Properties

Label 175.2.x.a.47.9
Level $175$
Weight $2$
Character 175.47
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 47.9
Character \(\chi\) \(=\) 175.47
Dual form 175.2.x.a.108.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.000898858 - 0.0171512i) q^{2} +(0.879015 - 0.711812i) q^{3} +(1.98875 + 0.209026i) q^{4} +(1.43263 - 1.71685i) q^{5} +(-0.0114183 - 0.0157160i) q^{6} +(-2.51481 - 0.822022i) q^{7} +(0.0107461 - 0.0678483i) q^{8} +(-0.357745 + 1.68306i) q^{9} +O(q^{10})\) \(q+(0.000898858 - 0.0171512i) q^{2} +(0.879015 - 0.711812i) q^{3} +(1.98875 + 0.209026i) q^{4} +(1.43263 - 1.71685i) q^{5} +(-0.0114183 - 0.0157160i) q^{6} +(-2.51481 - 0.822022i) q^{7} +(0.0107461 - 0.0678483i) q^{8} +(-0.357745 + 1.68306i) q^{9} +(-0.0281584 - 0.0261145i) q^{10} +(-4.96090 + 1.05447i) q^{11} +(1.89693 - 1.23188i) q^{12} +(0.145799 - 0.286147i) q^{13} +(-0.0163592 + 0.0423932i) q^{14} +(0.0372227 - 2.52890i) q^{15} +(3.91086 + 0.831279i) q^{16} +(3.48884 - 1.33924i) q^{17} +(0.0285449 + 0.00764859i) q^{18} +(0.698358 + 6.64443i) q^{19} +(3.20800 - 3.11494i) q^{20} +(-2.79568 + 1.06750i) q^{21} +(0.0136263 + 0.0860334i) q^{22} +(-3.41354 - 0.178896i) q^{23} +(-0.0388492 - 0.0672888i) q^{24} +(-0.895167 - 4.91922i) q^{25} +(-0.00477673 - 0.00275784i) q^{26} +(2.42406 + 4.75748i) q^{27} +(-4.82951 - 2.16046i) q^{28} +(1.99592 - 2.74715i) q^{29} +(-0.0433403 - 0.00291154i) q^{30} +(0.305449 - 0.686049i) q^{31} +(0.0533314 - 0.199035i) q^{32} +(-3.61012 + 4.45813i) q^{33} +(-0.0198337 - 0.0610417i) q^{34} +(-5.01408 + 3.13991i) q^{35} +(-1.06327 + 3.27240i) q^{36} +(1.79507 + 2.76416i) q^{37} +(0.114588 - 0.00600530i) q^{38} +(-0.0755233 - 0.355309i) q^{39} +(-0.101090 - 0.115651i) q^{40} +(-7.88534 + 2.56210i) q^{41} +(0.0157961 + 0.0489089i) q^{42} +(-3.99562 + 3.99562i) q^{43} +(-10.0864 + 1.06012i) q^{44} +(2.37705 + 3.02538i) q^{45} +(-0.00613657 + 0.0583856i) q^{46} +(2.25590 - 5.87681i) q^{47} +(4.02942 - 2.05309i) q^{48} +(5.64856 + 4.13446i) q^{49} +(-0.0851752 + 0.0109315i) q^{50} +(2.11346 - 3.66061i) q^{51} +(0.349771 - 0.538600i) q^{52} +(-7.10798 - 8.77763i) q^{53} +(0.0837755 - 0.0372993i) q^{54} +(-5.29674 + 10.0278i) q^{55} +(-0.0827972 + 0.161792i) q^{56} +(5.34345 + 5.34345i) q^{57} +(-0.0453229 - 0.0367018i) q^{58} +(6.39870 - 7.10647i) q^{59} +(0.602633 - 5.02157i) q^{60} +(-2.03745 + 1.83453i) q^{61} +(-0.0114920 - 0.00585548i) q^{62} +(2.28317 - 3.93850i) q^{63} +(7.60172 + 2.46995i) q^{64} +(-0.282397 - 0.660258i) q^{65} +(0.0732173 + 0.0659252i) q^{66} +(-2.33982 - 6.09544i) q^{67} +(7.21837 - 1.93416i) q^{68} +(-3.12789 + 