.59435i −0.145763 0.252469i 0.783894 0.620894i \(-0.213230\pi\)
−0.929657 + 0.368425i \(0.879897\pi\)
\(492\) 0 0
\(493\) −0.629804 + 1.09085i −0.0283650 + 0.0491295i
\(494\) 0 0
\(495\) −3.48245 65.0576i −0.156524 2.92412i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00584 + 10.4024i 0.268859 + 0.465677i 0.968567 0.248752i \(-0.0800203\pi\)
−0.699709 + 0.714428i \(0.746687\pi\)
\(500\) 0 0
\(501\) −5.37144 1.28639i −0.239978 0.0574718i
\(502\) 0 0
\(503\) −34.3935 −1.53353 −0.766765 0.641928i \(-0.778135\pi\)
−0.766765 + 0.641928i \(0.778135\pi\)
\(504\) 0 0
\(505\) −14.3162 −0.637060
\(506\) 0 0
\(507\) 6.47641 + 21.8192i 0.287627 + 0.969025i
\(508\) 0 0
\(509\) −15.7523 27.2838i −0.698208 1.20933i −0.969087 0.246718i \(-0.920648\pi\)
0.270879 0.962613i \(-0.412686\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −13.5452 11.5294i −0.598034 0.509037i
\(514\) 0 0
\(515\) −6.41033 + 11.1030i −0.282473 + 0.489258i
\(516\) 0 0
\(517\) 6.23801 + 10.8045i 0.274347 + 0.475183i
\(518\) 0 0
\(519\) −10.5008 35.3775i −0.460934 1.55290i
\(520\) 0 0
\(521\) 26.6390 1.16708 0.583539 0.812085i \(-0.301668\pi\)
0.583539 + 0.812085i \(0.301668\pi\)
\(522\) 0 0
\(523\) 30.4012 1.32935 0.664676 0.747132i \(-0.268570\pi\)
0.664676 + 0.747132i \(0.268570\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.560188 0.970273i −0.0244022 0.0422658i
\(528\) 0 0
\(529\) 10.9800 19.0180i 0.477393 0.826869i
\(530\) 0 0
\(531\) 19.0985 12.4331i 0.828803 0.539549i
\(532\) 0 0
\(533\) 0.488684 0.846425i 0.0211672 0.0366627i
\(534\) 0 0
\(535\) 4.43350 + 7.67904i 0.191677 + 0.331994i
\(536\) 0 0
\(537\) −0.596121 + 0.628884i −0.0257245 + 0.0271383i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.51710 0.108219 0.0541094 0.998535i \(-0.482768\pi\)
0.0541094 + 0.998535i \(0.482768\pi\)
\(542\) 0 0
\(543\) −7.01144 + 7.39679i −0.300890 + 0.317427i
\(544\) 0 0
\(545\) 10.7249 + 18.5760i 0.459403 + 0.795710i
\(546\) 0 0
\(547\) 9.25785 16.0351i 0.395837 0.685610i −0.597370 0.801965i \(-0.703788\pi\)
0.993208 + 0.116355i \(0.0371211\pi\)
\(548\) 0 0
\(549\) −4.76821 2.42282i −0.203502 0.103403i
\(550\) 0 0
\(551\) −9.71099 + 16.8199i −0.413702 + 0.716553i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −20.4582 4.89948i −0.868401 0.207971i
\(556\) 0 0
\(557\) 24.4247 1.03491 0.517454 0.855711i \(-0.326880\pi\)
0.517454 + 0.855711i \(0.326880\pi\)
\(558\) 0 0
\(559\) 17.5022 0.740265
\(560\) 0 0
\(561\) −0.659443 2.22168i −0.0278417 0.0937995i
\(562\) 0 0
\(563\) 12.3700 + 21.4255i 0.521334 + 0.902976i 0.999692 + 0.0248116i \(0.00789858\pi\)
−0.478359 + 0.878165i \(0.658768\pi\)
\(564\) 0 0
