Properties

Label 176.4.m.b.49.1
Level $176$
Weight $4$
Character 176.49
Analytic conductor $10.384$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 71x^{6} - 141x^{5} + 2911x^{4} + 2710x^{3} + 75340x^{2} + 169400x + 5856400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 49.1
Root \(2.22300 + 6.84169i\) of defining polynomial
Character \(\chi\) \(=\) 176.49
Dual form 176.4.m.b.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.31989 - 4.59167i) q^{3} +(4.60996 - 14.1880i) q^{5} +(17.6106 - 12.7948i) q^{7} +(10.5141 + 32.3592i) q^{9} +(29.3767 - 21.6335i) q^{11} +(-13.6056 - 41.8736i) q^{13} +(-94.2810 + 68.4992i) q^{15} +(-7.69900 + 23.6951i) q^{17} +(17.7638 + 12.9061i) q^{19} -170.046 q^{21} -177.749 q^{23} +(-78.9203 - 57.3389i) q^{25} +(16.9569 - 52.1881i) q^{27} +(120.864 - 87.8130i) q^{29} +(-23.2207 - 71.4658i) q^{31} +(-284.992 + 1.83359i) q^{33} +(-100.349 - 308.842i) q^{35} +(-179.874 + 130.686i) q^{37} +(-106.284 + 327.109i) q^{39} +(204.779 + 148.781i) q^{41} -130.623 q^{43} +507.582 q^{45} +(403.775 + 293.360i) q^{47} +(40.4316 - 124.436i) q^{49} +(157.457 - 114.399i) q^{51} +(3.99933 + 12.3087i) q^{53} +(-171.511 - 516.526i) q^{55} +(-53.0044 - 163.131i) q^{57} +(28.7697 - 20.9024i) q^{59} +(166.357 - 511.995i) q^{61} +(599.190 + 435.337i) q^{63} -656.824 q^{65} +519.621 q^{67} +(1123.35 + 816.165i) q^{69} +(-24.2420 + 74.6091i) q^{71} +(-925.571 + 672.467i) q^{73} +(235.486 + 724.752i) q^{75} +(240.543 - 756.848i) q^{77} +(-238.730 - 734.735i) q^{79} +(396.416 - 288.013i) q^{81} +(-166.017 + 510.947i) q^{83} +(300.694 + 218.467i) q^{85} -1167.06 q^{87} +667.089 q^{89} +(-775.368 - 563.338i) q^{91} +(-181.395 + 558.278i) q^{93} +(265.003 - 192.536i) q^{95} +(-55.5161 - 170.861i) q^{97} +(1008.91 + 723.148i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} + 5 q^{5} + q^{7} - 21 q^{9} + 155 q^{11} + 7 q^{13} - 211 q^{15} + 161 q^{17} + 272 q^{19} - 50 q^{21} - 628 q^{23} - 17 q^{25} + 528 q^{27} + 33 q^{29} - 323 q^{31} - 1144 q^{33} + 697 q^{35}+ \cdots + 2213 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.31989 4.59167i −1.21626 0.883667i −0.220479 0.975392i \(-0.570762\pi\)
−0.995784 + 0.0917244i \(0.970762\pi\)
\(4\) 0 0
\(5\) 4.60996 14.1880i 0.412327 1.26901i −0.502293 0.864698i \(-0.667510\pi\)
0.914620 0.404315i \(-0.132490\pi\)
\(6\) 0 0
\(7\) 17.6106 12.7948i 0.950881 0.690856i −0.000134039 1.00000i \(-0.500043\pi\)
0.951015 + 0.309144i \(0.100043\pi\)
\(8\) 0 0
\(9\) 10.5141 + 32.3592i 0.389412 + 1.19849i
\(10\) 0 0
\(11\) 29.3767 21.6335i 0.805219 0.592978i
\(12\) 0 0
\(13\) −13.6056 41.8736i −0.290270 0.893358i −0.984769 0.173865i \(-0.944374\pi\)
0.694500 0.719493i \(-0.255626\pi\)
\(14\) 0 0
\(15\) −94.2810 + 68.4992i −1.62288 + 1.17909i
\(16\) 0 0
\(17\) −7.69900 + 23.6951i −0.109840 + 0.338053i −0.990836 0.135071i \(-0.956874\pi\)
0.880996 + 0.473124i \(0.156874\pi\)
\(18\) 0 0
\(19\) 17.7638 + 12.9061i 0.214489 + 0.155835i 0.689842 0.723960i \(-0.257680\pi\)
−0.475353 + 0.879795i \(0.657680\pi\)
\(20\) 0 0
\(21\) −170.046 −1.76701
\(22\) 0 0
\(23\) −177.749 −1.61145 −0.805723 0.592293i \(-0.798223\pi\)
−0.805723 + 0.592293i \(0.798223\pi\)
\(24\) 0 0
\(25\) −78.9203 57.3389i −0.631362 0.458711i
\(26\) 0 0
\(27\) 16.9569 52.1881i 0.120865 0.371985i
\(28\) 0 0
\(29\) 120.864 87.8130i 0.773928 0.562292i −0.129223 0.991616i \(-0.541248\pi\)
0.903151 + 0.429324i \(0.141248\pi\)
\(30\) 0 0
\(31\) −23.2207 71.4658i −0.134534 0.414053i 0.860983 0.508633i \(-0.169849\pi\)
−0.995517 + 0.0945803i \(0.969849\pi\)
\(32\) 0 0
\(33\) −284.992 + 1.83359i −1.50335 + 0.00967232i
\(34\) 0 0
\(35\) −100.349 308.842i −0.484630 1.49154i
\(36\) 0 0
\(37\) −179.874 + 130.686i −0.799219 + 0.580667i −0.910685 0.413102i \(-0.864445\pi\)
0.111466 + 0.993768i \(0.464445\pi\)
\(38\) 0 0
\(39\) −106.284 + 327.109i −0.436387 + 1.34306i
\(40\) 0 0
\(41\) 204.779 + 148.781i 0.780029 + 0.566724i 0.904988 0.425438i \(-0.139880\pi\)
−0.124959 + 0.992162i \(0.539880\pi\)
\(42\) 0 0
\(43\) −130.623 −0.463253 −0.231626 0.972805i \(-0.574405\pi\)
−0.231626 + 0.972805i \(0.574405\pi\)
\(44\) 0 0
\(45\) 507.582 1.68146
\(46\) 0 0
\(47\) 403.775 + 293.360i 1.25312 + 0.910445i 0.998399 0.0565693i \(-0.0180162\pi\)
0.254722 + 0.967014i \(0.418016\pi\)
\(48\) 0 0
\(49\) 40.4316 124.436i 0.117876 0.362786i
\(50\) 0 0
\(51\) 157.457 114.399i 0.432321 0.314100i
\(52\) 0 0
\(53\) 3.99933 + 12.3087i 0.0103651 + 0.0319005i 0.956105 0.293023i \(-0.0946613\pi\)
−0.945740 + 0.324924i \(0.894661\pi\)
\(54\) 0 0
\(55\) −171.511 516.526i −0.420483 1.26633i
\(56\) 0 0
\(57\) −53.0044 163.131i −0.123169 0.379074i
\(58\) 0 0
\(59\) 28.7697 20.9024i 0.0634831 0.0461232i −0.555591 0.831456i \(-0.687508\pi\)
0.619074 + 0.785332i \(0.287508\pi\)
\(60\) 0 0
\(61\) 166.357 511.995i 0.349178 1.07466i −0.610131 0.792301i \(-0.708883\pi\)
0.959309 0.282359i \(-0.0911169\pi\)
\(62\) 0 0
\(63\) 599.190 + 435.337i 1.19827 + 0.870592i
\(64\) 0 0
\(65\) −656.824 −1.25337
\(66\) 0 0
\(67\) 519.621 0.947491 0.473745 0.880662i \(-0.342902\pi\)
0.473745 + 0.880662i \(0.342902\pi\)
\(68\) 0 0
\(69\) 1123.35 + 816.165i 1.95994 + 1.42398i
\(70\) 0 0
\(71\) −24.2420 + 74.6091i −0.0405210 + 0.124711i −0.969271 0.245997i \(-0.920885\pi\)
0.928750 + 0.370708i \(0.120885\pi\)
\(72\) 0 0
\(73\) −925.571 + 672.467i −1.48397 + 1.07817i −0.507722 + 0.861521i \(0.669512\pi\)