2.27255i) q^{69} +(0.0493464 + 0.0888199i) q^{70} +(-3.66851 - 2.66533i) q^{71} +(0.110348 + 0.0423587i) q^{72} +(-8.47376 - 5.50292i) q^{73} +(0.0490223 - 0.0283030i) q^{74} +(-4.28842 - 3.68687i) q^{75} +13.3601i q^{76} +(13.3425 + 1.42617i) q^{77} +(-0.00616188 + 0.000975946i) q^{78} +(3.33735 + 7.49580i) q^{79} +(7.02998 - 5.52346i) q^{80} +(0.801517 + 0.356859i) q^{81} +(0.0368554 + 0.137546i) q^{82} +(1.28282 + 0.203179i) q^{83} +(-5.78305 + 1.53863i) q^{84} +(2.69893 - 7.90846i) q^{85} +(0.0649383 + 0.0721212i) q^{86} +(-0.201010 - 3.83550i) q^{87} +(0.0182337 + 0.347920i) q^{88} +(-0.663356 - 0.736732i) q^{89} +(0.0540257 - 0.0380499i) q^{90} +(-0.601877 + 0.599756i) q^{91} +(-6.75128 - 1.06930i) q^{92} +(-0.219844 - 0.820470i) q^{93} +(-0.0987668 - 0.0439738i) q^{94} +(12.4080 + 8.32000i) q^{95} +(-0.0947968 - 0.212917i) q^{96} +(12.2690 - 1.94322i) q^{97} +(0.0759884 - 0.0931634i) q^{98} -8.72671i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.000898858 0.0171512i 0.000635588 0.0121278i −0.998293 0.0583989i \(-0.981400\pi\)
0.998929 + 0.0462711i \(0.0147338\pi\)
\(3\) 0.879015 0.711812i 0.507499 0.410965i −0.341079 0.940035i \(-0.610792\pi\)
0.848578 + 0.529070i \(0.177459\pi\)
\(4\) 1.98875 + 0.209026i 0.994375 + 0.104513i
\(5\) 1.43263 1.71685i 0.640690 0.767800i
\(6\) −0.0114183 0.0157160i −0.00466152 0.00641603i
\(7\) −2.51481 0.822022i −0.950510 0.310695i
\(8\) 0.0107461 0.0678483i 0.00379932 0.0239880i
\(9\) −0.357745 + 1.68306i −0.119248 + 0.561019i
\(10\) −0.0281584 0.0261145i −0.00890447 0.00825813i
\(11\) −4.96090 + 1.05447i −1.49577 + 0.317935i −0.881886 0.471463i \(-0.843726\pi\)
−0.613882 + 0.789398i \(0.710393\pi\)
\(12\) 1.89693 1.23188i 0.547596 0.355613i
\(13\) 0.145799 0.286147i 0.0404375 0.0793630i −0.869904 0.493222i \(-0.835819\pi\)
0.910341 + 0.413859i \(0.135819\pi\)
\(14\) −0.0163592 + 0.0423932i −0.00437217 + 0.0113301i
\(15\) 0.0372227 2.52890i 0.00961085 0.652959i
\(16\) 3.91086 + 0.831279i 0.977715 + 0.207820i
\(17\) 3.48884 1.33924i 0.846169 0.324814i 0.103629 0.994616i \(-0.466954\pi\)
0.742540 + 0.669802i \(0.233621\pi\)
\(18\) 0.0285449 + 0.00764859i 0.00672810 + 0.00180279i
\(19\) 0.698358 + 6.64443i 0.160214 + 1.52434i 0.718991 + 0.695019i \(0.244604\pi\)
−0.558777 + 0.829318i \(0.688729\pi\)
\(20\) 3.20800 3.11494i 0.717331 0.696521i
\(21\) −2.79568 + 1.06750i −0.610068 + 0.232948i
\(22\) 0.0136263 + 0.0860334i 0.00290515 + 0.0183424i
\(23\) −3.41354 0.178896i −0.711772 0.0373024i −0.306986 0.951714i \(-0.599321\pi\)
−0.404786 + 0.914412i \(0.632654\pi\)
\(24\) −0.0388492 0.0672888i −0.00793006 0.0137353i