\(565\) −12.7193 + 22.0304i −0.535104 + 0.926828i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.35982 + 14.4796i −0.350462 + 0.607018i −0.986330 0.164780i \(-0.947309\pi\)
0.635869 + 0.771797i \(0.280642\pi\)
\(570\) 0 0
\(571\) 14.8135 + 25.6578i 0.619926 + 1.07374i 0.989499 + 0.144542i \(0.0461708\pi\)
−0.369573 + 0.929202i \(0.620496\pi\)
\(572\) 0 0
\(573\) −3.88831 13.0998i −0.162436 0.547252i
\(574\) 0 0
\(575\) −8.14267 −0.339573
\(576\) 0 0
\(577\) 30.6682 1.27673 0.638367 0.769732i \(-0.279610\pi\)
0.638367 + 0.769732i \(0.279610\pi\)
\(578\) 0 0
\(579\) −32.0211 7.66866i −1.33075 0.318698i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 15.9832 27.6837i 0.661957 1.14654i
\(584\) 0 0
\(585\) 49.2749 + 25.0375i 2.03727 + 1.03517i
\(586\) 0 0
\(587\) −7.88611 + 13.6591i −0.325495 + 0.563773i −0.981612 0.190885i \(-0.938864\pi\)
0.656118 + 0.754658i \(0.272197\pi\)
\(588\) 0 0
\(589\) −8.63757 14.9607i −0.355905 0.616445i
\(590\) 0 0
\(591\) −11.5833 + 12.2199i −0.476472 + 0.502659i
\(592\) 0 0
\(593\) −3.06678 −0.125938 −0.0629688 0.998015i \(-0.520057\pi\)
−0.0629688 + 0.998015i \(0.520057\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −17.9826 + 18.9709i −0.735979 + 0.776429i
\(598\) 0 0
\(599\) −16.1696 28.0066i −0.660673 1.14432i −0.980439 0.196822i \(-0.936938\pi\)
0.319766 0.947496i \(-0.396396\pi\)
\(600\) 0 0
\(601\) 14.9839 25.9529i 0.611208 1.05864i −0.379830 0.925056i \(-0.624017\pi\)
0.991037 0.133586i \(-0.0426493\pi\)
\(602\) 0 0
\(603\) −32.6459 + 21.2524i −1.32944 + 0.865466i
\(604\) 0 0
\(605\) 45.6215 79.0187i 1.85478 3.21257i
\(606\) 0 0
\(607\) −10.1275 17.5414i −0.411064 0.711984i 0.583942 0.811795i \(-0.301509\pi\)
−0.995006 + 0.0998113i \(0.968176\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.5841 −0.428188
\(612\) 0 0
\(613\) −25.0839 −1.01313 −0.506564 0.862202i \(-0.669085\pi\)
−0.506564 + 0.862202i \(0.669085\pi\)
\(614\) 0 0
\(615\) −0.339501 1.14379i −0.0136900 0.0461220i
\(616\) 0 0
\(617\) −21.0472 36.4548i −0.847328 1.46762i −0.883584 0.468273i \(-0.844877\pi\)
0.0362561 0.999343i \(-0.488457\pi\)
\(618\) 0 0
\(619\) −7.41252 + 12.8389i −0.297934 + 0.516037i −0.975663 0.219275i \(-0.929631\pi\)
0.677729 + 0.735312i \(0.262964\pi\)
\(620\) 0 0
\(621\) 0.956897 5.21171i 0.0383989 0.209139i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.582932 + 1.00967i 0.0233173 + 0.0403867i
\(626\) 0 0
\(627\) −10.1680 34.2563i −0.406071 1.36806i
\(628\) 0 0
\(629\) −0.748299 −0.0298366
\(630\) 0 0
\(631\) 20.6414 0.821722 0.410861 0.911698i \(-0.365228\pi\)
0.410861 + 0.911698i \(0.365228\pi\)
\(632\) 0 0