−0.976250 + 0.216648i \(0.930488\pi\)
\(74\) 0 0
\(75\) 235.486 + 724.752i 0.362555 + 1.11583i
\(76\) 0 0
\(77\) 240.543 756.848i 0.356005 1.12014i
\(78\) 0 0
\(79\) −238.730 734.735i −0.339990 1.04638i −0.964212 0.265134i \(-0.914584\pi\)
0.624222 0.781247i \(-0.285416\pi\)
\(80\) 0 0
\(81\) 396.416 288.013i 0.543780 0.395079i
\(82\) 0 0
\(83\) −166.017 + 510.947i −0.219551 + 0.675708i 0.779248 + 0.626715i \(0.215601\pi\)
−0.998799 + 0.0489926i \(0.984399\pi\)
\(84\) 0 0
\(85\) 300.694 + 218.467i 0.383704 + 0.278777i
\(86\) 0 0
\(87\) −1167.06 −1.43818
\(88\) 0 0
\(89\) 667.089 0.794509 0.397255 0.917708i \(-0.369963\pi\)
0.397255 + 0.917708i \(0.369963\pi\)
\(90\) 0 0
\(91\) −775.368 563.338i −0.893194 0.648943i
\(92\) 0 0
\(93\) −181.395 + 558.278i −0.202256 + 0.622481i
\(94\) 0 0
\(95\) 265.003 192.536i 0.286197 0.207934i
\(96\) 0 0
\(97\) −55.5161 170.861i −0.0581114 0.178848i 0.917787 0.397072i \(-0.129974\pi\)
−0.975899 + 0.218224i \(0.929974\pi\)
\(98\) 0 0
\(99\) 1008.91 + 723.148i 1.02424 + 0.734132i
\(100\) 0 0
\(101\) −126.924 390.633i −0.125044 0.384846i 0.868865 0.495049i \(-0.164850\pi\)
−0.993909 + 0.110203i \(0.964850\pi\)
\(102\) 0 0
\(103\) 1106.46 803.890i 1.05847 0.769026i 0.0846679 0.996409i \(-0.473017\pi\)
0.973805 + 0.227383i \(0.0730171\pi\)
\(104\) 0 0
\(105\) −783.907 + 2412.62i −0.728586 + 2.24236i
\(106\) 0 0
\(107\) −319.756 232.317i −0.288897 0.209896i 0.433892 0.900965i \(-0.357140\pi\)
−0.722789 + 0.691069i \(0.757140\pi\)
\(108\) 0 0
\(109\) 505.826 0.444490 0.222245 0.974991i \(-0.428662\pi\)
0.222245 + 0.974991i \(0.428662\pi\)
\(110\) 0 0
\(111\) 1736.85 1.48518
\(112\) 0 0
\(113\) −1243.96 903.793i −1.03560 0.752404i −0.0661744 0.997808i \(-0.521079\pi\)
−0.969421 + 0.245404i \(0.921079\pi\)
\(114\) 0 0
\(115\) −819.416 + 2521.90i −0.664443 + 2.04494i
\(116\) 0 0
\(117\) 1211.95 880.530i 0.957645 0.695770i
\(118\) 0 0
\(119\) 167.591 + 515.791i 0.129101 + 0.397332i
\(120\) 0 0
\(121\) 394.980 1271.04i 0.296754 0.954954i
\(122\) 0 0
\(123\) −611.031 1880.56i −0.447925 1.37857i
\(124\) 0 0
\(125\) 331.285 240.693i 0.237048 0.172226i
\(126\) 0 0
\(127\) 215.487 663.202i 0.150562 0.463383i −0.847122 0.531399i \(-0.821667\pi\)
0.997684 + 0.0680154i \(0.0216667\pi\)
\(128\) 0 0
\(129\) 825.525 + 599.779i 0.563437 + 0.409361i
\(130\) 0 0
\(131\) 259.910 0.173347 0.0866735 0.996237i \(-0.472376\pi\)
0.0866735 + 0.996237i \(0.472376\pi\)
\(132\) 0 0
\(133\) 477.962 0.311613
\(134\) 0 0
\(135\) −662.273 481.170i −0.422218 0.306759i
\(136\) 0 0
\(137\) −643.856 + 1981.58i −0.401520 + 1.23575i 0.522245 + 0.852795i \(0.325094\pi\)
−0.923766 + 0.382958i \(0.874906\pi\)
\(138\) 0 0
\(139\) 140.307 101.939i 0.0856163 0.0622039i −0.544154 0.838986i \(-0.683149\pi\)
0.629770 + 0.776782i \(0.283149\pi\)
\(140\) 0 0
\(141\) −1204.80 3708.00i −0.719594 2.21468i
\(142\) 0 0
\(143\) −1305.56 935.772i −0.763473 0.547225i
\(144\) 0 0
\(145\) −688.711 2119.63i −0.394444 1.21397i
\(146\) 0 0
\(147\) −826.891 + 600.772i −0.463951 + 0.337080i
\(148\) 0 0
\(149\) −138.766 + 427.077i −0.0762961 + 0.234815i −0.981930 0.189246i \(-0.939396\pi\)
0.905634 + 0.424061i \(0.139396\pi\)
\(150\) 0 0
\(151\) 23.0859 + 16.7729i 0.0124418 + 0.00903947i 0.593989 0.804473i \(-0.297552\pi\)
−0.581547 + 0.813513i \(0.697552\pi\)
\(152\) 0 0
\(153\) −847.702 −0.447926
\(154\) 0 0
\(155\) −1121.00 −0.580910
\(156\) 0 0
\(157\) −1394.63 1013.26i −0.708941 0.515076i 0.173891 0.984765i \(-0.444366\pi\)
−0.882832 + 0.469689i \(0.844366\pi\)
\(158\) 0 0
\(159\) 31.2420 96.1531i 0.0155827 0.0479587i
\(160\) 0 0
\(161\) −3130.26 + 2274.27i −1.53229 + 1.11328i
\(162\) 0 0
\(163\) −1025.39 3155.82i −0.492727 1.51646i −0.820470 0.571690i \(-0.806288\pi\)
0.327743 0.944767i \(-0.393712\pi\)
\(164\) 0 0
\(165\) −1287.78 + 4051.91i −0.607599 + 1.91176i
\(166\) 0 0
\(167\) 931.871 + 2868.00i 0.431799 + 1.32894i 0.896332 + 0.443384i \(0.146222\pi\)
−0.464533 + 0.885556i \(0.653778\pi\)
\(168\) 0 0
\(169\) 209.120 151.934i 0.0951842 0.0691554i
\(170\) 0 0
\(171\) −230.862 + 710.519i −0.103242 + 0.317747i
\(172\) 0 0
\(173\) 1787.45 + 1298.66i 0.785534 + 0.570724i 0.906635 0.421917i \(-0.138643\pi\)
−0.121101 + 0.992640i \(0.538643\pi\)
\(174\) 0 0
\(175\) −2123.47 −0.917254
\(176\) 0 0
\(177\) −277.799 −0.117970
\(178\) 0 0
\(179\) −1837.95 1335.35i −0.767457 0.557590i 0.133731 0.991018i \(-0.457304\pi\)
−0.901189 + 0.433427i \(0.857304\pi\)
\(180\) 0 0
\(181\) −192.961 + 593.873i −0.0792413 + 0.243880i −0.982828 0.184527i \(-0.940925\pi\)
0.903586 + 0.428406i \(0.140925\pi\)
\(182\) 0 0
\(183\) −3402.27 + 2471.89i −1.37433 + 0.998512i
\(184\) 0 0
\(185\) 1024.96 + 3154.51i 0.407333 + 1.25364i
\(186\) 0 0
\(187\) 286.438 + 862.640i 0.112013 + 0.337340i
\(188\) 0 0
\(189\) −369.116 1136.02i −0.142059 0.437214i
\(190\) 0 0
\(191\) −1087.48 + 790.100i −0.411975 + 0.299317i −0.774401 0.632695i \(-0.781949\pi\)
0.362426 + 0.932013i \(0.381949\pi\)
\(192\) 0 0
\(193\) 1428.82 4397.46i 0.532895 1.64008i −0.215258 0.976557i \(-0.569059\pi\)
0.748154 0.663526i \(-0.230941\pi\)
\(194\) 0 0
\(195\) 4151.06 + 3015.92i 1.52443 + 1.10756i
\(196\) 0 0
\(197\) 664.691 0.240392 0.120196 0.992750i \(-0.461648\pi\)
0.120196 + 0.992750i \(0.461648\pi\)
\(198\) 0 0
\(199\) 3042.82 1.08392 0.541959 0.840405i \(-0.317683\pi\)
0.541959 + 0.840405i \(0.317683\pi\)
\(200\) 0 0
\(201\) −3283.95 2385.93i −1.15240 0.837266i