\(25\) −0.895167 4.91922i −0.179033 0.983843i
\(26\) −0.00477673 0.00275784i −0.000936793 0.000540858i
\(27\) 2.42406 + 4.75748i 0.466510 + 0.915577i
\(28\) −4.82951 2.16046i −0.912691 0.408288i
\(29\) 1.99592 2.74715i 0.370633 0.510133i −0.582440 0.812874i \(-0.697902\pi\)
0.953073 + 0.302741i \(0.0979018\pi\)
\(30\) −0.0433403 0.00291154i −0.00791281 0.000531571i
\(31\) 0.305449 0.686049i 0.0548602 0.123218i −0.884036 0.467420i \(-0.845184\pi\)
0.938896 + 0.344202i \(0.111850\pi\)
\(32\) 0.0533314 0.199035i 0.00942775 0.0351848i
\(33\) −3.61012 + 4.45813i −0.628441 + 0.776060i
\(34\) −0.0198337 0.0610417i −0.00340145 0.0104686i
\(35\) −5.01408 + 3.13991i −0.847534 + 0.530742i
\(36\) −1.06327 + 3.27240i −0.177211 + 0.545400i
\(37\) 1.79507 + 2.76416i 0.295107 + 0.454426i 0.954860 0.297058i \(-0.0960054\pi\)
−0.659752 + 0.751483i \(0.729339\pi\)
\(38\) 0.114588 0.00600530i 0.0185886 0.000974188i
\(39\) −0.0755233 0.355309i −0.0120934 0.0568950i
\(40\) −0.101090 0.115651i −0.0159838 0.0182860i
\(41\) −7.88534 + 2.56210i −1.23148 + 0.400133i −0.851252 0.524758i \(-0.824156\pi\)
−0.380232 + 0.924891i \(0.624156\pi\)
\(42\) 0.0157961 + 0.0489089i 0.00243739 + 0.00754681i
\(43\) −3.99562 + 3.99562i −0.609326 + 0.609326i −0.942770 0.333444i \(-0.891789\pi\)
0.333444 + 0.942770i \(0.391789\pi\)
\(44\) −10.0864 + 1.06012i −1.52058 + 0.159820i
\(45\) 2.37705 + 3.02538i 0.354349 + 0.450998i
\(46\) −0.00613657 + 0.0583856i −0.000904788 + 0.00860849i
\(47\) 2.25590 5.87681i 0.329056 0.857221i −0.664849 0.746978i \(-0.731504\pi\)
0.993905 0.110242i \(-0.0351627\pi\)
\(48\) 4.02942 2.05309i 0.581596 0.296338i
\(49\) 5.64856 + 4.13446i 0.806937 + 0.590638i
\(50\) −0.0851752 + 0.0109315i −0.0120456 + 0.00154595i
\(51\) 2.11346 3.66061i 0.295943 0.512588i
\(52\) 0.349771 0.538600i 0.0485045 0.0746903i
\(53\) −7.10798 8.77763i −0.976356 1.20570i −0.978615 0.205702i \(-0.934052\pi\)
0.00225825 0.999997i \(-0.499281\pi\)
\(54\) 0.0837755 0.0372993i 0.0114004 0.00507579i
\(55\) −5.29674 + 10.0278i −0.714212 + 1.35215i
\(56\) −0.0827972 + 0.161792i −0.0110642 + 0.0216204i
\(57\) 5.34345 + 5.34345i 0.707757 + 0.707757i
\(58\) −0.0453229 0.0367018i −0.00595119 0.00481918i
\(59\) 6.39870 7.10647i 0.833039 0.925184i −0.165093 0.986278i \(-0.552792\pi\)
0.998132 + 0.0610943i \(0.0194590\pi\)
\(60\) 0.602633 5.02157i 0.0777995 0.648282i
\(61\) −2.03745 + 1.83453i −0.260869 + 0.234887i −0.789178 0.614165i \(-0.789493\pi\)
0.528309 + 0.849052i \(0.322826\pi\)
\(62\) −0.0114920 0.00585548i −0.00145949 0.000743647i
\(63\) 2.28317 3.93850i 0.287652 0.496204i
\(64\) 7.60172 + 2.46995i 0.950215 + 0.308744i