\(633\) −29.4832 7.06086i −1.17185 0.280644i
\(634\) 0 0
\(635\) 4.97984 + 8.62534i 0.197619 + 0.342286i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.945398 17.6615i −0.0373994 0.698679i
\(640\) 0 0
\(641\) −0.776633 + 1.34517i −0.0306752 + 0.0531309i −0.880955 0.473199i \(-0.843099\pi\)
0.850280 + 0.526330i \(0.176432\pi\)
\(642\) 0 0
\(643\) 10.7061 + 18.5435i 0.422206 + 0.731282i 0.996155 0.0876087i \(-0.0279225\pi\)
−0.573949 + 0.818891i \(0.694589\pi\)
\(644\) 0 0
\(645\) 14.6985 15.5063i 0.578752 0.610560i
\(646\) 0 0
\(647\) −29.5274 −1.16084 −0.580422 0.814316i \(-0.697112\pi\)
−0.580422 + 0.814316i \(0.697112\pi\)
\(648\) 0 0
\(649\) 45.7805 1.79704
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.03041 13.9091i −0.314254 0.544304i 0.665025 0.746822i \(-0.268421\pi\)
−0.979279 + 0.202517i \(0.935088\pi\)
\(654\) 0 0
\(655\) −15.2335 + 26.3853i −0.595224 + 1.03096i
\(656\) 0 0
\(657\) −2.02216 37.7771i −0.0788919 1.47382i
\(658\) 0 0
\(659\) 14.2100 24.6124i 0.553543 0.958764i −0.444473 0.895792i \(-0.646609\pi\)
0.998015 0.0629717i \(-0.0200578\pi\)
\(660\) 0 0
\(661\) 16.9884 + 29.4248i 0.660773 + 1.14449i 0.980413 + 0.196953i \(0.0631047\pi\)
−0.319640 + 0.947539i \(0.603562\pi\)
\(662\) 0 0
\(663\) 1.91199 + 0.457898i 0.0742555 + 0.0177833i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.78569 −0.224023
\(668\) 0 0
\(669\) 4.93190 + 16.6157i 0.190678 + 0.642400i
\(670\) 0 0
\(671\) −5.37224 9.30499i −0.207393 0.359215i
\(672\) 0 0
\(673\) −0.807019 + 1.39780i −0.0311083 + 0.0538812i −0.881160 0.472817i \(-0.843237\pi\)
0.850052 + 0.526699i \(0.176570\pi\)
\(674\) 0 0
\(675\) 39.0876 13.9155i 1.50448 0.535606i
\(676\) 0 0
\(677\) −13.3479 + 23.1193i −0.513002 + 0.888545i 0.486884 + 0.873466i \(0.338133\pi\)
−0.999886 + 0.0150790i \(0.995200\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.11698 + 3.76313i 0.0428027 + 0.144204i
\(682\) 0 0
\(683\) 35.2366 1.34829 0.674146 0.738598i \(-0.264512\pi\)
0.674146 + 0.738598i \(0.264512\pi\)
\(684\) 0 0
\(685\) −65.1711 −2.49006
\(686\) 0 0
\(687\) −8.46347 2.02690i −0.322902 0.0773310i
\(688\) 0 0
\(689\) 13.5595 + 23.4857i 0.516575 + 0.894734i
\(690\) 0 0
\(691\) −14.3904 + 24.9248i −0.547435 + 0.948185i 0.451014 + 0.892517i \(0.351062\pi\)
−0.998449 + 0.0556685i \(0.982271\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.6545 37.5066i 0.821401 1.42271i
\(696\) 0 0
\(697\) −0.0212202 0.0367544i −0.000803771 0.00139217i
\(698\) 0 0
\(699\) 18.4071 19.4188i 0.696220 0.734485i
\(700\) 0 0
\(701\) 17.2044 0.649800 0.324900 0.945748i \(-0.394669\pi\)
0.324900 + 0.945748i \(0.394669\pi\)
\(702\) 0 0