\(202\) 0 0
\(203\) 1004.93 3092.87i 0.347451 1.06934i
\(204\) 0 0
\(205\) 3054.93 2219.53i 1.04081 0.756190i
\(206\) 0 0
\(207\) −1868.88 5751.81i −0.627517 1.93130i
\(208\) 0 0
\(209\) 801.047 5.15380i 0.265118 0.00170572i
\(210\) 0 0
\(211\) −800.851 2464.77i −0.261293 0.804178i −0.992524 0.122048i \(-0.961054\pi\)
0.731231 0.682130i \(-0.238946\pi\)
\(212\) 0 0
\(213\) 495.787 360.210i 0.159487 0.115874i
\(214\) 0 0
\(215\) −602.168 + 1853.28i −0.191012 + 0.587873i
\(216\) 0 0
\(217\) −1323.32 961.449i −0.413977 0.300772i
\(218\) 0 0
\(219\) 8937.26 2.75764
\(220\) 0 0
\(221\) 1096.95 0.333886
\(222\) 0 0
\(223\) 2133.54 + 1550.11i 0.640684 + 0.465484i 0.860085 0.510150i \(-0.170410\pi\)
−0.219401 + 0.975635i \(0.570410\pi\)
\(224\) 0 0
\(225\) 1025.66 3156.66i 0.303900 0.935308i
\(226\) 0 0
\(227\) 202.796 147.340i 0.0592954 0.0430806i −0.557743 0.830014i \(-0.688332\pi\)
0.617038 + 0.786933i \(0.288332\pi\)
\(228\) 0 0
\(229\) 556.018 + 1711.25i 0.160449 + 0.493810i 0.998672 0.0515169i \(-0.0164056\pi\)
−0.838224 + 0.545327i \(0.816406\pi\)
\(230\) 0 0
\(231\) −4995.40 + 3678.71i −1.42283 + 1.04780i
\(232\) 0 0
\(233\) 982.821 + 3024.81i 0.276338 + 0.850481i 0.988862 + 0.148833i \(0.0475518\pi\)
−0.712524 + 0.701647i \(0.752448\pi\)
\(234\) 0 0
\(235\) 6023.57 4376.38i 1.67206 1.21482i
\(236\) 0 0
\(237\) −1864.91 + 5739.61i −0.511135 + 1.57311i
\(238\) 0 0
\(239\) 4056.25 + 2947.04i 1.09781 + 0.797608i 0.980701 0.195511i \(-0.0626366\pi\)
0.117111 + 0.993119i \(0.462637\pi\)
\(240\) 0 0
\(241\) 6074.13 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(242\) 0 0
\(243\) −5309.35 −1.40163
\(244\) 0 0
\(245\) −1579.10 1147.29i −0.411777 0.299173i
\(246\) 0 0
\(247\) 298.741 919.430i 0.0769572 0.236850i
\(248\) 0 0
\(249\) 3395.31 2466.84i 0.864132 0.627829i
\(250\) 0 0
\(251\) 1721.13 + 5297.09i 0.432816 + 1.33207i 0.895309 + 0.445447i \(0.146955\pi\)
−0.462493 + 0.886623i \(0.653045\pi\)
\(252\) 0 0
\(253\) −5221.68 + 3845.34i −1.29757 + 0.955552i
\(254\) 0 0
\(255\) −897.224 2761.37i −0.220339 0.678133i
\(256\) 0 0
\(257\) 4778.90 3472.08i 1.15992 0.842732i 0.170153 0.985418i \(-0.445574\pi\)
0.989768 + 0.142685i \(0.0455737\pi\)
\(258\) 0 0
\(259\) −1495.58 + 4602.91i −0.358805 + 1.10429i
\(260\) 0 0
\(261\) 4112.34 + 2987.79i 0.975277 + 0.708580i
\(262\) 0 0
\(263\) 6853.74 1.60692 0.803459 0.595360i \(-0.202991\pi\)
0.803459 + 0.595360i \(0.202991\pi\)
\(264\) 0 0
\(265\) 193.072 0.0447559
\(266\) 0 0
\(267\) −4215.93 3063.05i −0.966333 0.702082i
\(268\) 0 0
\(269\) 340.340 1047.46i 0.0771409 0.237415i −0.905049 0.425308i \(-0.860166\pi\)
0.982190 + 0.187893i \(0.0601657\pi\)
\(270\) 0 0
\(271\) −2080.54 + 1511.60i −0.466362 + 0.338832i −0.796022 0.605268i \(-0.793066\pi\)
0.329660 + 0.944100i \(0.393066\pi\)
\(272\) 0 0
\(273\) 2313.58 + 7120.46i 0.512909 + 1.57857i
\(274\) 0 0
\(275\) −3558.86 + 22.8971i −0.780390 + 0.00502090i
\(276\) 0 0
\(277\) −2268.22 6980.85i −0.492000 1.51422i −0.821581 0.570092i \(-0.806908\pi\)
0.329581 0.944127i \(-0.393092\pi\)
\(278\) 0 0
\(279\) 2068.43 1502.80i 0.443848 0.322475i
\(280\) 0 0
\(281\) −2315.45 + 7126.21i −0.491559 + 1.51286i 0.330693 + 0.943738i \(0.392718\pi\)
−0.822252 + 0.569124i \(0.807282\pi\)
\(282\) 0 0
\(283\) −5253.84 3817.14i −1.10356 0.801785i −0.121925 0.992539i \(-0.538907\pi\)
−0.981638 + 0.190754i \(0.938907\pi\)
\(284\) 0 0
\(285\) −2558.85 −0.531835
\(286\) 0 0
\(287\) 5509.91 1.13324
\(288\) 0 0
\(289\) 3472.52 + 2522.93i 0.706802 + 0.513522i
\(290\) 0 0
\(291\) −433.681 + 1334.73i −0.0873638 + 0.268878i
\(292\) 0 0
\(293\) 2172.11 1578.13i 0.433092 0.314660i −0.349792 0.936827i \(-0.613748\pi\)
0.782884 + 0.622168i \(0.213748\pi\)
\(294\) 0 0
\(295\) −163.936 504.544i −0.0323551 0.0995787i
\(296\) 0 0
\(297\) −630.874 1899.95i −0.123256 0.371200i
\(298\) 0 0
\(299\) 2418.38 + 7443.00i 0.467754 + 1.43960i
\(300\) 0 0
\(301\) −2300.35 + 1671.30i −0.440498 + 0.320041i
\(302\) 0 0
\(303\) −991.509 + 3051.55i −0.187989 + 0.578571i
\(304\) 0 0
\(305\) −6497.28 4720.55i −1.21978 0.886223i
\(306\) 0 0
\(307\) −8331.66 −1.54890 −0.774451 0.632633i \(-0.781974\pi\)
−0.774451 + 0.632633i \(0.781974\pi\)
\(308\) 0 0
\(309\) −10683.9 −1.96695
\(310\) 0 0
\(311\) −4061.55 2950.89i −0.740545 0.538037i 0.152337 0.988329i \(-0.451320\pi\)
−0.892882 + 0.450292i \(0.851320\pi\)
\(312\) 0 0
\(313\) 933.873 2874.16i 0.168644 0.519033i −0.830642 0.556807i \(-0.812026\pi\)
0.999286 + 0.0377733i \(0.0120265\pi\)
\(314\) 0 0
\(315\) 8938.80 6494.42i 1.59887 1.16165i
\(316\) 0 0
\(317\) −3257.08 10024.3i −0.577085 1.77609i −0.628966 0.777433i \(-0.716522\pi\)
0.0518809 0.998653i \(-0.483478\pi\)
\(318\) 0 0
\(319\) 1650.88 5194.37i 0.289755 0.911690i
\(320\) 0 0
\(321\) 954.104 + 2936.43i 0.165897 + 0.510578i
\(322\) 0 0
\(323\) −442.576 + 321.550i −0.0762402 + 0.0553917i
\(324\) 0 0
\(325\) −1327.23 + 4084.81i −0.226528 + 0.697183i
\(326\) 0 0
\(327\) −3196.77 2322.59i −0.540617 0.392781i
\(328\) 0 0
\(329\) 10864.2 1.82055
\(330\) 0 0
\(331\) −309.871 −0.0514563 −0.0257281 0.999669i \(-0.508190\pi\)
−0.0257281 + 0.999669i \(0.508190\pi\)
\(332\) 0 0
\(333\) −6120.11 4446.52i −1.00715 0.731736i
\(334\) 0 0
\(335\) 2395.43 7372.39i 0.390676 1.20238i
\(336\) 0 0
\(337\) −9032.40 + 6562.42i −1.46002 + 1.06076i −0.476659 + 0.879088i \(0.658152\pi\)
−0.983358 + 0.181677i \(0.941848\pi\)
\(338\) 0 0