\(65\) −0.282397 0.660258i −0.0350270 0.0818949i
\(66\) 0.0732173 + 0.0659252i 0.00901243 + 0.00811483i
\(67\) −2.33982 6.09544i −0.285854 0.744676i −0.999044 0.0437055i \(-0.986084\pi\)
0.713190 0.700971i \(-0.247250\pi\)
\(68\) 7.21837 1.93416i 0.875357 0.234551i
\(69\) −3.12789 + 2.27255i −0.376554 + 0.273582i
\(70\) 0.0493464 + 0.0888199i 0.00589802 + 0.0106160i
\(71\) −3.66851 2.66533i −0.435372 0.316316i 0.348422 0.937338i \(-0.386718\pi\)
−0.783793 + 0.621022i \(0.786718\pi\)
\(72\) 0.110348 + 0.0423587i 0.0130046 + 0.00499202i
\(73\) −8.47376 5.50292i −0.991779 0.644069i −0.0566564 0.998394i \(-0.518044\pi\)
−0.935122 + 0.354325i \(0.884711\pi\)
\(74\) 0.0490223 0.0283030i 0.00569873 0.00329016i
\(75\) −4.28842 3.68687i −0.495184 0.425723i
\(76\) 13.3601i 1.53251i
\(77\) 13.3425 + 1.42617i 1.52052 + 0.162528i
\(78\) −0.00616188 0.000975946i −0.000697695 0.000110504i
\(79\) 3.33735 + 7.49580i 0.375481 + 0.843344i 0.998147 + 0.0608557i \(0.0193829\pi\)
−0.622666 + 0.782488i \(0.713950\pi\)
\(80\) 7.02998 5.52346i 0.785976 0.617541i
\(81\) 0.801517 + 0.356859i 0.0890575 + 0.0396510i
\(82\) 0.0368554 + 0.137546i 0.00407000 + 0.0151894i
\(83\) 1.28282 + 0.203179i 0.140808 + 0.0223018i 0.226441 0.974025i \(-0.427291\pi\)
−0.0856324 + 0.996327i \(0.527291\pi\)
\(84\) −5.78305 + 1.53863i −0.630983 + 0.167878i
\(85\) 2.69893 7.90846i 0.292740 0.857793i
\(86\) 0.0649383 + 0.0721212i 0.00700247 + 0.00777703i
\(87\) −0.201010 3.83550i −0.0215506 0.411209i
\(88\) 0.0182337 + 0.347920i 0.00194372 + 0.0370884i
\(89\) −0.663356 0.736732i −0.0703156 0.0780934i 0.706960 0.707253i \(-0.250066\pi\)
−0.777276 + 0.629160i \(0.783399\pi\)
\(90\) 0.0540257 0.0380499i 0.00569481 0.00401081i
\(91\) −0.601877 + 0.599756i −0.0630939 + 0.0628715i
\(92\) −6.75128 1.06930i −0.703870 0.111482i
\(93\) −0.219844 0.820470i −0.0227968 0.0850787i
\(94\) −0.0987668 0.0439738i −0.0101870 0.00453555i
\(95\) 12.4080 + 8.32000i 1.27303 + 0.853614i
\(96\) −0.0947968 0.212917i −0.00967515 0.0217308i
\(97\) 12.2690 1.94322i 1.24573 0.197304i 0.501457 0.865183i \(-0.332798\pi\)
0.744270 + 0.667879i \(0.232798\pi\)
\(98\) 0.0759884 0.0931634i 0.00767599 0.00941093i
\(99\) 8.72671i 0.877067i
\(100\) −0.752018 9.97020i −0.0752018 0.997020i
\(101\) 10.1944 5.88575i 1.01438 0.585654i 0.101911 0.994794i \(-0.467504\pi\)
0.912472 + 0.409139i \(0.134171\pi\)
\(102\) −0.0608843 0.0395387i −0.00602845 0.00391492i
\(103\) 13.7639 + 5.28346i 1.35620 + 0.520595i 0.924417 0.381384i \(-0.124552\pi\)
0.431780 + 0.901979i \(0.357886\pi\)
\(104\) −0.0178478 0.0129672i −0.00175012 0.00127154i
