Properties

Label 2268.2.k.f.1621.6
Level $2268$
Weight $2$
Character 2268.1621
Analytic conductor $18.110$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1297,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1621.6
Root \(1.68442 + 0.403398i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1621
Dual form 2268.2.k.f.1297.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80173 + 3.12069i) q^{5} +(2.62435 - 0.335842i) q^{7} +(-3.01334 + 5.21926i) q^{11} +5.11278 q^{13} +(-0.111006 + 0.192269i) q^{17} +(1.71161 + 2.96460i) q^{19} +(-0.509880 - 0.883137i) q^{23} +(-3.99245 + 6.91513i) q^{25} -5.67359 q^{29} +(2.52322 - 4.37035i) q^{31} +(5.77642 + 7.58467i) q^{35} +(1.68526 + 2.91896i) q^{37} +0.191162 q^{41} -3.42323 q^{43} +(-1.03506 - 1.79278i) q^{47} +(6.77442 - 1.76274i) q^{49} +(2.65207 - 4.59353i) q^{53} -21.7169 q^{55} +(3.79814 - 6.57858i) q^{59} +(-0.891408 - 1.54396i) q^{61} +(9.21184 + 15.9554i) q^{65} +(-6.49235 + 11.2451i) q^{67} -5.89560 q^{71} +(6.30519 - 10.9209i) q^{73} +(-6.15522 + 14.7092i) q^{77} +(-6.30763 - 10.9251i) q^{79} -7.19891 q^{83} -0.800013 q^{85} +(4.44697 + 7.70238i) q^{89} +(13.4177 - 1.71709i) q^{91} +(-6.16773 + 10.6828i) q^{95} +5.45982 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 3 q^{7} - 2 q^{11} - 4 q^{13} - 2 q^{17} + 7 q^{19} - 11 q^{23} - 9 q^{25} + 2 q^{29} - q^{31} + 19 q^{35} + 10 q^{37} - 66 q^{41} - 14 q^{43} + 3 q^{47} + 17 q^{49} + 15 q^{53} - 28 q^{55}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.80173 + 3.12069i 0.805757 + 1.39561i 0.915779 + 0.401684i \(0.131575\pi\)
−0.110021 + 0.993929i \(0.535092\pi\)
\(6\) 0 0
\(7\) 2.62435 0.335842i 0.991911 0.126937i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.01334 + 5.21926i −0.908557 + 1.57367i −0.0924872 + 0.995714i \(0.529482\pi\)
−0.816070 + 0.577953i \(0.803852\pi\)
\(12\) 0 0
\(13\) 5.11278 1.41803 0.709015 0.705193i \(-0.249140\pi\)
0.709015 + 0.705193i \(0.249140\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.111006 + 0.192269i −0.0269230 + 0.0466320i −0.879173 0.476503i \(-0.841904\pi\)
0.852250 + 0.523135i \(0.175238\pi\)
\(18\) 0 0
\(19\) 1.71161 + 2.96460i 0.392671 + 0.680127i 0.992801 0.119776i \(-0.0382177\pi\)
−0.600130 + 0.799903i \(0.704884\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.509880 0.883137i −0.106317 0.184147i 0.807958 0.589240i \(-0.200573\pi\)
−0.914276 + 0.405093i \(0.867239\pi\)
\(24\) 0 0
\(25\) −3.99245 + 6.91513i −0.798490 + 1.38303i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.67359 −1.05356 −0.526779 0.850002i \(-0.676601\pi\)
−0.526779 + 0.850002i \(0.676601\pi\)
\(30\) 0 0
\(31\) 2.52322 4.37035i 0.453184 0.784938i −0.545398 0.838177i \(-0.683621\pi\)
0.998582 + 0.0532395i \(0.0169547\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.77642 + 7.58467i 0.976394 + 1.28204i
\(36\) 0 0
\(37\) 1.68526 + 2.91896i 0.277055 + 0.479874i 0.970652 0.240490i \(-0.0773082\pi\)
−0.693596 + 0.720364i \(0.743975\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.191162 0.0298544 0.0149272 0.999889i \(-0.495248\pi\)
0.0149272 + 0.999889i \(0.495248\pi\)
\(42\) 0 0
\(43\) −3.42323 −0.522038 −0.261019 0.965334i \(-0.584058\pi\)
−0.261019 + 0.965334i \(0.584058\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.03506 1.79278i −0.150980 0.261504i 0.780608 0.625021i \(-0.214909\pi\)
−0.931588 + 0.363516i \(0.881576\pi\)
\(48\) 0 0
\(49\) 6.77442 1.76274i 0.967774 0.251819i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.65207 4.59353i 0.364290 0.630969i −0.624372 0.781127i \(-0.714645\pi\)
0.988662 + 0.150158i \(0.0479782\pi\)
\(54\) 0 0
\(55\) −21.7169 −2.92831
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.79814 6.57858i 0.494476 0.856458i −0.505503 0.862825i \(-0.668693\pi\)
0.999980 + 0.00636650i \(0.00202653\pi\)
\(60\) 0 0
\(61\) −0.891408 1.54396i −0.114133 0.197684i 0.803300 0.595575i \(-0.203076\pi\)
−0.917433 + 0.397891i \(0.869742\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.21184 + 15.9554i 1.14259 + 1.97902i
\(66\) 0 0
\(67\) −6.49235 + 11.2451i −0.793167 + 1.37380i 0.130830 + 0.991405i \(0.458236\pi\)
−0.923997 + 0.382400i \(0.875098\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.89560 −0.699679 −0.349839 0.936810i \(-0.613764\pi\)
−0.349839 + 0.936810i \(0.613764\pi\)
\(72\) 0 0
\(73\) 6.30519 10.9209i 0.737967 1.27820i −0.215442 0.976517i \(-0.569119\pi\)
0.953409 0.301680i \(-0.0975473\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.15522 + 14.7092i −0.701452 + 1.67627i
\(78\) 0 0
\(79\) −6.30763 10.9251i −0.709664 1.22917i −0.964982 0.262317i \(-0.915514\pi\)
0.255318 0.966857i \(-0.417820\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.19891 −0.790184 −0.395092 0.918642i \(-0.629287\pi\)
−0.395092 + 0.918642i \(0.629287\pi\)
\(84\) 0 0
\(85\) −0.800013 −0.0867736