\(703\) −11.5381 −0.435166
\(704\) 0 0
\(705\) −8.88860 + 9.37713i −0.334764 + 0.353163i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −22.8211 + 39.5272i −0.857063 + 1.48448i 0.0176546 + 0.999844i \(0.494380\pi\)
−0.874718 + 0.484633i \(0.838953\pi\)
\(710\) 0 0
\(711\) 33.7400 + 17.1439i 1.26535 + 0.642947i
\(712\) 0 0
\(713\) 2.57308 4.45670i 0.0963626 0.166905i
\(714\) 0 0
\(715\) 55.5169 + 96.1581i 2.07621 + 3.59611i
\(716\) 0 0
\(717\) −15.5873 3.73297i −0.582118 0.139410i
\(718\) 0 0
\(719\) 22.3713 0.834309 0.417155 0.908836i \(-0.363027\pi\)
0.417155 + 0.908836i \(0.363027\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.04724 + 27.1114i 0.299280 + 1.00828i
\(724\) 0 0
\(725\) −22.6515 39.2336i −0.841256 1.45710i
\(726\) 0 0
\(727\) 18.3031 31.7019i 0.678824 1.17576i −0.296512 0.955029i \(-0.595823\pi\)
0.975335 0.220728i \(-0.0708433\pi\)
\(728\) 0 0
\(729\) 4.31313 + 26.6533i 0.159746 + 0.987158i
\(730\) 0 0
\(731\) 0.380000 0.658180i 0.0140548 0.0243437i
\(732\) 0 0
\(733\) −19.9734 34.5950i −0.737736 1.27780i −0.953513 0.301353i \(-0.902562\pi\)
0.215777 0.976443i \(-0.430772\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −78.2547 −2.88255
\(738\) 0 0
\(739\) −10.8428 −0.398859 −0.199430 0.979912i \(-0.563909\pi\)
−0.199430 + 0.979912i \(0.563909\pi\)
\(740\) 0 0
\(741\) 29.4811 + 7.06036i 1.08302 + 0.259369i
\(742\) 0 0
\(743\) −2.74353 4.75194i −0.100651 0.174332i 0.811302 0.584627i \(-0.198759\pi\)
−0.911953 + 0.410295i \(0.865426\pi\)
\(744\) 0 0
\(745\) −8.97353 + 15.5426i −0.328765 + 0.569437i
\(746\) 0 0
\(747\) −19.2538 9.78320i −0.704459 0.357949i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 13.5621 + 23.4902i 0.494888 + 0.857171i 0.999983 0.00589323i \(-0.00187588\pi\)
−0.505095 + 0.863064i \(0.668543\pi\)
\(752\) 0 0
\(753\) −8.99395 + 9.48826i −0.327758 + 0.345771i
\(754\) 0 0
\(755\) 0.664410 0.0241804
\(756\) 0 0
\(757\) −36.5294 −1.32768 −0.663842 0.747872i \(-0.731075\pi\)
−0.663842 + 0.747872i \(0.731075\pi\)
\(758\) 0 0
\(759\) 7.32307 7.72555i 0.265811 0.280420i
\(760\) 0 0
\(761\) 26.4394 + 45.7944i 0.958429 + 1.66005i 0.726319 + 0.687358i \(0.241230\pi\)
0.232110 + 0.972690i \(0.425437\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.01138 1.30940i 0.0727216 0.0473416i
\(766\) 0 0
\(767\) −19.4191 + 33.6348i −0.701183 + 1.21448i
\(768\) 0 0
\(769\) −22.9381 39.7299i −0.827169 1.43270i −0.900250 0.435372i \(-0.856617\pi\)
0.0730816 0.997326i \(-0.476717\pi\)
\(770\) 0 0
\(771\) 42.6034 + 10.2030i 1.53432 + 0.367452i
\(772\) 0 0
\(773\) 15.2245 0.547586 0.273793 0.961789i \(-0.411722\pi\)
0.273793 + 0.961789i \(0.411722\pi\)