\(339\) 3711.80 + 11423.7i 0.594682 + 1.83024i
\(340\) 0 0
\(341\) −2228.20 1597.08i −0.353854 0.253627i
\(342\) 0 0
\(343\) 1427.13 + 4392.25i 0.224658 + 0.691425i
\(344\) 0 0
\(345\) 16758.4 12175.7i 2.61519 1.90005i
\(346\) 0 0
\(347\) −777.327 + 2392.37i −0.120257 + 0.370112i −0.993007 0.118055i \(-0.962334\pi\)
0.872750 + 0.488167i \(0.162334\pi\)
\(348\) 0 0
\(349\) 9203.85 + 6686.99i 1.41166 + 1.02563i 0.993078 + 0.117457i \(0.0374744\pi\)
0.418587 + 0.908177i \(0.362526\pi\)
\(350\) 0 0
\(351\) −2416.01 −0.367400
\(352\) 0 0
\(353\) 6210.08 0.936343 0.468172 0.883638i \(-0.344913\pi\)
0.468172 + 0.883638i \(0.344913\pi\)
\(354\) 0 0
\(355\) 946.799 + 687.889i 0.141552 + 0.102843i
\(356\) 0 0
\(357\) 1309.19 4029.27i 0.194088 0.597343i
\(358\) 0 0
\(359\) −2012.43 + 1462.12i −0.295856 + 0.214952i −0.725804 0.687902i \(-0.758532\pi\)
0.429948 + 0.902854i \(0.358532\pi\)
\(360\) 0 0
\(361\) −1970.56 6064.77i −0.287296 0.884207i
\(362\) 0 0
\(363\) −8332.44 + 6219.24i −1.20479 + 0.899244i
\(364\) 0 0
\(365\) 5274.11 + 16232.0i 0.756328 + 2.32774i
\(366\) 0 0
\(367\) 5436.21 3949.64i 0.773209 0.561770i −0.129724 0.991550i \(-0.541409\pi\)
0.902933 + 0.429781i \(0.141409\pi\)
\(368\) 0 0
\(369\) −2661.35 + 8190.80i −0.375459 + 1.15554i
\(370\) 0 0
\(371\) 227.918 + 165.592i 0.0318946 + 0.0231728i
\(372\) 0 0
\(373\) −8614.37 −1.19580 −0.597902 0.801569i \(-0.703999\pi\)
−0.597902 + 0.801569i \(0.703999\pi\)
\(374\) 0 0
\(375\) −3198.87 −0.440503
\(376\) 0 0
\(377\) −5321.47 3866.28i −0.726976 0.528179i
\(378\) 0 0
\(379\) 2474.95 7617.10i 0.335434 1.03236i −0.631074 0.775723i \(-0.717386\pi\)
0.966508 0.256637i \(-0.0826144\pi\)
\(380\) 0 0
\(381\) −4407.06 + 3201.92i −0.592600 + 0.430549i
\(382\) 0 0
\(383\) −2475.83 7619.82i −0.330310 1.01659i −0.968986 0.247115i \(-0.920517\pi\)
0.638676 0.769476i \(-0.279483\pi\)
\(384\) 0 0
\(385\) −9629.27 6901.86i −1.27468 0.913639i
\(386\) 0 0
\(387\) −1373.39 4226.86i −0.180396 0.555203i
\(388\) 0 0
\(389\) −6496.09 + 4719.68i −0.846696 + 0.615160i −0.924233 0.381829i \(-0.875294\pi\)
0.0775373 + 0.996989i \(0.475294\pi\)
\(390\) 0 0
\(391\) 1368.49 4211.78i 0.177001 0.544754i
\(392\) 0 0
\(393\) −1642.60 1193.42i −0.210836 0.153181i
\(394\) 0 0
\(395\) −11524.9 −1.46806
\(396\) 0 0
\(397\) 4435.00 0.560670 0.280335 0.959902i \(-0.409554\pi\)
0.280335 + 0.959902i \(0.409554\pi\)
\(398\) 0 0
\(399\) −3020.67 2194.64i −0.379004 0.275363i
\(400\) 0 0
\(401\) −1214.19 + 3736.90i −0.151207 + 0.465366i −0.997757 0.0669429i \(-0.978675\pi\)
0.846550 + 0.532309i \(0.178675\pi\)
\(402\) 0 0
\(403\) −2676.60 + 1944.67i −0.330847 + 0.240374i
\(404\) 0 0
\(405\) −2258.86 6952.07i −0.277145 0.852965i
\(406\) 0 0
\(407\) −2456.90 + 7730.44i −0.299223 + 0.941483i
\(408\) 0 0
\(409\) −4500.59 13851.4i −0.544107 1.67459i −0.723103 0.690740i \(-0.757285\pi\)
0.178996 0.983850i \(-0.442715\pi\)
\(410\) 0 0
\(411\) 13167.9 9567.02i 1.58035 1.14819i
\(412\) 0 0
\(413\) 239.208 736.208i 0.0285004 0.0877153i
\(414\) 0 0
\(415\) 6483.98 + 4710.89i 0.766955 + 0.557225i
\(416\) 0 0
\(417\) −1354.79 −0.159099
\(418\) 0 0
\(419\) −4028.77 −0.469734 −0.234867 0.972028i \(-0.575465\pi\)
−0.234867 + 0.972028i \(0.575465\pi\)
\(420\) 0 0
\(421\) 6898.98 + 5012.40i 0.798659 + 0.580260i 0.910521 0.413464i \(-0.135681\pi\)
−0.111861 + 0.993724i \(0.535681\pi\)
\(422\) 0 0
\(423\) −5247.54 + 16150.3i −0.603177 + 1.85639i
\(424\) 0 0
\(425\) 1966.26 1428.57i 0.224418 0.163049i
\(426\) 0 0
\(427\) −3621.24 11145.0i −0.410408 1.26310i
\(428\) 0 0
\(429\) 3954.25 + 11908.7i 0.445019 + 1.34023i
\(430\) 0 0
\(431\) −4145.53 12758.6i −0.463302 1.42590i −0.861105 0.508427i \(-0.830227\pi\)
0.397803 0.917471i \(-0.369773\pi\)
\(432\) 0 0
\(433\) −3343.11 + 2428.91i −0.371038 + 0.269575i −0.757641 0.652671i \(-0.773648\pi\)
0.386603 + 0.922246i \(0.373648\pi\)
\(434\) 0 0
\(435\) −5380.08 + 16558.2i −0.593000 + 1.82507i
\(436\) 0 0
\(437\) −3157.50 2294.06i −0.345637 0.251120i
\(438\) 0 0
\(439\) −3358.46 −0.365126 −0.182563 0.983194i \(-0.558439\pi\)
−0.182563 + 0.983194i \(0.558439\pi\)
\(440\) 0 0
\(441\) 4451.74 0.480698
\(442\) 0 0
\(443\) −357.383 259.654i −0.0383290 0.0278477i 0.568456 0.822714i \(-0.307541\pi\)
−0.606785 + 0.794866i \(0.707541\pi\)
\(444\) 0 0
\(445\) 3075.25 9464.66i 0.327598 1.00824i
\(446\) 0 0
\(447\) 2837.98 2061.91i 0.300295 0.218177i
\(448\) 0 0
\(449\) −126.227 388.486i −0.0132673 0.0408325i 0.944204 0.329362i \(-0.106834\pi\)
−0.957471 + 0.288530i \(0.906834\pi\)
\(450\) 0 0
\(451\) 9234.40 59.4126i 0.964148 0.00620317i
\(452\) 0 0
\(453\) −68.8849 212.006i −0.00714458 0.0219888i
\(454\) 0 0
\(455\) −11567.0 + 8403.95i −1.19181 + 0.865897i
\(456\) 0 0
\(457\) 470.585 1448.31i 0.0481686 0.148248i −0.924079 0.382201i \(-0.875166\pi\)
0.972248 + 0.233953i \(0.0751663\pi\)
\(458\) 0 0
\(459\) 1106.05 + 803.592i 0.112475 + 0.0817178i
\(460\) 0 0
\(461\) −13861.4 −1.40041 −0.700203 0.713944i \(-0.746907\pi\)
−0.700203 + 0.713944i \(0.746907\pi\)
\(462\) 0 0
\(463\) 6502.26 0.652669 0.326334 0.945254i \(-0.394186\pi\)
0.326334 + 0.945254i \(0.394186\pi\)
\(464\) 0 0
\(465\) 7084.62 + 5147.27i 0.706540 + 0.513331i
\(466\) 0 0
\(467\) −131.015 + 403.223i −0.0129821 + 0.0399548i −0.957338 0.288971i \(-0.906687\pi\)
0.944356 + 0.328926i \(0.106687\pi\)
\(468\) 0 0
\(469\) 9150.83 6648.46i 0.900951 0.654579i
\(470\) 0 0
\(471\) 4161.37 + 12807.4i 0.407104 + 1.25294i