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.44697 + 7.70238i 0.471378 + 0.816451i 0.999464 0.0327404i \(-0.0104235\pi\)
−0.528086 + 0.849191i \(0.677090\pi\)
\(90\) 0 0
\(91\) 13.4177 1.71709i 1.40656 0.180000i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.16773 + 10.6828i −0.632796 + 1.09603i
\(96\) 0 0
\(97\) 5.45982 0.554361 0.277181 0.960818i \(-0.410600\pi\)
0.277181 + 0.960818i \(0.410600\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.98645 + 3.44063i −0.197659 + 0.342355i −0.947769 0.318958i \(-0.896667\pi\)
0.750110 + 0.661313i \(0.230001\pi\)
\(102\) 0 0
\(103\) −1.77894 3.08121i −0.175284 0.303601i 0.764975 0.644059i \(-0.222751\pi\)
−0.940260 + 0.340458i \(0.889418\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.23035 + 2.13102i 0.118942 + 0.206014i 0.919349 0.393444i \(-0.128716\pi\)
−0.800407 + 0.599457i \(0.795383\pi\)
\(108\) 0 0
\(109\) −2.97628 + 5.15506i −0.285075 + 0.493765i −0.972627 0.232370i \(-0.925352\pi\)
0.687552 + 0.726135i \(0.258685\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.05949 0.664101 0.332050 0.943262i \(-0.392260\pi\)
0.332050 + 0.943262i \(0.392260\pi\)
\(114\) 0 0
\(115\) 1.83733 3.18235i 0.171332 0.296755i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.226748 + 0.541861i −0.0207859 + 0.0496723i
\(120\) 0 0
\(121\) −12.6605 21.9286i −1.15095 1.99351i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.7560 −0.962042
\(126\) 0 0
\(127\) 2.76393 0.245259 0.122629 0.992453i \(-0.460867\pi\)
0.122629 + 0.992453i \(0.460867\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.22748 + 7.32221i 0.369357 + 0.639744i 0.989465 0.144772i \(-0.0462448\pi\)
−0.620108 + 0.784516i \(0.712911\pi\)
\(132\) 0 0
\(133\) 5.48751 + 7.20532i 0.475828 + 0.624781i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.04286 15.6627i 0.772584 1.33815i −0.163559 0.986534i \(-0.552297\pi\)
0.936143 0.351621i \(-0.114369\pi\)
\(138\) 0 0
\(139\) −12.0187 −1.01941 −0.509707 0.860348i \(-0.670246\pi\)
−0.509707 + 0.860348i \(0.670246\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.4066 + 26.6850i −1.28836 + 2.23151i
\(144\) 0 0
\(145\) −10.2223 17.7055i −0.848912 1.47036i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.49026 4.31325i −0.204010 0.353355i 0.745807 0.666162i \(-0.232064\pi\)
−0.949817 + 0.312807i \(0.898731\pi\)
\(150\) 0 0
\(151\) 0.0921906 0.159679i 0.00750237 0.0129945i −0.862250 0.506483i \(-0.830945\pi\)
0.869752 + 0.493489i \(0.164279\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 18.1846 1.46063
\(156\) 0 0
\(157\) −2.16698 + 3.75332i −0.172944 + 0.299548i −0.939448 0.342692i \(-0.888661\pi\)
0.766504 + 0.642240i \(0.221995\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.63470 2.14642i −0.128832 0.169162i
\(162\) 0 0
\(163\) 11.8652 + 20.5511i 0.929353 + 1.60969i 0.784407 + 0.620247i \(0.212967\pi\)
0.144946 + 0.989440i \(0.453699\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.18889 0.246764 0.123382 0.992359i \(-0.460626\pi\)
0.123382 + 0.992359i \(0.460626\pi\)
\(168\) 0 0
\(169\) 13.1405 1.01081
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.6530 + 18.4515i 0.809932 + 1.40284i 0.912910 + 0.408160i \(0.133830\pi\)
−0.102978 + 0.994684i \(0.532837\pi\)
\(174\) 0 0
\(175\) −8.15519 + 19.4885i −0.616475 + 1.47320i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.250143 + 0.433260i −0.0186965 + 0.0323833i −0.875222 0.483721i \(-0.839285\pi\)
0.856526 + 0.516104i \(0.172618\pi\)
\(180\) 0 0
\(181\) 5.88424 0.437372 0.218686 0.975795i \(-0.429823\pi\)
0.218686 + 0.975795i \(0.429823\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.07276 + 10.5183i −0.446478 + 0.773323i
\(186\) 0 0
\(187\) −0.669001 1.15874i −0.0489222 0.0847357i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.94466 6.83235i −0.285425 0.494371i 0.687287 0.726386i \(-0.258802\pi\)
−0.972712 + 0.232015i \(0.925468\pi\)
\(192\) 0 0
\(193\) −9.50508 + 16.4633i −0.684190 + 1.18505i 0.289500 + 0.957178i \(0.406511\pi\)
−0.973691 + 0.227875i \(0.926822\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.72107 0.692597 0.346299 0.938124i \(-0.387438\pi\)
0.346299 + 0.938124i \(0.387438\pi\)
\(198\) 0 0
\(199\) −7.54581 + 13.0697i −0.534908 + 0.926489i 0.464259 + 0.885699i \(0.346321\pi\)
−0.999168 + 0.0407893i \(0.987013\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −14.8895 + 1.90543i −1.04504 + 0.133735i
\(204\) 0 0
\(205\) 0.344421 + 0.596555i 0.0240554 + 0.0416652i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.6307 −1.42706
\(210\) 0 0
\(211\) 17.5035 1.20499 0.602494 0.798124i \(-0.294174\pi\)
0.602494 + 0.798124i \(0.294174\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.16773 10.6828i −0.420636 0.728562i
\(216\) 0 0
\(217\) 5.15407 12.3167i 0.349881 0.836114i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.567551 + 0.983028i −0.0381776 + 0.0661256i