\(774\) 0 0
\(775\) 40.2954 1.44745
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.327195 0.566718i −0.0117230 0.0203048i
\(780\) 0 0
\(781\) 17.7655 30.7707i 0.635698 1.10106i
\(782\) 0 0
\(783\) 27.7733 9.88748i 0.992537 0.353350i
\(784\) 0 0
\(785\) −7.80862 + 13.5249i −0.278702 + 0.482725i
\(786\) 0 0
\(787\) 10.5617 + 18.2935i 0.376485 + 0.652091i 0.990548 0.137166i \(-0.0437993\pi\)
−0.614063 + 0.789257i \(0.710466\pi\)
\(788\) 0 0
\(789\) 11.5811 + 39.0172i 0.412300 + 1.38905i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 9.11515 0.323689
\(794\) 0 0
\(795\) 32.1948 + 7.71025i 1.14183 + 0.273454i
\(796\) 0 0
\(797\) 27.0532 + 46.8575i 0.958272 + 1.65978i 0.726695 + 0.686960i \(0.241055\pi\)
0.231577 + 0.972817i \(0.425611\pi\)
\(798\) 0 0
\(799\) −0.229798 + 0.398021i −0.00812965 + 0.0140810i
\(800\) 0 0
\(801\) 1.42620 + 26.6437i 0.0503924 + 0.941408i
\(802\) 0 0
\(803\) 37.9994 65.8169i 1.34097 2.32263i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −33.1441 + 34.9657i −1.16673 + 1.23085i
\(808\) 0 0
\(809\) −54.6561 −1.92161 −0.960803 0.277233i \(-0.910582\pi\)
−0.960803 + 0.277233i \(0.910582\pi\)
\(810\) 0 0
\(811\) 12.7853 0.448954 0.224477 0.974479i \(-0.427933\pi\)
0.224477 + 0.974479i \(0.427933\pi\)
\(812\) 0 0
\(813\) −22.8264 + 24.0809i −0.800556 + 0.844555i
\(814\) 0 0
\(815\) −42.7557 74.0550i −1.49767 2.59403i
\(816\) 0 0
\(817\) 5.85925 10.1485i 0.204989 0.355052i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.7302 + 30.7095i −0.618787 + 1.07177i 0.370921 + 0.928664i \(0.379042\pi\)
−0.989707 + 0.143105i \(0.954291\pi\)
\(822\) 0 0
\(823\) −3.95726 6.85417i −0.137941 0.238921i 0.788776 0.614681i \(-0.210715\pi\)
−0.926717 + 0.375760i \(0.877382\pi\)
\(824\) 0 0
\(825\) 81.0585 + 19.4125i 2.82209 + 0.675857i
\(826\) 0 0
\(827\) 45.6562 1.58762 0.793811 0.608164i \(-0.208094\pi\)
0.793811 + 0.608164i \(0.208094\pi\)
\(828\) 0 0
\(829\) 42.0886 1.46180 0.730898 0.682487i \(-0.239102\pi\)
0.730898 + 0.682487i \(0.239102\pi\)
\(830\) 0 0
\(831\) 13.5935 + 45.7970i 0.471554 + 1.58868i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.74552 9.95154i 0.198832 0.344387i
\(836\) 0 0
\(837\) −4.73536 + 25.7910i −0.163678 + 0.891467i
\(838\) 0 0
\(839\) 10.3598 17.9437i 0.357660 0.619485i −0.629910 0.776668i \(-0.716908\pi\)
0.987569 + 0.157183i \(0.0502414\pi\)
\(840\) 0 0
\(841\) −1.59479 2.76225i −0.0549926 0.0952500i
\(842\) 0 0
\(843\) −0.189840 0.639575i −0.00653842 0.0220281i
\(844\) 0 0
\(845\) −47.3514 −1.62894
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −25.2631 6.05019i −0.867026 0.207642i
\(850\) 0 0