\(105\) −2.17242 + 6.32911i −0.212006 + 0.617658i
\(106\) −0.156936 + 0.114021i −0.0152430 + 0.0110747i
\(107\) −10.0239 + 2.68589i −0.969046 + 0.259655i −0.708425 0.705786i \(-0.750594\pi\)
−0.260621 + 0.965441i \(0.583927\pi\)
\(108\) 3.82641 + 9.96813i 0.368196 + 0.959184i
\(109\) −6.76285 6.08930i −0.647763 0.583249i 0.278357 0.960478i \(-0.410210\pi\)
−0.926120 + 0.377229i \(0.876877\pi\)
\(110\) 0.167228 + 0.0998592i 0.0159446 + 0.00952120i
\(111\) 3.54546 + 1.15199i 0.336520 + 0.109342i
\(112\) −9.15175 5.30532i −0.864759 0.501306i
\(113\) 7.60273 + 3.87378i 0.715204 + 0.364415i 0.773424 0.633889i \(-0.218542\pi\)
−0.0582196 + 0.998304i \(0.518542\pi\)
\(114\) 0.0964498 0.0868438i 0.00903335 0.00813366i
\(115\) −5.19746 + 5.60425i −0.484666 + 0.522599i
\(116\) 4.54361 5.04619i 0.421864 0.468527i
\(117\) 0.429443 + 0.347756i 0.0397020 + 0.0321501i
\(118\) −0.116133 0.116133i −0.0106909 0.0106909i
\(119\) −9.87467 + 0.500033i −0.905210 + 0.0458379i
\(120\) −0.171181 0.0297013i −0.0156267 0.00271135i
\(121\) 13.4496 5.98816i 1.22269 0.544378i
\(122\) 0.0296330 + 0.0365938i 0.00268285 + 0.00331304i
\(123\) −5.10760 + 7.86501i −0.460536 + 0.709164i
\(124\) 0.750864 1.30053i 0.0674296 0.116791i
\(125\) −9.72801 5.51053i −0.870099 0.492876i
\(126\) −0.0654978 0.0426993i −0.00583501 0.00380396i
\(127\) −14.3784 + 7.32616i −1.27588 + 0.650091i −0.954881 0.296989i \(-0.904017\pi\)
−0.320996 + 0.947081i \(0.604017\pi\)
\(128\) 0.196884 0.512900i 0.0174022 0.0453344i
\(129\) −0.668078 + 6.35633i −0.0588210 + 0.559644i
\(130\) −0.0115781 + 0.00424998i −0.00101546 + 0.000372748i
\(131\) −2.96375 + 0.311503i −0.258944 + 0.0272161i −0.233111 0.972450i \(-0.574891\pi\)
−0.0258332 + 0.999666i \(0.508224\pi\)
\(132\) −8.11149 + 8.11149i −0.706015 + 0.706015i
\(133\) 3.70563 17.2836i 0.321319 1.49867i
\(134\) −0.106647 + 0.0346518i −0.00921293 + 0.00299346i
\(135\) 11.6407 + 2.65394i 1.00187 + 0.228415i
\(136\) −0.0533737 0.251104i −0.00457676 0.0215320i
\(137\) −15.4376 + 0.809052i −1.31893 + 0.0691220i −0.698764 0.715352i \(-0.746266\pi\)
−0.620162 + 0.784474i \(0.712933\pi\)
\(138\) 0.0361654 + 0.0556899i 0.00307861 + 0.00474064i
\(139\) 5.70394 17.5549i 0.483801 1.48899i −0.349908 0.936784i \(-0.613787\pi\)
0.833709 0.552204i \(-0.186213\pi\)
\(140\) −10.6281 + 5.19643i −0.898236 + 0.439178i
\(141\) −2.20022 6.77157i −0.185292 0.570269i
\(142\) −0.0490111 + 0.0605237i −0.00411292 + 0.00507903i
\(143\) −0.421562 + 1.57329i −0.0352528 + 0.131565i
\(144\) −2.79818 + 6.28481i −0.233182 + 0.523734i
\(145\) −1.85704 7.36234i −0.154219 0.611409i
\(146\) −0.101999 + 0.140389i −0.00844147 + 0.0116187i