\(222\) 0 0
\(223\) −10.0067 −0.670101 −0.335051 0.942200i \(-0.608753\pi\)
−0.335051 + 0.942200i \(0.608753\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.13317 + 1.96270i −0.0752110 + 0.130269i −0.901178 0.433449i \(-0.857296\pi\)
0.825967 + 0.563718i \(0.190630\pi\)
\(228\) 0 0
\(229\) 2.51228 + 4.35140i 0.166016 + 0.287549i 0.937016 0.349287i \(-0.113576\pi\)
−0.770999 + 0.636836i \(0.780243\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.72393 + 13.3782i 0.506011 + 0.876438i 0.999976 + 0.00695541i \(0.00221399\pi\)
−0.493964 + 0.869482i \(0.664453\pi\)
\(234\) 0 0
\(235\) 3.72981 6.46022i 0.243306 0.421418i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.25381 −0.598579 −0.299290 0.954162i \(-0.596750\pi\)
−0.299290 + 0.954162i \(0.596750\pi\)
\(240\) 0 0
\(241\) 8.16387 14.1402i 0.525881 0.910853i −0.473664 0.880705i \(-0.657069\pi\)
0.999545 0.0301474i \(-0.00959768\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 17.7066 + 17.9649i 1.13123 + 1.14773i
\(246\) 0 0
\(247\) 8.75111 + 15.1574i 0.556820 + 0.964440i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.54803 −0.476427 −0.238214 0.971213i \(-0.576562\pi\)
−0.238214 + 0.971213i \(0.576562\pi\)
\(252\) 0 0
\(253\) 6.14577 0.386381
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.6463 + 21.9041i 0.788856 + 1.36634i 0.926668 + 0.375880i \(0.122659\pi\)
−0.137813 + 0.990458i \(0.544007\pi\)
\(258\) 0 0
\(259\) 5.40302 + 7.09438i 0.335727 + 0.440823i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.7490 20.3499i 0.724474 1.25483i −0.234716 0.972064i \(-0.575416\pi\)
0.959190 0.282762i \(-0.0912505\pi\)
\(264\) 0 0
\(265\) 19.1133 1.17412
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.9078 24.0891i 0.847975 1.46874i −0.0350378 0.999386i \(-0.511155\pi\)
0.883013 0.469349i \(-0.155512\pi\)
\(270\) 0 0
\(271\) −9.57834 16.5902i −0.581843 1.00778i −0.995261 0.0972397i \(-0.968999\pi\)
0.413418 0.910541i \(-0.364335\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −24.0612 41.6753i −1.45095 2.51312i
\(276\) 0 0
\(277\) −13.7905 + 23.8859i −0.828593 + 1.43516i 0.0705495 + 0.997508i \(0.477525\pi\)
−0.899142 + 0.437657i \(0.855809\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.385182 0.0229780 0.0114890 0.999934i \(-0.496343\pi\)
0.0114890 + 0.999934i \(0.496343\pi\)
\(282\) 0 0
\(283\) 7.49904 12.9887i 0.445772 0.772099i −0.552334 0.833623i \(-0.686263\pi\)
0.998106 + 0.0615239i \(0.0195960\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.501675 0.0642002i 0.0296129 0.00378962i
\(288\) 0 0
\(289\) 8.47536 + 14.6797i 0.498550 + 0.863514i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.4647 1.31240 0.656200 0.754587i \(-0.272163\pi\)
0.656200 + 0.754587i \(0.272163\pi\)
\(294\) 0 0
\(295\) 27.3729 1.59371
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.60690 4.51529i −0.150761 0.261126i
\(300\) 0 0
\(301\) −8.98375 + 1.14967i −0.517815 + 0.0662656i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.21215 5.56361i 0.183927 0.318571i
\(306\) 0 0
\(307\) 6.90792 0.394256 0.197128 0.980378i \(-0.436839\pi\)
0.197128 + 0.980378i \(0.436839\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.5890 20.0727i 0.657152 1.13822i −0.324198 0.945989i \(-0.605094\pi\)
0.981350 0.192231i \(-0.0615722\pi\)
\(312\) 0 0
\(313\) −8.21883 14.2354i −0.464556 0.804635i 0.534625 0.845089i \(-0.320453\pi\)
−0.999181 + 0.0404546i \(0.987119\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.18401 12.4431i −0.403494 0.698873i 0.590651 0.806927i \(-0.298871\pi\)
−0.994145 + 0.108055i \(0.965538\pi\)
\(318\) 0 0
\(319\) 17.0965 29.6119i 0.957218 1.65795i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.760001 −0.0422876
\(324\) 0 0
\(325\) −20.4125 + 35.3555i −1.13228 + 1.96117i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.31846 4.35727i −0.182953 0.240224i
\(330\) 0 0
\(331\) −1.87582 3.24902i −0.103105 0.178582i 0.809858 0.586626i \(-0.199544\pi\)
−0.912962 + 0.408044i \(0.866211\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −46.7898 −2.55640
\(336\) 0 0
\(337\) 5.54341 0.301969 0.150984 0.988536i \(-0.451756\pi\)
0.150984 + 0.988536i \(0.451756\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.2067 + 26.3387i 0.823487 + 1.42632i
\(342\) 0 0
\(343\) 17.1864 6.90117i 0.927981 0.372628i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.77609 6.54037i 0.202711 0.351106i −0.746690 0.665172i \(-0.768358\pi\)
0.949401 + 0.314066i \(0.101691\pi\)
\(348\) 0 0
\(349\) 18.2036 0.974415 0.487207 0.873286i \(-0.338016\pi\)
0.487207 + 0.873286i \(0.338016\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.266224 + 0.461114i −0.0141697 + 0.0245426i −0.873023 0.487678i \(-0.837844\pi\)
0.858854 + 0.512221i \(0.171177\pi\)
\(354\) 0 0