\(851\) −1.71856 2.97663i −0.0589115 0.102038i
\(852\) 0 0
\(853\) −7.75942 + 13.4397i −0.265678 + 0.460167i −0.967741 0.251947i \(-0.918929\pi\)
0.702063 + 0.712115i \(0.252262\pi\)
\(854\) 0 0
\(855\) 31.0136 20.1898i 1.06064 0.690476i
\(856\) 0 0
\(857\) 1.24091 2.14933i 0.0423888 0.0734196i −0.844053 0.536260i \(-0.819837\pi\)
0.886441 + 0.462841i \(0.153170\pi\)
\(858\) 0 0
\(859\) 17.5198 + 30.3452i 0.597768 + 1.03537i 0.993150 + 0.116848i \(0.0372791\pi\)
−0.395382 + 0.918517i \(0.629388\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.9556 0.985661 0.492831 0.870125i \(-0.335962\pi\)
0.492831 + 0.870125i \(0.335962\pi\)
\(864\) 0 0
\(865\) 76.7752 2.61044
\(866\) 0 0
\(867\) −20.1978 + 21.3079i −0.685954 + 0.723655i
\(868\) 0 0
\(869\) 38.0141 + 65.8424i 1.28954 + 2.23355i
\(870\) 0 0
\(871\) 33.1940 57.4936i 1.12473 1.94810i
\(872\) 0 0
\(873\) −14.6025 7.41981i −0.494220 0.251122i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.79611 16.9674i −0.330791 0.572947i 0.651876 0.758325i \(-0.273982\pi\)
−0.982667 + 0.185379i \(0.940649\pi\)
\(878\) 0 0
\(879\) −37.8399 9.06219i −1.27631 0.305660i
\(880\) 0 0
\(881\) 15.9010 0.535717 0.267858 0.963458i \(-0.413684\pi\)
0.267858 + 0.963458i \(0.413684\pi\)
\(882\) 0 0
\(883\) 0.329844 0.0111001 0.00555007 0.999985i \(-0.498233\pi\)
0.00555007 + 0.999985i \(0.498233\pi\)
\(884\) 0 0
\(885\) 13.4909 + 45.4513i 0.453493 + 1.52783i
\(886\) 0 0
\(887\) −6.31301 10.9345i −0.211970 0.367143i 0.740361 0.672210i \(-0.234655\pi\)
−0.952331 + 0.305066i \(0.901321\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −21.9506 + 49.6001i −0.735374 + 1.66166i
\(892\) 0 0
\(893\) −3.54326 + 6.13711i −0.118571 + 0.205371i
\(894\) 0 0
\(895\) −0.901378 1.56123i −0.0301297 0.0521862i
\(896\) 0 0
\(897\) 2.56966 + 8.65726i 0.0857985 + 0.289057i
\(898\) 0 0
\(899\) 28.6314 0.954912
\(900\) 0 0
\(901\) 1.17759 0.0392312
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.6018 18.3629i −0.352416 0.610402i
\(906\) 0 0
\(907\) 4.94626 8.56717i 0.164238 0.284468i −0.772147 0.635445i \(-0.780817\pi\)
0.936384 + 0.350976i \(0.114150\pi\)
\(908\) 0 0
\(909\) 10.6257 + 5.39910i 0.352431 + 0.179077i
\(910\) 0 0
\(911\) 29.8185 51.6472i 0.987932 1.71115i 0.359828 0.933019i \(-0.382835\pi\)
0.628104 0.778130i \(-0.283831\pi\)
\(912\) 0 0
\(913\) −21.6928 37.5730i −0.717927 1.24349i
\(914\) 0 0
\(915\) 7.65496 8.07568i 0.253065 0.266974i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −7.69518 −0.253841 −0.126920 0.991913i \(-0.540509\pi\)
−0.126920 + 0.991913i \(0.540509\pi\)
\(920\) 0 0
\(921\) −8.23122 + 8.68361i −0.271228 + 0.286135i
\(922\) 0 0