\(472\) 0 0
\(473\) −3837.28 + 2825.84i −0.373020 + 0.274699i
\(474\) 0 0
\(475\) −661.898 2037.11i −0.0639368 0.196777i
\(476\) 0 0
\(477\) −356.249 + 258.830i −0.0341961 + 0.0248449i
\(478\) 0 0
\(479\) −1408.29 + 4334.29i −0.134335 + 0.413442i −0.995486 0.0949081i \(-0.969744\pi\)
0.861151 + 0.508350i \(0.169744\pi\)
\(480\) 0 0
\(481\) 7919.59 + 5753.92i 0.750732 + 0.545439i
\(482\) 0 0
\(483\) 30225.6 2.84744
\(484\) 0 0
\(485\) −2680.10 −0.250922
\(486\) 0 0
\(487\) −5427.63 3943.41i −0.505030 0.366926i 0.305905 0.952062i \(-0.401041\pi\)
−0.810935 + 0.585136i \(0.801041\pi\)
\(488\) 0 0
\(489\) −8010.13 + 24652.6i −0.740758 + 2.27982i
\(490\) 0 0
\(491\) 11753.1 8539.14i 1.08027 0.784859i 0.102537 0.994729i \(-0.467304\pi\)
0.977729 + 0.209870i \(0.0673040\pi\)
\(492\) 0 0
\(493\) 1150.20 + 3539.96i 0.105076 + 0.323391i
\(494\) 0 0
\(495\) 14911.1 10980.8i 1.35394 0.997070i
\(496\) 0 0
\(497\) 527.695 + 1624.08i 0.0476265 + 0.146579i
\(498\) 0 0
\(499\) −7847.09 + 5701.24i −0.703976 + 0.511468i −0.881225 0.472698i \(-0.843280\pi\)
0.177249 + 0.984166i \(0.443280\pi\)
\(500\) 0 0
\(501\) 7279.61 22404.3i 0.649159 1.99791i
\(502\) 0 0
\(503\) 12707.4 + 9232.43i 1.12643 + 0.818397i 0.985171 0.171576i \(-0.0548859\pi\)
0.141256 + 0.989973i \(0.454886\pi\)
\(504\) 0 0
\(505\) −6127.41 −0.539933
\(506\) 0 0
\(507\) −2019.25 −0.176879
\(508\) 0 0
\(509\) 1192.56 + 866.443i 0.103849 + 0.0754507i 0.638498 0.769624i \(-0.279556\pi\)
−0.534649 + 0.845074i \(0.679556\pi\)
\(510\) 0 0
\(511\) −7695.74 + 23685.0i −0.666222 + 2.05042i
\(512\) 0 0
\(513\) 974.766 708.209i 0.0838928 0.0609517i
\(514\) 0 0
\(515\) −6304.85 19404.3i −0.539466 1.66031i
\(516\) 0 0
\(517\) 18208.0 117.147i 1.54891 0.00996542i
\(518\) 0 0
\(519\) −5333.48 16414.8i −0.451086 1.38830i
\(520\) 0 0
\(521\) 7501.89 5450.44i 0.630832 0.458326i −0.225856 0.974161i \(-0.572518\pi\)
0.856688 + 0.515834i \(0.172518\pi\)
\(522\) 0 0
\(523\) 1311.01 4034.86i 0.109610 0.337346i −0.881174 0.472791i \(-0.843246\pi\)
0.990785 + 0.135445i \(0.0432464\pi\)
\(524\) 0 0
\(525\) 13420.1 + 9750.28i 1.11562 + 0.810547i
\(526\) 0 0
\(527\) 1872.17 0.154749
\(528\) 0 0
\(529\) 19427.7 1.59676
\(530\) 0 0
\(531\) 978.875 + 711.194i 0.0799992 + 0.0581228i
\(532\) 0 0
\(533\) 3443.86 10599.1i 0.279869 0.861348i
\(534\) 0 0
\(535\) −4770.17 + 3465.73i −0.385481 + 0.280068i
\(536\) 0 0
\(537\) 5484.16 + 16878.5i 0.440706 + 1.35635i
\(538\) 0 0
\(539\) −1504.24 4530.19i −0.120208 0.362020i
\(540\) 0 0
\(541\) −2014.87 6201.13i −0.160122 0.492805i 0.838522 0.544868i \(-0.183420\pi\)
−0.998644 + 0.0520633i \(0.983420\pi\)
\(542\) 0 0
\(543\) 3946.36 2867.20i 0.311887 0.226599i
\(544\) 0 0
\(545\) 2331.84 7176.66i 0.183275 0.564063i
\(546\) 0 0
\(547\) 5154.07 + 3744.65i 0.402874 + 0.292705i 0.770711 0.637185i \(-0.219901\pi\)
−0.367836 + 0.929890i \(0.619901\pi\)
\(548\) 0 0
\(549\) 18316.8 1.42394
\(550\) 0 0
\(551\) 3280.33 0.253624
\(552\) 0 0
\(553\) −13605.0 9884.59i −1.04619 0.760100i
\(554\) 0 0
\(555\) 8006.81 24642.4i 0.612379 1.88471i
\(556\) 0 0
\(557\) −4938.23 + 3587.84i −0.375655 + 0.272929i −0.759552 0.650447i \(-0.774582\pi\)
0.383897 + 0.923376i \(0.374582\pi\)
\(558\) 0 0
\(559\) 1777.20 + 5469.67i 0.134468 + 0.413851i
\(560\) 0 0
\(561\) 2150.70 6767.02i 0.161859 0.509276i
\(562\) 0 0
\(563\) 4200.34 + 12927.3i 0.314429 + 0.967711i 0.975989 + 0.217820i \(0.0698945\pi\)
−0.661561 + 0.749892i \(0.730106\pi\)
\(564\) 0 0
\(565\) −18557.6 + 13482.9i −1.38181 + 1.00395i
\(566\) 0 0
\(567\) 3296.03 10144.1i 0.244127 0.751347i
\(568\) 0 0
\(569\) −13913.1 10108.5i −1.02508 0.744761i −0.0577589 0.998331i \(-0.518395\pi\)
−0.967317 + 0.253569i \(0.918395\pi\)
\(570\) 0 0
\(571\) −2475.65 −0.181441 −0.0907203 0.995876i \(-0.528917\pi\)
−0.0907203 + 0.995876i \(0.528917\pi\)
\(572\) 0 0
\(573\) 10500.6 0.765567
\(574\) 0 0
\(575\) 14028.0 + 10191.9i 1.01741 + 0.739188i
\(576\) 0 0
\(577\) −6285.32 + 19344.2i −0.453485 + 1.39568i 0.419419 + 0.907793i \(0.362234\pi\)
−0.872904 + 0.487892i \(0.837766\pi\)
\(578\) 0 0
\(579\) −29221.7 + 21230.8i −2.09743 + 1.52387i
\(580\) 0 0
\(581\) 3613.83 + 11122.2i 0.258050 + 0.794196i
\(582\) 0 0
\(583\) 383.767 + 275.068i 0.0272625 + 0.0195406i
\(584\) 0 0
\(585\) −6905.94 21254.3i −0.488078 1.50215i
\(586\) 0 0
\(587\) −11988.4 + 8710.07i −0.842953 + 0.612441i −0.923194 0.384334i \(-0.874431\pi\)
0.0802411 + 0.996775i \(0.474431\pi\)
\(588\) 0 0
\(589\) 509.862 1569.19i 0.0356681 0.109775i
\(590\) 0 0
\(591\) −4200.77 3052.04i −0.292380 0.212427i
\(592\) 0 0
\(593\) 11123.2 0.770281 0.385140 0.922858i \(-0.374153\pi\)
0.385140 + 0.922858i \(0.374153\pi\)
\(594\) 0 0
\(595\) 8090.63 0.557451
\(596\) 0 0
\(597\) −19230.3 13971.6i −1.31833 0.957824i
\(598\) 0 0
\(599\) −2560.26 + 7879.67i −0.174640 + 0.537487i −0.999617 0.0276796i \(-0.991188\pi\)
0.824977 + 0.565167i \(0.191188\pi\)
\(600\) 0 0
\(601\) −22101.0 + 16057.3i −1.50003 + 1.08984i −0.529660 + 0.848210i \(0.677680\pi\)
−0.970370 + 0.241625i \(0.922320\pi\)
\(602\) 0 0
\(603\) 5463.37 + 16814.5i 0.368965 + 1.13556i
\(604\) 0 0
\(605\) −16212.7 11463.4i −1.08949 0.770338i
\(606\) 0 0
\(607\) −5045.53 15528.6i −0.337384 1.03836i −0.965536 0.260270i \(-0.916188\pi\)
0.628152 0.778091i \(-0.283812\pi\)
\(608\) 0 0
\(609\) −20552.5 + 14932.3i −1.36754 + 0.993574i
\(610\) 0 0
\(611\) 6790.45 20898.9i 0.449611 1.38376i