\(355\) −10.6223 18.3983i −0.563771 0.976481i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.0550 22.6118i −0.689014 1.19341i −0.972157 0.234330i \(-0.924710\pi\)
0.283143 0.959078i \(-0.408623\pi\)
\(360\) 0 0
\(361\) 3.64075 6.30597i 0.191618 0.331893i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 45.4410 2.37849
\(366\) 0 0
\(367\) −10.5921 + 18.3461i −0.552904 + 0.957658i 0.445159 + 0.895451i \(0.353147\pi\)
−0.998063 + 0.0622062i \(0.980186\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.41727 12.9457i 0.281251 0.672107i
\(372\) 0 0
\(373\) −9.00427 15.5959i −0.466223 0.807523i 0.533032 0.846095i \(-0.321052\pi\)
−0.999256 + 0.0385721i \(0.987719\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −29.0078 −1.49398
\(378\) 0 0
\(379\) −15.9120 −0.817343 −0.408672 0.912681i \(-0.634008\pi\)
−0.408672 + 0.912681i \(0.634008\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.154293 0.267243i −0.00788400 0.0136555i 0.862056 0.506812i \(-0.169176\pi\)
−0.869940 + 0.493157i \(0.835843\pi\)
\(384\) 0 0
\(385\) −56.9927 + 7.29346i −2.90462 + 0.371709i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.38753 4.13533i 0.121053 0.209669i −0.799130 0.601158i \(-0.794706\pi\)
0.920183 + 0.391488i \(0.128040\pi\)
\(390\) 0 0
\(391\) 0.226400 0.0114495
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 22.7293 39.3683i 1.14363 1.98083i
\(396\) 0 0
\(397\) −4.75029 8.22774i −0.238410 0.412939i 0.721848 0.692052i \(-0.243293\pi\)
−0.960258 + 0.279113i \(0.909960\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.67088 16.7505i −0.482941 0.836478i 0.516867 0.856066i \(-0.327098\pi\)
−0.999808 + 0.0195874i \(0.993765\pi\)
\(402\) 0 0
\(403\) 12.9007 22.3446i 0.642629 1.11307i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.3131 −1.00688
\(408\) 0 0
\(409\) 5.34036 9.24977i 0.264064 0.457372i −0.703254 0.710939i \(-0.748270\pi\)
0.967318 + 0.253567i \(0.0816037\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.75829 18.5401i 0.381761 0.912297i
\(414\) 0 0
\(415\) −12.9705 22.4655i −0.636696 1.10279i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −35.0547 −1.71253 −0.856267 0.516533i \(-0.827222\pi\)
−0.856267 + 0.516533i \(0.827222\pi\)
\(420\) 0 0
\(421\) −31.7305 −1.54645 −0.773226 0.634130i \(-0.781358\pi\)
−0.773226 + 0.634130i \(0.781358\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.886375 1.53525i −0.0429955 0.0744704i
\(426\) 0 0
\(427\) −2.85790 3.75253i −0.138303 0.181598i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.4768 30.2707i 0.841829 1.45809i −0.0465186 0.998917i \(-0.514813\pi\)
0.888347 0.459172i \(-0.151854\pi\)
\(432\) 0 0
\(433\) −28.3369 −1.36178 −0.680891 0.732385i \(-0.738407\pi\)
−0.680891 + 0.732385i \(0.738407\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.74543 3.02318i 0.0834955 0.144618i
\(438\) 0 0
\(439\) 4.85457 + 8.40837i 0.231696 + 0.401310i 0.958307 0.285739i \(-0.0922391\pi\)
−0.726611 + 0.687049i \(0.758906\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.03961 8.72885i −0.239439 0.414720i 0.721114 0.692816i \(-0.243630\pi\)
−0.960553 + 0.278096i \(0.910297\pi\)
\(444\) 0 0
\(445\) −16.0245 + 27.7552i −0.759633 + 1.31572i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.9202 1.36483 0.682414 0.730966i \(-0.260930\pi\)
0.682414 + 0.730966i \(0.260930\pi\)
\(450\) 0 0
\(451\) −0.576035 + 0.997723i −0.0271245 + 0.0469809i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 29.5336 + 38.7788i 1.38456 + 1.81798i
\(456\) 0 0
\(457\) 4.10680 + 7.11318i 0.192108 + 0.332741i 0.945949 0.324317i \(-0.105134\pi\)
−0.753841 + 0.657057i \(0.771801\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.1032 1.30890 0.654448 0.756107i \(-0.272901\pi\)
0.654448 + 0.756107i \(0.272901\pi\)
\(462\) 0 0
\(463\) −3.09793 −0.143973 −0.0719866 0.997406i \(-0.522934\pi\)
−0.0719866 + 0.997406i \(0.522934\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.75954 9.97582i −0.266520 0.461626i 0.701441 0.712728i \(-0.252540\pi\)
−0.967961 + 0.251102i \(0.919207\pi\)
\(468\) 0 0
\(469\) −13.2616 + 31.6914i −0.612365 + 1.46337i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.3154 17.8667i 0.474301 0.821513i
\(474\) 0 0
\(475\) −27.3341 −1.25418
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.3542 + 35.2545i −0.930007 + 1.61082i −0.146704 + 0.989180i \(0.546867\pi\)
−0.783303 + 0.621640i \(0.786467\pi\)
\(480\) 0 0
\(481\) 8.61637 + 14.9240i 0.392873 + 0.680475i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.83712 + 17.0384i 0.446681 + 0.773673i
\(486\) 0 0
\(487\) 16.7955 29.0907i 0.761077 1.31822i −0.181219 0.983443i \(-0.558004\pi\)
0.942296 0.334781i \(-0.108662\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.45980 −0.291527 −0.145763 0.989319i \(-0.546564\pi\)
−0.145763 + 0.989319i \(0.546564\pi\)
\(492\) 0 0
\(493\) 0.629804 1.09085i 0.0283650 0.0491295i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.4721 + 1.97999i −0.694019 + 0.0888148i