\(923\) 15.0715 + 26.1045i 0.496083 + 0.859241i
\(924\) 0 0
\(925\) 13.4566 23.3076i 0.442452 0.766349i
\(926\) 0 0
\(927\) 8.94516 5.82328i 0.293798 0.191262i
\(928\) 0 0
\(929\) 13.8357 23.9642i 0.453936 0.786240i −0.544690 0.838637i \(-0.683353\pi\)
0.998626 + 0.0523969i \(0.0166861\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 39.0415 + 9.34995i 1.27816 + 0.306104i
\(934\) 0 0
\(935\) 4.82143 0.157678
\(936\) 0 0
\(937\) −44.7712 −1.46261 −0.731305 0.682051i \(-0.761088\pi\)
−0.731305 + 0.682051i \(0.761088\pi\)
\(938\) 0 0
\(939\) −8.10142 27.2939i −0.264380 0.890703i
\(940\) 0 0
\(941\) 20.0046 + 34.6490i 0.652132 + 1.12953i 0.982605 + 0.185710i \(0.0594586\pi\)
−0.330472 + 0.943816i \(0.607208\pi\)
\(942\) 0 0
\(943\) 0.0974694 0.168822i 0.00317404 0.00549760i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.4634 38.9078i 0.729963 1.26433i −0.226935 0.973910i \(-0.572871\pi\)
0.956898 0.290423i \(-0.0937961\pi\)
\(948\) 0 0
\(949\) 32.2371 + 55.8362i 1.04646 + 1.81252i
\(950\) 0 0
\(951\) −7.08138 23.8574i −0.229630 0.773629i
\(952\) 0 0
\(953\) −40.8038 −1.32176 −0.660882 0.750490i \(-0.729818\pi\)
−0.660882 + 0.750490i \(0.729818\pi\)
\(954\) 0 0
\(955\) 28.4288 0.919935
\(956\) 0 0
\(957\) 57.5952 + 13.7934i 1.86179 + 0.445876i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.76670 4.79206i 0.0892483 0.154583i
\(962\) 0 0
\(963\) −0.394588 7.37152i −0.0127154 0.237544i
\(964\) 0 0
\(965\) 34.2511 59.3247i 1.10258 1.90973i
\(966\) 0 0
\(967\) −9.63289 16.6847i −0.309773 0.536542i 0.668540 0.743677i \(-0.266920\pi\)
−0.978313 + 0.207134i \(0.933586\pi\)
\(968\) 0 0
\(969\) 0.905588 0.955360i 0.0290917 0.0306906i
\(970\) 0 0
\(971\) −59.7368 −1.91705 −0.958523 0.285017i \(-0.908001\pi\)
−0.958523 + 0.285017i \(0.908001\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −48.6456 + 51.3192i −1.55791 + 1.64353i
\(976\) 0 0
\(977\) 29.7758 + 51.5732i 0.952613 + 1.64997i 0.739739 + 0.672893i \(0.234949\pi\)
0.212873 + 0.977080i \(0.431718\pi\)
\(978\) 0 0
\(979\) −26.8005 + 46.4198i −0.856548 + 1.48358i
\(980\) 0 0
\(981\) −0.954530 17.8321i −0.0304758 0.569336i
\(982\) 0 0
\(983\) −4.06414 + 7.03930i −0.129626 + 0.224519i −0.923532 0.383522i \(-0.874711\pi\)
0.793906 + 0.608041i \(0.208044\pi\)
\(984\) 0 0
\(985\) −17.5147 30.3364i −0.558066 0.966598i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.49087 0.111003
\(990\) 0 0
\(991\) 55.3622 1.75864 0.879320 0.476232i \(-0.157998\pi\)
0.879320 + 0.476232i \(0.157998\pi\)
\(992\) 0 0
\(993\) 1.84903 + 6.22942i 0.0586770 + 0.197685i
\(994\) 0 0
\(995\) −27.1910 47.0962i −0.862013 1.49305i
\(996\) 0 0