\(612\) 0 0
\(613\) 17009.8 + 12358.4i 1.12075 + 0.814274i 0.984323 0.176376i \(-0.0564374\pi\)
0.136429 + 0.990650i \(0.456437\pi\)
\(614\) 0 0
\(615\) −29498.2 −1.93412
\(616\) 0 0
\(617\) 871.824 0.0568854 0.0284427 0.999595i \(-0.490945\pi\)
0.0284427 + 0.999595i \(0.490945\pi\)
\(618\) 0 0
\(619\) 7602.75 + 5523.72i 0.493668 + 0.358671i 0.806593 0.591107i \(-0.201309\pi\)
−0.312925 + 0.949778i \(0.601309\pi\)
\(620\) 0 0
\(621\) −3014.08 + 9276.38i −0.194768 + 0.599434i
\(622\) 0 0
\(623\) 11747.8 8535.29i 0.755484 0.548891i
\(624\) 0 0
\(625\) −5655.84 17406.9i −0.361974 1.11404i
\(626\) 0 0
\(627\) −5086.19 3645.57i −0.323960 0.232201i
\(628\) 0 0
\(629\) −1711.77 5268.28i −0.108510 0.333959i
\(630\) 0 0
\(631\) −11759.8 + 8544.01i −0.741919 + 0.539036i −0.893311 0.449438i \(-0.851624\pi\)
0.151393 + 0.988474i \(0.451624\pi\)
\(632\) 0 0
\(633\) −6256.10 + 19254.3i −0.392824 + 1.20899i
\(634\) 0 0
\(635\) −8416.12 6114.67i −0.525958 0.382131i
\(636\) 0 0
\(637\) −5760.67 −0.358314
\(638\) 0 0
\(639\) −2669.17 −0.165244
\(640\) 0 0
\(641\) 9238.70 + 6712.31i 0.569277 + 0.413604i 0.834843 0.550489i \(-0.185559\pi\)
−0.265565 + 0.964093i \(0.585559\pi\)
\(642\) 0 0
\(643\) −7407.11 + 22796.7i −0.454289 + 1.39816i 0.417679 + 0.908595i \(0.362844\pi\)
−0.871968 + 0.489563i \(0.837156\pi\)
\(644\) 0 0
\(645\) 12315.3 8947.58i 0.751805 0.546218i
\(646\) 0 0
\(647\) −2569.24 7907.32i −0.156117 0.480478i 0.842156 0.539234i \(-0.181286\pi\)
−0.998272 + 0.0587569i \(0.981286\pi\)
\(648\) 0 0
\(649\) 392.966 1236.44i 0.0237677 0.0747833i
\(650\) 0 0
\(651\) 3948.59 + 12152.5i 0.237723 + 0.731635i
\(652\) 0 0
\(653\) 24334.7 17680.2i 1.45833 1.05954i 0.474536 0.880236i \(-0.342616\pi\)
0.983794 0.179303i \(-0.0573843\pi\)
\(654\) 0 0
\(655\) 1198.17 3687.60i 0.0714757 0.219980i
\(656\) 0 0
\(657\) −31492.1 22880.3i −1.87005 1.35867i
\(658\) 0 0
\(659\) 10041.6 0.593572 0.296786 0.954944i \(-0.404085\pi\)
0.296786 + 0.954944i \(0.404085\pi\)
\(660\) 0 0
\(661\) 1402.50 0.0825281 0.0412640 0.999148i \(-0.486862\pi\)
0.0412640 + 0.999148i \(0.486862\pi\)
\(662\) 0 0
\(663\) −6932.60 5036.83i −0.406093 0.295044i
\(664\) 0 0
\(665\) 2203.39 6781.32i 0.128487 0.395441i
\(666\) 0 0
\(667\) −21483.5 + 15608.7i −1.24714 + 0.906102i
\(668\) 0 0
\(669\) −6366.17 19593.1i −0.367908 1.13230i
\(670\) 0 0
\(671\) −6189.24 18639.6i −0.356085 1.07239i
\(672\) 0 0
\(673\) 6299.43 + 19387.7i 0.360810 + 1.11046i 0.952563 + 0.304341i \(0.0984361\pi\)
−0.591753 + 0.806119i \(0.701564\pi\)
\(674\) 0 0
\(675\) −4330.65 + 3146.40i −0.246944 + 0.179415i
\(676\) 0 0
\(677\) −2282.09 + 7023.55i −0.129554 + 0.398725i −0.994703 0.102789i \(-0.967223\pi\)
0.865149 + 0.501514i \(0.167223\pi\)
\(678\) 0 0
\(679\) −3163.81 2298.64i −0.178815 0.129917i
\(680\) 0 0
\(681\) −1958.19 −0.110188
\(682\) 0 0
\(683\) 25844.0 1.44787 0.723935 0.689868i \(-0.242332\pi\)
0.723935 + 0.689868i \(0.242332\pi\)
\(684\) 0 0
\(685\) 25146.5 + 18270.0i 1.40263 + 1.01907i
\(686\) 0 0
\(687\) 4343.51 13368.0i 0.241216 0.742386i
\(688\) 0 0
\(689\) 460.996 334.933i 0.0254899 0.0185195i
\(690\) 0 0
\(691\) −2607.73 8025.78i −0.143564 0.441845i 0.853259 0.521487i \(-0.174622\pi\)
−0.996824 + 0.0796417i \(0.974622\pi\)
\(692\) 0 0
\(693\) 27020.1 173.843i 1.48111 0.00952920i
\(694\) 0 0
\(695\) −799.499 2460.60i −0.0436356 0.134296i
\(696\) 0 0
\(697\) −5101.98 + 3706.80i −0.277261 + 0.201442i
\(698\) 0 0
\(699\) 7677.62 23629.3i 0.415442 1.27860i
\(700\) 0 0
\(701\) 10503.8 + 7631.43i 0.565937 + 0.411177i 0.833627 0.552328i \(-0.186260\pi\)
−0.267690 + 0.963505i \(0.586260\pi\)
\(702\) 0 0
\(703\) −4881.90 −0.261912
\(704\) 0 0
\(705\) −58163.2 −3.10717
\(706\) 0 0
\(707\) −7233.28 5255.29i −0.384775 0.279555i
\(708\) 0 0
\(709\) −5537.15 + 17041.6i −0.293303 + 0.902695i 0.690483 + 0.723349i \(0.257398\pi\)
−0.983786 + 0.179346i \(0.942602\pi\)
\(710\) 0 0
\(711\) 21265.4 15450.2i 1.12168 0.814948i
\(712\) 0 0
\(713\) 4127.45 + 12703.0i 0.216794 + 0.667224i
\(714\) 0 0
\(715\) −19295.3 + 14209.4i −1.00924 + 0.743220i
\(716\) 0 0
\(717\) −12103.2 37250.0i −0.630410 1.94020i
\(718\) 0 0
\(719\) 2845.59 2067.45i 0.147598 0.107236i −0.511536 0.859262i \(-0.670923\pi\)
0.659133 + 0.752026i \(0.270923\pi\)
\(720\) 0 0
\(721\) 9199.75 28313.9i 0.475196 1.46250i
\(722\) 0 0
\(723\) −38387.8 27890.4i −1.97463 1.43465i
\(724\) 0 0
\(725\) −14573.7 −0.746559
\(726\) 0 0
\(727\) 29438.9 1.50183 0.750913 0.660401i \(-0.229614\pi\)
0.750913 + 0.660401i \(0.229614\pi\)
\(728\) 0 0
\(729\) 22851.3 + 16602.5i 1.16097 + 0.843492i
\(730\) 0 0
\(731\) 1005.67 3095.13i 0.0508837 0.156604i
\(732\) 0 0
\(733\) −2779.70 + 2019.57i −0.140069 + 0.101766i −0.655613 0.755097i \(-0.727590\pi\)
0.515544 + 0.856863i \(0.327590\pi\)
\(734\) 0 0
\(735\) 4711.81 + 14501.5i 0.236459 + 0.727747i
\(736\) 0 0
\(737\) 15264.8 11241.3i 0.762937 0.561841i
\(738\) 0 0
\(739\) 10383.5 + 31957.2i 0.516866 + 1.59075i 0.779861 + 0.625953i \(0.215290\pi\)
−0.262995 + 0.964797i \(0.584710\pi\)
\(740\) 0 0
\(741\) −6109.73 + 4438.98i −0.302897 + 0.220067i
\(742\) 0 0
\(743\) 368.875 1135.28i 0.0182136 0.0560557i −0.941537 0.336911i \(-0.890618\pi\)
0.959750 + 0.280855i \(0.0906180\pi\)
\(744\) 0 0
\(745\) 5419.66 + 3937.61i 0.266525 + 0.193641i
\(746\) 0 0
\(747\) −18279.4 −0.895324
\(748\) 0 0
\(749\) −8603.54 −0.419715
\(750\) 0 0