\(498\) 0 0
\(499\) 6.00584 + 10.4024i 0.268859 + 0.465677i 0.968567 0.248752i \(-0.0800203\pi\)
−0.699709 + 0.714428i \(0.746687\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.3935 −1.53353 −0.766765 0.641928i \(-0.778135\pi\)
−0.766765 + 0.641928i \(0.778135\pi\)
\(504\) 0 0
\(505\) −14.3162 −0.637060
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.7523 27.2838i −0.698208 1.20933i −0.969087 0.246718i \(-0.920648\pi\)
0.270879 0.962613i \(-0.412686\pi\)
\(510\) 0 0
\(511\) 12.8793 30.7778i 0.569748 1.36153i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.41033 11.1030i 0.282473 0.489258i
\(516\) 0 0
\(517\) 12.4760 0.548695
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.3195 + 23.0701i −0.583539 + 1.01072i 0.411517 + 0.911402i \(0.364999\pi\)
−0.995056 + 0.0993168i \(0.968334\pi\)
\(522\) 0 0
\(523\) 15.2006 + 26.3282i 0.664676 + 1.15125i 0.979373 + 0.202060i \(0.0647637\pi\)
−0.314697 + 0.949192i \(0.601903\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.560188 + 0.970273i 0.0244022 + 0.0422658i
\(528\) 0 0
\(529\) 10.9800 19.0180i 0.477393 0.826869i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.977368 0.0423345
\(534\) 0 0
\(535\) −4.43350 + 7.67904i −0.191677 + 0.331994i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.2135 + 40.6692i −0.482998 + 1.75175i
\(540\) 0 0
\(541\) −1.25855 2.17988i −0.0541094 0.0937202i 0.837702 0.546128i \(-0.183899\pi\)
−0.891811 + 0.452407i \(0.850565\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −21.4498 −0.918807
\(546\) 0 0
\(547\) −18.5157 −0.791674 −0.395837 0.918321i \(-0.629546\pi\)
−0.395837 + 0.918321i \(0.629546\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.71099 16.8199i −0.413702 0.716553i
\(552\) 0 0
\(553\) −20.2225 26.5530i −0.859950 1.12915i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.2124 21.1524i 0.517454 0.896257i −0.482340 0.875984i \(-0.660213\pi\)
0.999794 0.0202733i \(-0.00645364\pi\)
\(558\) 0 0
\(559\) −17.5022 −0.740265
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.3700 21.4255i 0.521334 0.902976i −0.478359 0.878165i \(-0.658768\pi\)
0.999692 0.0248116i \(-0.00789858\pi\)
\(564\) 0 0
\(565\) 12.7193 + 22.0304i 0.535104 + 0.926828i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.35982 + 14.4796i 0.350462 + 0.607018i 0.986330 0.164780i \(-0.0526913\pi\)
−0.635869 + 0.771797i \(0.719358\pi\)
\(570\) 0 0
\(571\) 14.8135 25.6578i 0.619926 1.07374i −0.369573 0.929202i \(-0.620496\pi\)
0.989499 0.144542i \(-0.0461708\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.14267 0.339573
\(576\) 0 0
\(577\) 15.3341 26.5594i 0.638367 1.10568i −0.347425 0.937708i \(-0.612944\pi\)
0.985791 0.167976i \(-0.0537230\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −18.8925 + 2.41770i −0.783792 + 0.100303i
\(582\) 0 0
\(583\) 15.9832 + 27.6837i 0.661957 + 1.14654i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.7722 0.650989 0.325495 0.945544i \(-0.394469\pi\)
0.325495 + 0.945544i \(0.394469\pi\)
\(588\) 0 0
\(589\) 17.2751 0.711810
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.53339 + 2.65591i 0.0629688 + 0.109065i 0.895791 0.444475i \(-0.146610\pi\)
−0.832822 + 0.553540i \(0.813276\pi\)
\(594\) 0 0
\(595\) −2.09951 + 0.268678i −0.0860717 + 0.0110147i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.1696 28.0066i 0.660673 1.14432i −0.319766 0.947496i \(-0.603604\pi\)
0.980439 0.196822i \(-0.0630622\pi\)
\(600\) 0 0
\(601\) 29.9679 1.22242 0.611208 0.791470i \(-0.290684\pi\)
0.611208 + 0.791470i \(0.290684\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 45.6215 79.0187i 1.85478 3.21257i
\(606\) 0 0
\(607\) 10.1275 + 17.5414i 0.411064 + 0.711984i 0.995006 0.0998113i \(-0.0318239\pi\)
−0.583942 + 0.811795i \(0.698491\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.29206 9.16611i −0.214094 0.370821i
\(612\) 0 0
\(613\) 12.5419 21.7233i 0.506564 0.877395i −0.493407 0.869799i \(-0.664249\pi\)
0.999971 0.00759665i \(-0.00241811\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −42.0944 −1.69466 −0.847328 0.531070i \(-0.821790\pi\)
−0.847328 + 0.531070i \(0.821790\pi\)
\(618\) 0 0
\(619\) 7.41252 12.8389i 0.297934 0.516037i −0.677729 0.735312i \(-0.737036\pi\)
0.975663 + 0.219275i \(0.0703690\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.2572 + 18.7203i 0.571202 + 0.750011i
\(624\) 0 0
\(625\) 0.582932 + 1.00967i 0.0233173 + 0.0403867i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.748299 −0.0298366
\(630\) 0 0
\(631\) 20.6414 0.821722 0.410861 0.911698i \(-0.365228\pi\)
0.410861 + 0.911698i \(0.365228\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.97984 + 8.62534i 0.197619 + 0.342286i
\(636\) 0 0
\(637\) 34.6361 9.01248i 1.37233 0.357088i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.776633 1.34517i 0.0306752 0.0531309i −0.850280 0.526330i \(-0.823568\pi\)