\(997\) −4.83187 + 8.36904i −0.153027 + 0.265050i −0.932339 0.361586i \(-0.882235\pi\)
0.779312 + 0.626636i \(0.215569\pi\)
\(998\) 0 0
\(999\) 13.3366 + 11.3519i 0.421952 + 0.359159i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.h.1177.6 14
3.2 odd 2 5292.2.j.g.3529.2 14
7.2 even 3 1764.2.i.i.1537.5 14
7.3 odd 6 252.2.l.b.205.7 yes 14
7.4 even 3 1764.2.l.i.961.1 14
7.5 odd 6 252.2.i.b.25.3 14
7.6 odd 2 1764.2.j.g.1177.2 14
9.4 even 3 inner 1764.2.j.h.589.6 14
9.5 odd 6 5292.2.j.g.1765.2 14
21.2 odd 6 5292.2.i.i.2125.2 14
21.5 even 6 756.2.i.b.613.6 14
21.11 odd 6 5292.2.l.i.3313.6 14
21.17 even 6 756.2.l.b.289.2 14
21.20 even 2 5292.2.j.h.3529.6 14
28.3 even 6 1008.2.t.j.961.1 14
28.19 even 6 1008.2.q.j.529.5 14
63.4 even 3 1764.2.i.i.373.5 14
63.5 even 6 756.2.l.b.361.2 14
63.13 odd 6 1764.2.j.g.589.2 14
63.23 odd 6 5292.2.l.i.361.6 14
63.31 odd 6 252.2.i.b.121.3 yes 14
63.32 odd 6 5292.2.i.i.1549.2 14
63.38 even 6 2268.2.k.f.1297.6 14
63.40 odd 6 252.2.l.b.193.7 yes 14
63.41 even 6 5292.2.j.h.1765.6 14
63.47 even 6 2268.2.k.f.1621.6 14
63.52 odd 6 2268.2.k.e.1297.2 14
63.58 even 3 1764.2.l.i.949.1 14
63.59 even 6 756.2.i.b.37.6 14
63.61 odd 6 2268.2.k.e.1621.2 14
84.47 odd 6 3024.2.q.j.2881.6 14
84.59 odd 6 3024.2.t.j.289.2 14
252.31 even 6 1008.2.q.j.625.5 14
252.59 odd 6 3024.2.q.j.2305.6 14
252.103 even 6 1008.2.t.j.193.1 14
252.131 odd 6 3024.2.t.j.1873.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.3 14 7.5 odd 6
252.2.i.b.121.3 yes 14 63.31 odd 6
252.2.l.b.193.7 yes 14 63.40 odd 6
252.2.l.b.205.7 yes 14 7.3 odd 6
756.2.i.b.37.6 14 63.59 even 6
756.2.i.b.613.6 14 21.5 even 6
756.2.l.b.289.2 14 21.17 even 6
756.2.l.b.361.2 14 63.5 even 6
1008.2.q.j.529.5 14 28.19 even 6
1008.2.q.j.625.5 14 252.31 even 6
1008.2.t.j.193.1 14 252.103 even 6
1008.2.t.j.961.1 14 28.3 even 6
1764.2.i.i.373.5 14 63.4 even 3
1764.2.i.i.1537.5 14 7.2 even 3
1764.2.j.g.589.2 14 63.13 odd 6
1764.2.j.g.1177.2 14 7.6 odd 2
1764.2.j.h.589.6 14 9.4 even 3 inner
1764.2.j.h.1177.6 14 1.1 even 1 trivial
1764.2.l.i.949.1 14 63.58 even 3
1764.2.l.i.961.1 14 7.4 even 3
2268.2.k.e.1297.2 14 63.52 odd 6
2268.2.k.e.1621.2 14 63.61 odd 6
2268.2.k.f.1297.6 14 63.38 even 6
2268.2.k.f.1621.6 14 63.47 even 6
3024.2.q.j.2305.6 14 252.59 odd 6
3024.2.q.j.2881.6 14 84.47 odd 6
3024.2.t.j.289.2 14 84.59 odd 6
3024.2.t.j.1873.2 14 252.131 odd 6
5292.2.i.i.1549.2 14 63.32 odd 6
5292.2.i.i.2125.2 14 21.2 odd 6
5292.2.j.g.1765.2 14 9.5 odd 6
5292.2.j.g.3529.2 14 3.2 odd 2
5292.2.j.h.1765.6 14 63.41 even 6
5292.2.j.h.3529.6 14 21.20 even 2
5292.2.l.i.361.6 14 63.23 odd 6
5292.2.l.i.3313.6 14 21.11 odd 6