\(751\) 19828.5 + 14406.2i 0.963451 + 0.699988i 0.953950 0.299967i \(-0.0969755\pi\)
0.00950152 + 0.999955i \(0.496976\pi\)
\(752\) 0 0
\(753\) 13445.1 41379.9i 0.650688 2.00261i
\(754\) 0 0
\(755\) 344.399 250.221i 0.0166013 0.0120615i
\(756\) 0 0
\(757\) 3338.57 + 10275.0i 0.160294 + 0.493333i 0.998659 0.0517762i \(-0.0164882\pi\)
−0.838365 + 0.545109i \(0.816488\pi\)
\(758\) 0 0
\(759\) 50657.0 325.918i 2.42257 0.0155864i
\(760\) 0 0
\(761\) 2526.49 + 7775.75i 0.120349 + 0.370395i 0.993025 0.117904i \(-0.0376175\pi\)
−0.872676 + 0.488299i \(0.837617\pi\)
\(762\) 0 0
\(763\) 8907.88 6471.96i 0.422657 0.307078i
\(764\) 0 0
\(765\) −3907.87 + 12027.2i −0.184692 + 0.568424i
\(766\) 0 0
\(767\) −1266.69 920.304i −0.0596317 0.0433250i
\(768\) 0 0
\(769\) −28895.9 −1.35502 −0.677511 0.735513i \(-0.736941\pi\)
−0.677511 + 0.735513i \(0.736941\pi\)
\(770\) 0 0
\(771\) −46144.8 −2.15547
\(772\) 0 0
\(773\) 14559.7 + 10578.3i 0.677460 + 0.492203i 0.872514 0.488589i \(-0.162488\pi\)
−0.195054 + 0.980792i \(0.562488\pi\)
\(774\) 0 0
\(775\) −2265.19 + 6971.55i −0.104991 + 0.323130i
\(776\) 0 0
\(777\) 30586.9 22222.7i 1.41223 1.02604i
\(778\) 0 0
\(779\) 1717.47 + 5285.83i 0.0789919 + 0.243112i
\(780\) 0 0
\(781\) 901.910 + 2716.21i 0.0413225 + 0.124448i
\(782\) 0 0
\(783\) −2533.30 7796.71i −0.115623 0.355851i
\(784\) 0 0
\(785\) −20805.3 + 15115.9i −0.945954 + 0.687276i
\(786\) 0 0
\(787\) 4906.17 15099.6i 0.222219 0.683918i −0.776343 0.630310i \(-0.782928\pi\)
0.998562 0.0536084i \(-0.0170723\pi\)
\(788\) 0 0
\(789\) −43314.9 31470.1i −1.95444 1.41998i
\(790\) 0 0
\(791\) −33470.8 −1.50453
\(792\) 0 0
\(793\) −23702.5 −1.06141
\(794\) 0 0
\(795\) −1220.19 886.523i −0.0544350 0.0395494i
\(796\) 0 0
\(797\) 5098.07 15690.2i 0.226578 0.697336i −0.771549 0.636170i \(-0.780518\pi\)
0.998128 0.0611668i \(-0.0194822\pi\)
\(798\) 0 0
\(799\) −10059.9 + 7308.91i −0.445422 + 0.323618i
\(800\) 0 0
\(801\) 7013.87 + 21586.5i 0.309392 + 0.952210i
\(802\) 0 0
\(803\) −12642.4 + 39778.2i −0.555591 + 1.74812i
\(804\) 0 0
\(805\) 17836.9 + 54896.4i 0.780955 + 2.40353i
\(806\) 0 0
\(807\) −6960.50 + 5057.10i −0.303620 + 0.220593i
\(808\) 0 0
\(809\) −2812.97 + 8657.42i −0.122248 + 0.376241i −0.993390 0.114791i \(-0.963380\pi\)
0.871142 + 0.491032i \(0.163380\pi\)
\(810\) 0 0
\(811\) 29590.8 + 21499.0i 1.28123 + 0.930865i 0.999589 0.0286567i \(-0.00912297\pi\)
0.281636 + 0.959521i \(0.409123\pi\)
\(812\) 0 0
\(813\) 20089.6 0.866633
\(814\) 0 0
\(815\) −49501.7 −2.12757
\(816\) 0 0
\(817\) −2320.36 1685.84i −0.0993626 0.0721912i
\(818\) 0 0
\(819\) 10076.8 31013.3i 0.429930 1.32319i
\(820\) 0 0
\(821\) 2948.23 2142.01i 0.125328 0.0910558i −0.523356 0.852114i \(-0.675320\pi\)
0.648683 + 0.761059i \(0.275320\pi\)
\(822\) 0 0
\(823\) 5221.12 + 16068.9i 0.221138 + 0.680593i 0.998661 + 0.0517380i \(0.0164761\pi\)
−0.777523 + 0.628855i \(0.783524\pi\)
\(824\) 0 0
\(825\) 22596.7 + 16196.4i 0.953597 + 0.683499i
\(826\) 0 0
\(827\) 11983.1 + 36880.1i 0.503860 + 1.55072i 0.802678 + 0.596413i \(0.203408\pi\)
−0.298817 + 0.954310i \(0.596592\pi\)
\(828\) 0 0
\(829\) 10027.2 7285.20i 0.420096 0.305218i −0.357580 0.933882i \(-0.616398\pi\)
0.777677 + 0.628665i \(0.216398\pi\)
\(830\) 0 0
\(831\) −17718.9 + 54533.1i −0.739665 + 2.27645i
\(832\) 0 0
\(833\) 2637.23 + 1916.06i 0.109694 + 0.0796970i
\(834\) 0 0
\(835\) 44987.1 1.86448
\(836\) 0 0
\(837\) −4123.41 −0.170282
\(838\) 0 0
\(839\) 19872.6 + 14438.3i 0.817732 + 0.594117i 0.916062 0.401037i \(-0.131350\pi\)
−0.0983299 + 0.995154i \(0.531350\pi\)
\(840\) 0 0
\(841\) −639.584 + 1968.44i −0.0262243 + 0.0807100i
\(842\) 0 0
\(843\) 47354.6 34405.1i 1.93473 1.40566i
\(844\) 0 0
\(845\) −1191.61 3667.40i −0.0485120 0.149305i
\(846\) 0 0
\(847\) −9306.97 27437.5i −0.377557 1.11306i
\(848\) 0 0
\(849\) 15676.7 + 48247.8i 0.633712 + 1.95036i
\(850\) 0 0
\(851\) 31972.4 23229.3i 1.28790 0.935712i
\(852\) 0 0
\(853\) −3772.37 + 11610.1i −0.151422 + 0.466030i −0.997781 0.0665834i \(-0.978790\pi\)
0.846358 + 0.532614i \(0.178790\pi\)
\(854\) 0 0
\(855\) 9016.57 + 6550.92i 0.360655 + 0.262031i
\(856\) 0 0
\(857\) 7281.72 0.290244 0.145122 0.989414i \(-0.453643\pi\)
0.145122 + 0.989414i \(0.453643\pi\)
\(858\) 0 0
\(859\) −5927.39 −0.235437 −0.117718 0.993047i \(-0.537558\pi\)
−0.117718 + 0.993047i \(0.537558\pi\)
\(860\) 0 0
\(861\) −34822.0 25299.7i −1.37832 1.00141i
\(862\) 0 0
\(863\) 11916.3 36674.5i 0.470028 1.44660i −0.382518 0.923948i \(-0.624943\pi\)
0.852547 0.522651i \(-0.175057\pi\)
\(864\) 0 0
\(865\) 26665.4 19373.6i 1.04815 0.761527i
\(866\) 0 0
\(867\) −10361.5 31889.3i −0.405875 1.24916i
\(868\) 0 0
\(869\) −22908.0 16419.5i −0.894247 0.640959i
\(870\) 0 0
\(871\) −7069.75 21758.4i −0.275028 0.846449i
\(872\) 0 0
\(873\) 4945.22 3592.91i 0.191719 0.139292i
\(874\) 0 0
\(875\) 2754.49 8477.46i 0.106422 0.327532i
\(876\) 0 0
\(877\) −23067.2 16759.3i −0.888170 0.645293i 0.0472301 0.998884i \(-0.484961\pi\)
−0.935400 + 0.353591i \(0.884961\pi\)
\(878\) 0 0
\(879\) −20973.7 −0.804809
\(880\) 0 0
\(881\) 40747.6 1.55826 0.779128 0.626865i \(-0.215662\pi\)
0.779128 + 0.626865i \(0.215662\pi\)
\(882\) 0 0
\(883\) −2908.89 2113.43i −0.110863 0.0805467i 0.530972 0.847389i \(-0.321827\pi\)
−0.641835 + 0.766842i \(0.721827\pi\)
\(884\) 0 0
\(885\) −1280.64 + 3941.41i −0.0486421 + 0.149705i
\(886\) 0 0
\(887\) −6241.81 + 4534.94i −0.236279 + 0.171667i −0.699624 0.714511i \(-0.746649\pi\)