0.880955 + 0.473199i \(0.156901\pi\)
\(642\) 0 0
\(643\) 21.4121 0.844412 0.422206 0.906500i \(-0.361256\pi\)
0.422206 + 0.906500i \(0.361256\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.7637 25.5715i 0.580422 1.00532i −0.415008 0.909818i \(-0.636221\pi\)
0.995429 0.0955019i \(-0.0304456\pi\)
\(648\) 0 0
\(649\) 22.8902 + 39.6470i 0.898520 + 1.55628i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.03041 + 13.9091i 0.314254 + 0.544304i 0.979279 0.202517i \(-0.0649123\pi\)
−0.665025 + 0.746822i \(0.731579\pi\)
\(654\) 0 0
\(655\) −15.2335 + 26.3853i −0.595224 + 1.03096i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.4200 1.10709 0.553543 0.832821i \(-0.313276\pi\)
0.553543 + 0.832821i \(0.313276\pi\)
\(660\) 0 0
\(661\) −16.9884 + 29.4248i −0.660773 + 1.14449i 0.319640 + 0.947539i \(0.396438\pi\)
−0.980413 + 0.196953i \(0.936895\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.5985 + 30.1068i −0.488550 + 1.16749i
\(666\) 0 0
\(667\) 2.89285 + 5.01055i 0.112011 + 0.194009i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.7445 0.414786
\(672\) 0 0
\(673\) 1.61404 0.0622166 0.0311083 0.999516i \(-0.490096\pi\)
0.0311083 + 0.999516i \(0.490096\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.3479 23.1193i −0.513002 0.888545i −0.999886 0.0150790i \(-0.995200\pi\)
0.486884 0.873466i \(-0.338133\pi\)
\(678\) 0 0
\(679\) 14.3285 1.83364i 0.549877 0.0703687i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.6183 30.5158i 0.674146 1.16765i −0.302572 0.953126i \(-0.597845\pi\)
0.976718 0.214528i \(-0.0688214\pi\)
\(684\) 0 0
\(685\) 65.1711 2.49006
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.5595 23.4857i 0.516575 0.894734i
\(690\) 0 0
\(691\) 14.3904 + 24.9248i 0.547435 + 0.948185i 0.998449 + 0.0556685i \(0.0177290\pi\)
−0.451014 + 0.892517i \(0.648938\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.6545 37.5066i −0.821401 1.42271i
\(696\) 0 0
\(697\) −0.0212202 + 0.0367544i −0.000803771 + 0.00139217i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17.2044 −0.649800 −0.324900 0.945748i \(-0.605331\pi\)
−0.324900 + 0.945748i \(0.605331\pi\)
\(702\) 0 0
\(703\) −5.76903 + 9.99226i −0.217583 + 0.376865i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.05762 + 9.69654i −0.152603 + 0.364676i
\(708\) 0 0
\(709\) −22.8211 39.5272i −0.857063 1.48448i −0.874718 0.484633i \(-0.838953\pi\)
0.0176546 0.999844i \(-0.494380\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.14616 −0.192725
\(714\) 0 0
\(715\) −111.034 −4.15243
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11.1857 19.3741i −0.417155 0.722533i 0.578497 0.815684i \(-0.303639\pi\)
−0.995652 + 0.0931513i \(0.970306\pi\)
\(720\) 0 0
\(721\) −5.70336 7.48874i −0.212404 0.278895i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22.6515 39.2336i 0.841256 1.45710i
\(726\) 0 0
\(727\) 36.6062 1.35765 0.678824 0.734301i \(-0.262490\pi\)
0.678824 + 0.734301i \(0.262490\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.380000 0.658180i 0.0140548 0.0243437i
\(732\) 0 0
\(733\) 19.9734 + 34.5950i 0.737736 + 1.27780i 0.953513 + 0.301353i \(0.0974383\pi\)
−0.215777 + 0.976443i \(0.569228\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.1273 67.7706i −1.44127 2.49636i
\(738\) 0 0
\(739\) 5.42140 9.39015i 0.199430 0.345422i −0.748914 0.662667i \(-0.769424\pi\)
0.948344 + 0.317245i \(0.102758\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.48707 −0.201301 −0.100651 0.994922i \(-0.532092\pi\)
−0.100651 + 0.994922i \(0.532092\pi\)
\(744\) 0 0
\(745\) 8.97353 15.5426i 0.328765 0.569437i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.94454 + 5.17934i 0.144131 + 0.189249i
\(750\) 0 0
\(751\) 13.5621 + 23.4902i 0.494888 + 0.857171i 0.999983 0.00589323i \(-0.00187588\pi\)
−0.505095 + 0.863064i \(0.668543\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.664410 0.0241804
\(756\) 0 0
\(757\) −36.5294 −1.32768 −0.663842 0.747872i \(-0.731075\pi\)
−0.663842 + 0.747872i \(0.731075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.4394 + 45.7944i 0.958429 + 1.66005i 0.726319 + 0.687358i \(0.241230\pi\)
0.232110 + 0.972690i \(0.425437\pi\)
\(762\) 0 0
\(763\) −6.07950 + 14.5282i −0.220093 + 0.525958i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.4191 33.6348i 0.701183 1.21448i
\(768\) 0 0
\(769\) −45.8762 −1.65434 −0.827169 0.561954i \(-0.810050\pi\)
−0.827169 + 0.561954i \(0.810050\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.61224 + 13.1848i −0.273793 + 0.474224i −0.969830 0.243782i \(-0.921612\pi\)
0.696037 + 0.718006i \(0.254945\pi\)
\(774\) 0 0
\(775\) 20.1477 + 34.8968i 0.723726 + 1.25353i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.327195 + 0.566718i 0.0117230 + 0.0203048i
\(780\) 0 0