\(147\) 7.90813 0.386457i 0.652251 0.0318745i
\(148\) 2.99216 + 5.87245i 0.245954 + 0.482712i
\(149\) 12.7732 + 7.37458i 1.04642 + 0.604149i 0.921644 0.388036i \(-0.126846\pi\)
0.124773 + 0.992185i \(0.460180\pi\)
\(150\) −0.0670891 + 0.0702377i −0.00547780 + 0.00573489i
\(151\) −2.80622 4.86051i −0.228367 0.395543i 0.728957 0.684559i \(-0.240005\pi\)
−0.957324 + 0.289016i \(0.906672\pi\)
\(152\) 0.458318 + 0.0240194i 0.0371745 + 0.00194823i
\(153\) 1.00590 + 6.35103i 0.0813225 + 0.513450i
\(154\) 0.0364537 0.227559i 0.00293752 0.0183372i
\(155\) −0.740252 1.50726i −0.0594585 0.121066i
\(156\) −0.0759281 0.722408i −0.00607912 0.0578389i
\(157\) 5.06744 + 1.35782i 0.404426 + 0.108366i 0.455297 0.890340i \(-0.349533\pi\)
−0.0508712 + 0.998705i \(0.516200\pi\)
\(158\) 0.131562 0.0505019i 0.0104665 0.00401772i
\(159\) −12.4960 2.65612i −0.991000 0.210644i
\(160\) −0.265311 0.376705i −0.0209746 0.0297812i
\(161\) 8.43735 + 3.25590i 0.664957 + 0.256601i
\(162\) 0.00684101 0.0134262i 0.000537481 0.00105487i
\(163\) −14.8958 + 9.67348i −1.16673 + 0.757685i −0.974659 0.223695i \(-0.928188\pi\)
−0.192074 + 0.981381i \(0.561521\pi\)
\(164\) −16.2175 + 3.44714i −1.26638 + 0.269177i
\(165\) 2.48200 + 12.5849i 0.193223 + 0.979731i
\(166\) 0.00463785 0.0218194i 0.000359967 0.00169351i
\(167\) 0.899703 5.68050i 0.0696211 0.439571i −0.928113 0.372297i \(-0.878570\pi\)
0.997735 0.0672731i \(-0.0214299\pi\)
\(168\) 0.0423856 + 0.201154i 0.00327012 + 0.0155193i
\(169\) 7.58059 + 10.4338i 0.583122 + 0.802599i
\(170\) −0.133214 0.0533985i −0.0102170 0.00409548i
\(171\) −11.4328 1.20163i −0.874287 0.0918912i
\(172\) −8.78147 + 7.11110i −0.669581 + 0.542216i
\(173\) −0.118239 + 2.25614i −0.00898956 + 0.171531i 0.990445 + 0.137908i \(0.0440379\pi\)
−0.999435 + 0.0336229i \(0.989295\pi\)
\(174\) −0.0659643 −0.00500074
\(175\) −1.79253 + 13.1067i −0.135503 + 0.990777i
\(176\) −20.2779 −1.52851
\(177\) 0.566075 10.8014i 0.0425488 0.811880i
\(178\) −0.0132321 + 0.0107152i −0.000991789 + 0.000803135i
\(179\) 23.0769 + 2.42548i 1.72485 + 0.181289i 0.914480 0.404631i \(-0.132600\pi\)
0.810369 + 0.585920i \(0.199267\pi\)
\(180\) 4.09497 + 6.51360i 0.305221 + 0.485495i
\(181\) −1.07470 1.47920i −0.0798820 0.109948i 0.767206 0.641401i \(-0.221646\pi\)
−0.847088 + 0.531453i \(0.821646\pi\)
\(182\) 0.00974556 + 0.0108620i 0.000722389 + 0.000805147i
\(183\) −0.485109 + 3.06286i −0.0358603 + 0.226413i
\(184\) −0.0488201 + 0.229680i −0.00359906 + 0.0169323i
\(185\) 7.31732 + 0.878143i 0.537980 + 0.0645624i
\(186\) −0.0142697 + 0.00303311i −0.00104630 + 0.000222399i