0.463345 + 0.886178i \(0.346649\pi\)
\(888\) 0 0
\(889\) −4690.70 14436.5i −0.176964 0.544639i
\(890\) 0 0
\(891\) 5414.64 17036.7i 0.203588 0.640575i
\(892\) 0 0
\(893\) 3386.43 + 10422.4i 0.126901 + 0.390561i
\(894\) 0 0
\(895\) −27418.8 + 19920.9i −1.02403 + 0.744003i
\(896\) 0 0
\(897\) 18891.9 58143.4i 0.703214 2.16427i
\(898\) 0 0
\(899\) −9082.17 6598.58i −0.336938 0.244800i
\(900\) 0 0
\(901\) −322.446 −0.0119226
\(902\) 0 0
\(903\) 22212.0 0.818571
\(904\) 0 0
\(905\) 7536.32 + 5475.46i 0.276813 + 0.201117i
\(906\) 0 0
\(907\) 10418.1 32063.6i 0.381398 1.17382i −0.557662 0.830068i \(-0.688302\pi\)
0.939060 0.343753i \(-0.111698\pi\)
\(908\) 0 0
\(909\) 11306.1 8214.33i 0.412539 0.299727i
\(910\) 0 0
\(911\) −4644.75 14295.1i −0.168922 0.519887i 0.830382 0.557194i \(-0.188122\pi\)
−0.999304 + 0.0373070i \(0.988122\pi\)
\(912\) 0 0
\(913\) 6176.57 + 18601.5i 0.223894 + 0.674281i
\(914\) 0 0
\(915\) 19386.9 + 59666.7i 0.700449 + 2.15576i
\(916\) 0 0
\(917\) 4577.16 3325.50i 0.164832 0.119758i
\(918\) 0 0
\(919\) 5281.31 16254.2i 0.189570 0.583435i −0.810428 0.585839i \(-0.800765\pi\)
0.999997 + 0.00240379i \(0.000765151\pi\)
\(920\) 0 0
\(921\) 52655.2 + 38256.3i 1.88387 + 1.36871i
\(922\) 0 0
\(923\) 3453.98 0.123173
\(924\) 0 0
\(925\) 21689.1 0.770955
\(926\) 0 0
\(927\) 37646.7 + 27351.9i 1.33385 + 0.969099i
\(928\) 0 0
\(929\) 4066.74 12516.1i 0.143623 0.442025i −0.853209 0.521570i \(-0.825347\pi\)
0.996831 + 0.0795446i \(0.0253466\pi\)
\(930\) 0 0
\(931\) 2324.20 1688.63i 0.0818182 0.0594444i
\(932\) 0 0
\(933\) 12119.0 + 37298.6i 0.425252 + 1.30879i
\(934\) 0 0
\(935\) 13559.6 87.2401i 0.474274 0.00305140i
\(936\) 0 0
\(937\) 1253.46 + 3857.76i 0.0437021 + 0.134501i 0.970527 0.240993i \(-0.0774731\pi\)
−0.926825 + 0.375494i \(0.877473\pi\)
\(938\) 0 0
\(939\) −19099.2 + 13876.4i −0.663768 + 0.482256i
\(940\) 0 0
\(941\) 10320.4 31763.0i 0.357531 1.10037i −0.596996 0.802244i \(-0.703639\pi\)
0.954527 0.298123i \(-0.0963607\pi\)
\(942\) 0 0
\(943\) −36399.3 26445.7i −1.25697 0.913245i
\(944\) 0 0
\(945\) −17819.5 −0.613405
\(946\) 0 0
\(947\) −25660.8 −0.880533 −0.440267 0.897867i \(-0.645116\pi\)
−0.440267 + 0.897867i \(0.645116\pi\)
\(948\) 0 0
\(949\) 40751.6 + 29607.8i 1.39394 + 1.01276i
\(950\) 0 0
\(951\) −25443.7 + 78307.8i −0.867581 + 2.67014i
\(952\) 0 0
\(953\) −39522.7 + 28714.9i −1.34341 + 0.976042i −0.344096 + 0.938935i \(0.611815\pi\)
−0.999311 + 0.0371079i \(0.988185\pi\)
\(954\) 0 0
\(955\) 6196.70 + 19071.5i 0.209969 + 0.646218i
\(956\) 0 0
\(957\) −34284.3 + 25247.6i −1.15805 + 0.852809i
\(958\) 0 0
\(959\) 14015.4 + 43134.8i 0.471929 + 1.45245i
\(960\) 0 0
\(961\) 19533.3 14191.7i 0.655677 0.476377i
\(962\) 0 0
\(963\) 4155.61 12789.7i 0.139058 0.427976i
\(964\) 0 0
\(965\) −55804.3 40544.2i −1.86156 1.35250i
\(966\) 0 0
\(967\) 48861.8 1.62491 0.812456 0.583023i \(-0.198130\pi\)
0.812456 + 0.583023i \(0.198130\pi\)
\(968\) 0 0
\(969\) 4273.48 0.141676
\(970\) 0 0
\(971\) 28224.6 + 20506.4i 0.932822 + 0.677735i 0.946682 0.322169i \(-0.104412\pi\)
−0.0138603 + 0.999904i \(0.504412\pi\)
\(972\) 0 0
\(973\) 1166.59 3590.40i 0.0384370 0.118297i
\(974\) 0 0
\(975\) 27144.1 19721.3i 0.891596 0.647782i
\(976\) 0 0
\(977\) −5875.16 18081.9i −0.192388 0.592109i −0.999997 0.00239112i \(-0.999239\pi\)
0.807609 0.589718i \(-0.200761\pi\)
\(978\) 0 0
\(979\) 19596.9 14431.5i 0.639754 0.471126i
\(980\) 0 0
\(981\) 5318.33 + 16368.1i 0.173090 + 0.532716i
\(982\) 0 0
\(983\) −6025.47 + 4377.76i −0.195506 + 0.142044i −0.681232 0.732068i \(-0.738555\pi\)
0.485726 + 0.874111i \(0.338555\pi\)
\(984\) 0 0
\(985\) 3064.20 9430.63i 0.0991202 0.305061i
\(986\) 0 0
\(987\) −68660.5 49884.8i −2.21427 1.60876i
\(988\) 0 0
\(989\) 23218.2 0.746506
\(990\) 0 0
\(991\) −5313.37 −0.170318 −0.0851588 0.996367i \(-0.527140\pi\)
−0.0851588 + 0.996367i \(0.527140\pi\)
\(992\) 0 0
\(993\) 1958.35 + 1422.82i 0.0625844 + 0.0454702i
\(994\) 0 0
\(995\) 14027.3 43171.5i 0.446929 1.37551i
\(996\) 0 0
\(997\) −43301.8 + 31460.6i −1.37551 + 0.999365i −0.378223 + 0.925714i \(0.623465\pi\)
−0.997284 + 0.0736504i \(0.976535\pi\)
\(998\) 0 0
\(999\) 3770.14 + 11603.3i 0.119401 + 0.367480i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.b.49.1 8
4.3 odd 2 22.4.c.b.5.2 8
11.3 even 5 1936.4.a.bn.1.4 4
11.8 odd 10 1936.4.a.bm.1.4 4
11.9 even 5 inner 176.4.m.b.97.1 8
12.11 even 2 198.4.f.d.181.1 8
44.3 odd 10 242.4.a.n.1.1 4
44.7 even 10 242.4.c.n.3.1 8
44.15 odd 10 242.4.c.r.3.1 8
44.19 even 10 242.4.a.o.1.1 4
44.27 odd 10 242.4.c.r.81.1 8
44.31 odd 10 22.4.c.b.9.2 yes 8
44.35 even 10 242.4.c.q.9.2 8
44.39 even 10 242.4.c.n.81.1 8
44.43 even 2 242.4.c.q.27.2 8
132.47 even 10 2178.4.a.by.1.1 4
132.107 odd 10 2178.4.a.bt.1.1 4
132.119 even 10 198.4.f.d.163.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.4.c.b.5.2 8 4.3 odd 2
22.4.c.b.9.2 yes 8 44.31 odd 10
176.4.m.b.49.1 8 1.1 even 1 trivial
176.4.m.b.97.1 8 11.9 even 5 inner
198.4.f.d.163.1 8 132.119 even 10
198.4.f.d.181.1 8 12.11 even 2
242.4.a.n.1.1 4 44.3 odd 10
242.4.a.o.1.1 4 44.19 even 10
242.4.c.n.3.1 8 44.7 even 10
242.4.c.n.81.1 8 44.39 even 10
242.4.c.q.9.2 8 44.35 even 10
242.4.c.q.27.2 8 44.43 even 2
242.4.c.r.3.1 8 44.15 odd 10
242.4.c.r.81.1 8 44.27 odd 10
1936.4.a.bm.1.4 4 11.8 odd 10
1936.4.a.bn.1.4 4 11.3 even 5
2178.4.a.bt.1.1 4 132.107 odd 10
2178.4.a.by.1.1 4 132.47 even 10