\(781\) 17.7655 30.7707i 0.635698 1.10106i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.6172 −0.557403
\(786\) 0 0
\(787\) −10.5617 + 18.2935i −0.376485 + 0.652091i −0.990548 0.137166i \(-0.956201\pi\)
0.614063 + 0.789257i \(0.289534\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18.5266 2.37088i 0.658729 0.0842986i
\(792\) 0 0
\(793\) −4.55758 7.89395i −0.161844 0.280322i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −54.1063 −1.91654 −0.958272 0.285856i \(-0.907722\pi\)
−0.958272 + 0.285856i \(0.907722\pi\)
\(798\) 0 0
\(799\) 0.459595 0.0162593
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.9994 + 65.8169i 1.34097 + 2.32263i
\(804\) 0 0
\(805\) 3.75303 8.96864i 0.132277 0.316103i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −27.3280 + 47.3335i −0.960803 + 1.66416i −0.240310 + 0.970696i \(0.577249\pi\)
−0.720493 + 0.693463i \(0.756084\pi\)
\(810\) 0 0
\(811\) −12.7853 −0.448954 −0.224477 0.974479i \(-0.572067\pi\)
−0.224477 + 0.974479i \(0.572067\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −42.7557 + 74.0550i −1.49767 + 2.59403i
\(816\) 0 0
\(817\) −5.85925 10.1485i −0.204989 0.355052i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.7302 + 30.7095i 0.618787 + 1.07177i 0.989707 + 0.143105i \(0.0457088\pi\)
−0.370921 + 0.928664i \(0.620958\pi\)
\(822\) 0 0
\(823\) −3.95726 + 6.85417i −0.137941 + 0.238921i −0.926717 0.375760i \(-0.877382\pi\)
0.788776 + 0.614681i \(0.210715\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −45.6562 −1.58762 −0.793811 0.608164i \(-0.791906\pi\)
−0.793811 + 0.608164i \(0.791906\pi\)
\(828\) 0 0
\(829\) 21.0443 36.4498i 0.730898 1.26595i −0.225602 0.974220i \(-0.572435\pi\)
0.956500 0.291733i \(-0.0942318\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.413085 + 1.49818i −0.0143125 + 0.0519090i
\(834\) 0 0
\(835\) 5.74552 + 9.95154i 0.198832 + 0.344387i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20.7196 −0.715320 −0.357660 0.933852i \(-0.616425\pi\)
−0.357660 + 0.933852i \(0.616425\pi\)
\(840\) 0 0
\(841\) 3.18957 0.109985
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 23.6757 + 41.0075i 0.814468 + 1.41070i
\(846\) 0 0
\(847\) −40.5901 53.2963i −1.39469 1.83128i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.71856 2.97663i 0.0589115 0.102038i
\(852\) 0 0
\(853\) −15.5188 −0.531355 −0.265678 0.964062i \(-0.585596\pi\)
−0.265678 + 0.964062i \(0.585596\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.24091 2.14933i 0.0423888 0.0734196i −0.844053 0.536260i \(-0.819837\pi\)
0.886441 + 0.462841i \(0.153170\pi\)
\(858\) 0 0
\(859\) −17.5198 30.3452i −0.597768 1.03537i −0.993150 0.116848i \(-0.962721\pi\)
0.395382 0.918517i \(-0.370612\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.4778 + 25.0763i 0.492831 + 0.853608i 0.999966 0.00825876i \(-0.00262887\pi\)
−0.507135 + 0.861866i \(0.669296\pi\)
\(864\) 0 0
\(865\) −38.3876 + 66.4893i −1.30522 + 2.26070i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 76.0282 2.57908
\(870\) 0 0
\(871\) −33.1940 + 57.4936i −1.12473 + 1.94810i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28.2274 + 3.61231i −0.954260 + 0.122118i
\(876\) 0 0
\(877\) −9.79611 16.9674i −0.330791 0.572947i 0.651876 0.758325i \(-0.273982\pi\)
−0.982667 + 0.185379i \(0.940649\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.9010 0.535717 0.267858 0.963458i \(-0.413684\pi\)
0.267858 + 0.963458i \(0.413684\pi\)
\(882\) 0 0
\(883\) 0.329844 0.0111001 0.00555007 0.999985i \(-0.498233\pi\)
0.00555007 + 0.999985i \(0.498233\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.31301 10.9345i −0.211970 0.367143i 0.740361 0.672210i \(-0.234655\pi\)
−0.952331 + 0.305066i \(0.901321\pi\)
\(888\) 0 0
\(889\) 7.25351 0.928243i 0.243275 0.0311323i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.54326 6.13711i 0.118571 0.205371i
\(894\) 0 0
\(895\) −1.80276 −0.0602595
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.3157 + 24.7956i −0.477456 + 0.826978i
\(900\) 0 0
\(901\) 0.588794 + 1.01982i 0.0196156 + 0.0339752i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.6018 + 18.3629i 0.352416 + 0.610402i
\(906\) 0 0
\(907\) 4.94626 8.56717i 0.164238 0.284468i −0.772147 0.635445i \(-0.780817\pi\)
0.936384 + 0.350976i \(0.114150\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 59.6371 1.97586 0.987932 0.154889i \(-0.0495020\pi\)
0.987932 + 0.154889i \(0.0495020\pi\)
\(912\) 0 0
\(913\) 21.6928 37.5730i 0.717927 1.24349i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.5535 + 17.7963i 0.447576 + 0.587685i
\(918\) 0 0
\(919\) 3.84759 + 6.66423i 0.126920 + 0.219833i 0.922482 0.386040i \(-0.126157\pi\)
−0.795562 + 0.605873i \(0.792824\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −30.1429 −0.992166
\(924\) 0 0
\(925\) −26.9133 −0.884903
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13.8357 + 23.9642i 0.453936 + 0.786240i 0.998626 0.0523969i \(-0.0166861\pi\)