\(187\) −15.8956 + 10.3227i −1.16240 + 0.754873i
\(188\) 5.71482 11.2160i 0.416796 0.818008i
\(189\) −2.18529 13.9568i −0.158957 1.01521i
\(190\) 0.153851 0.205334i 0.0111615 0.0148965i
\(191\) 0.720510 + 0.153149i 0.0521342 + 0.0110815i 0.233905 0.972259i \(-0.424850\pi\)
−0.181771 + 0.983341i \(0.558183\pi\)
\(192\) 8.44016 3.23987i 0.609116 0.233818i
\(193\) 13.9437 + 3.73619i 1.00369 + 0.268937i 0.722989 0.690860i \(-0.242768\pi\)
0.280697 + 0.959796i \(0.409434\pi\)
\(194\) −0.0223005 0.212175i −0.00160108 0.0152333i
\(195\) −0.718211 0.379363i −0.0514321 0.0271667i
\(196\) 10.3694 + 9.40311i 0.740669 + 0.671651i
\(197\) 1.57277 + 9.93010i 0.112055 + 0.707490i 0.978195 + 0.207688i \(0.0665940\pi\)
−0.866140 + 0.499802i \(0.833406\pi\)
\(198\) −0.149674 0.00784407i −0.0106368 0.000557454i
\(199\) −3.19046 5.52604i −0.226166 0.391731i 0.730503 0.682910i \(-0.239286\pi\)
−0.956669 + 0.291179i \(0.905952\pi\)
\(200\) −0.343380 + 0.00787307i −0.0242806 + 0.000556710i
\(201\) −6.39554 3.69247i −0.451107 0.260447i
\(202\) −0.0917845 0.180137i −0.00645794 0.0126744i
\(203\) −7.27758 + 5.26787i −0.510786 + 0.369732i
\(204\) 4.96830 6.83828i 0.347851 0.478775i
\(205\) −6.89799 + 17.2085i −0.481777 + 1.20189i
\(206\) 0.102990 0.231319i 0.00717563 0.0161167i
\(207\) 1.52227 5.68118i 0.105805 0.394869i
\(208\) 0.808069 0.997882i 0.0560295 0.0691907i
\(209\) −10.4708 32.2260i −0.724284 2.22912i
\(210\) 0.106599 + 0.0429486i 0.00735605 + 0.00296374i
\(211\) 8.73583 26.8861i 0.601399 1.85092i 0.0815311 0.996671i \(-0.474019\pi\)
0.519868 0.854246i \(-0.325981\pi\)
\(212\) −12.3012 18.9423i −0.844853 1.30096i
\(213\) −5.12188 + 0.268427i −0.350946 + 0.0183923i
\(214\) 0.0370563 + 0.174336i 0.00253312 + 0.0119174i
\(215\) 1.13566 + 12.5841i 0.0774515 + 0.858229i
\(216\) 0.348836 0.113344i 0.0237353 0.00771206i
\(217\) −1.33209 + 1.47420i −0.0904285 + 0.100075i
\(218\) −0.110518 + 0.110518i −0.00748521 + 0.00748521i
\(219\) −11.3656 + 1.19457i −0.768017 + 0.0807218i
\(220\) −12.6300 + 18.8356i −0.851512 + 1.26990i
\(221\) 0.125451 1.19358i 0.00843873 0.0802891i
\(222\) 0.0229449 0.0597735i 0.00153996 0.00401173i
\(223\) 18.8633 9.61132i 1.26318 0.643622i 0.311362 0.950291i \(-0.399215\pi\)
0.951816 + 0.306670i \(0.0992147\pi\)
\(224\) −0.297730 + 0.456697i −0.0198929 + 0.0305144i
\(225\) 8.59956 + 0.253207i 0.573304 + 0.0168805i
\(226\) 0.0732739 0.126914i 0.00487411 0.00844220i
\(227\) −10.8610 + 16.7245i −0.720872 + 1.11004i 0.268308 + 0.963333i \(0.413536\pi\)
−0.989179 + 0.146712i \(0.953131\pi\)
\(228\) 9.50987 + 11.7437i 0.629807 + 0.777746i