−0.544690 + 0.838637i \(0.683353\pi\)
\(930\) 0 0
\(931\) 16.8210 + 17.0663i 0.551286 + 0.559327i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.41071 4.17548i 0.0788388 0.136553i
\(936\) 0 0
\(937\) 44.7712 1.46261 0.731305 0.682051i \(-0.238912\pi\)
0.731305 + 0.682051i \(0.238912\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.0046 34.6490i 0.652132 1.12953i −0.330472 0.943816i \(-0.607208\pi\)
0.982605 0.185710i \(-0.0594586\pi\)
\(942\) 0 0
\(943\) −0.0974694 0.168822i −0.00317404 0.00549760i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.4634 38.9078i −0.729963 1.26433i −0.956898 0.290423i \(-0.906204\pi\)
0.226935 0.973910i \(-0.427129\pi\)
\(948\) 0 0
\(949\) 32.2371 55.8362i 1.04646 1.81252i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.8038 1.32176 0.660882 0.750490i \(-0.270182\pi\)
0.660882 + 0.750490i \(0.270182\pi\)
\(954\) 0 0
\(955\) 14.2144 24.6201i 0.459967 0.796687i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.4714 44.1414i 0.596474 1.42540i
\(960\) 0 0
\(961\) 2.76670 + 4.79206i 0.0892483 + 0.154583i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −68.5023 −2.20517
\(966\) 0 0
\(967\) 19.2658 0.619546 0.309773 0.950811i \(-0.399747\pi\)
0.309773 + 0.950811i \(0.399747\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.8684 + 51.7336i 0.958523 + 1.66021i 0.726093 + 0.687597i \(0.241334\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(972\) 0 0
\(973\) −31.5413 + 4.03640i −1.01117 + 0.129401i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −29.7758 + 51.5732i −0.952613 + 1.64997i −0.212873 + 0.977080i \(0.568282\pi\)
−0.739739 + 0.672893i \(0.765051\pi\)
\(978\) 0 0
\(979\) −53.6010 −1.71310
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.06414 + 7.03930i −0.129626 + 0.224519i −0.923532 0.383522i \(-0.874711\pi\)
0.793906 + 0.608041i \(0.208044\pi\)
\(984\) 0 0
\(985\) 17.5147 + 30.3364i 0.558066 + 0.966598i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.74543 + 3.02318i 0.0555016 + 0.0961316i
\(990\) 0 0
\(991\) −27.6811 + 47.9451i −0.879320 + 1.52303i −0.0272305 + 0.999629i \(0.508669\pi\)
−0.852089 + 0.523397i \(0.824665\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −54.3820 −1.72403
\(996\) 0 0
\(997\) 4.83187 8.36904i 0.153027 0.265050i −0.779312 0.626636i \(-0.784431\pi\)
0.932339 + 0.361586i \(0.117765\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.k.f.1621.6 14
3.2 odd 2 2268.2.k.e.1621.2 14
7.2 even 3 inner 2268.2.k.f.1297.6 14
9.2 odd 6 252.2.l.b.193.7 yes 14
9.4 even 3 756.2.i.b.613.6 14
9.5 odd 6 252.2.i.b.25.3 14
9.7 even 3 756.2.l.b.361.2 14
21.2 odd 6 2268.2.k.e.1297.2 14
36.7 odd 6 3024.2.t.j.1873.2 14
36.11 even 6 1008.2.t.j.193.1 14
36.23 even 6 1008.2.q.j.529.5 14
36.31 odd 6 3024.2.q.j.2881.6 14
63.2 odd 6 252.2.i.b.121.3 yes 14
63.4 even 3 5292.2.j.h.3529.6 14
63.5 even 6 1764.2.l.i.961.1 14
63.11 odd 6 1764.2.j.g.589.2 14
63.13 odd 6 5292.2.i.i.2125.2 14
63.16 even 3 756.2.i.b.37.6 14
63.20 even 6 1764.2.l.i.949.1 14
63.23 odd 6 252.2.l.b.205.7 yes 14
63.25 even 3 5292.2.j.h.1765.6 14
63.31 odd 6 5292.2.j.g.3529.2 14
63.32 odd 6 1764.2.j.g.1177.2 14
63.34 odd 6 5292.2.l.i.361.6 14
63.38 even 6 1764.2.j.h.589.6 14
63.40 odd 6 5292.2.l.i.3313.6 14
63.41 even 6 1764.2.i.i.1537.5 14
63.47 even 6 1764.2.i.i.373.5 14
63.52 odd 6 5292.2.j.g.1765.2 14
63.58 even 3 756.2.l.b.289.2 14
63.59 even 6 1764.2.j.h.1177.6 14
63.61 odd 6 5292.2.i.i.1549.2 14
252.23 even 6 1008.2.t.j.961.1 14
252.79 odd 6 3024.2.q.j.2305.6 14
252.191 even 6 1008.2.q.j.625.5 14
252.247 odd 6 3024.2.t.j.289.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.3 14 9.5 odd 6
252.2.i.b.121.3 yes 14 63.2 odd 6
252.2.l.b.193.7 yes 14 9.2 odd 6
252.2.l.b.205.7 yes 14 63.23 odd 6
756.2.i.b.37.6 14 63.16 even 3
756.2.i.b.613.6 14 9.4 even 3
756.2.l.b.289.2 14 63.58 even 3
756.2.l.b.361.2 14 9.7 even 3
1008.2.q.j.529.5 14 36.23 even 6
1008.2.q.j.625.5 14 252.191 even 6
1008.2.t.j.193.1 14 36.11 even 6
1008.2.t.j.961.1 14 252.23 even 6
1764.2.i.i.373.5 14 63.47 even 6
1764.2.i.i.1537.5 14 63.41 even 6
1764.2.j.g.589.2 14 63.11 odd 6
1764.2.j.g.1177.2 14 63.32 odd 6
1764.2.j.h.589.6 14 63.38 even 6
1764.2.j.h.1177.6 14 63.59 even 6
1764.2.l.i.949.1 14 63.20 even 6
1764.2.l.i.961.1 14 63.5 even 6
2268.2.k.e.1297.2 14 21.2 odd 6
2268.2.k.e.1621.2 14 3.2 odd 2
2268.2.k.f.1297.6 14 7.2 even 3 inner
2268.2.k.f.1621.6 14 1.1 even 1 trivial
3024.2.q.j.2305.6 14 252.79 odd 6
3024.2.q.j.2881.6 14 36.31 odd 6
3024.2.t.j.289.2 14 252.247 odd 6
3024.2.t.j.1873.2 14 36.7 odd 6
5292.2.i.i.1549.2 14 63.61 odd 6
5292.2.i.i.2125.2 14 63.13 odd 6
5292.2.j.g.1765.2 14 63.52 odd 6
5292.2.j.g.3529.2 14 63.31 odd 6
5292.2.j.h.1765.6 14 63.25 even 3
5292.2.j.h.3529.6 14 63.4 even 3
5292.2.l.i.361.6 14 63.34 odd 6
5292.2.l.i.3313.6 14 63.40 odd 6