\(229\) 9.17427 4.08465i 0.606253 0.269921i −0.0805667 0.996749i \(-0.525673\pi\)
0.686819 + 0.726828i \(0.259006\pi\)
\(230\) 0.0914481 + 0.0941803i 0.00602991 + 0.00621007i
\(231\) 12.7434 8.24375i 0.838457 0.542399i
\(232\) −0.164941 0.164941i −0.0108289 0.0108289i
\(233\) −2.16919 1.75658i −0.142108 0.115077i 0.555630 0.831429i \(-0.312477\pi\)
−0.697739 + 0.716352i \(0.745810\pi\)
\(234\) 0.00635045 0.00705289i 0.000415142 0.000461062i
\(235\) −6.85776 12.2923i −0.447351 0.801862i
\(236\) 14.2108 12.7955i 0.925047 0.832916i
\(237\) 8.26918 + 4.21336i 0.537141 + 0.273687i
\(238\) −0.000299749 0.169812i −1.94298e−5 0.0110073i
\(239\) −3.96154 1.28718i −0.256251 0.0832609i 0.178075 0.984017i \(-0.443013\pi\)
−0.434325 + 0.900756i \(0.643013\pi\)
\(240\) 2.24779 9.85923i 0.145094 0.636410i
\(241\) 5.27483 + 4.74948i 0.339782 + 0.305941i 0.821301 0.570494i \(-0.193248\pi\)
−0.481520 + 0.876435i \(0.659915\pi\)
\(242\) −0.0906150 0.236060i −0.00582495 0.0151745i
\(243\) −14.5140 + 3.88900i −0.931071 + 0.249480i
\(244\) −4.43544 + 3.22254i −0.283950 + 0.206302i
\(245\) 15.1905 3.77460i 0.970488 0.241151i
\(246\) 0.130304 + 0.0946711i 0.00830785 + 0.00603601i
\(247\) 2.00311 + 0.768920i 0.127455 + 0.0489252i
\(248\) −0.0432649 0.0280965i −0.00274732 0.00178413i
\(249\) 1.27225 0.734532i 0.0806254 0.0465491i
\(250\) −0.103256 + 0.161894i −0.00653051 + 0.0102391i
\(251\) 3.67076i 0.231697i 0.993267 + 0.115848i \(0.0369586\pi\)
−0.993267 + 0.115848i \(0.963041\pi\)
\(252\) 5.36390 7.35544i 0.337894 0.463349i
\(253\) 17.1229 2.71200i 1.07651 0.170502i
\(254\) 0.112728 + 0.253192i 0.00707321 + 0.0158867i
\(255\) −3.25694 8.87278i −0.203958 0.555635i
\(256\) 14.5952 + 6.49819i 0.912198 + 0.406137i
\(257\) 1.42369 + 5.31329i 0.0888074 + 0.331434i 0.996008 0.0892647i \(-0.0284517\pi\)
−0.907201 + 0.420698i \(0.861785\pi\)
\(258\) 0.108418 + 0.0171718i 0.00674984 + 0.00106907i
\(259\) −2.24206 8.42694i −0.139315 0.523624i
\(260\) −0.423606 1.37212i −0.0262709 0.0850951i
\(261\) 3.90958 + 4.34202i 0.241997 + 0.268765i
\(262\) 0.00267867 + 0.0511120i 0.000165489 + 0.00315771i
\(263\) 1.08855 + 20.7708i 0.0671229 + 1.28078i 0.799826 + 0.600232i \(0.204925\pi\)
−0.732703 + 0.680549i \(0.761741\pi\)
\(264\) 0.263681 + 0.292848i 0.0162285 + 0.0180235i
\(265\) −25.2530 0.371697i −1.55128 0.0228331i
\(266\) −0.293103 0.0790916i −0.0179713 0.00484942i
\(267\) −1.10751 0.175413i −0.0677788 0.0107351i
\(268\) −3.37921 12.6114i −0.206418 0.770363i
\(269\) 0.143111 + 0.0637171i 0.00872562 + 0.00388490i 0.411095 0.911593i \(-0.365147\pi\)
−0.402369 + 0.915477i \(0.631813\pi\)
\(270\) 0.0559816 0.197266i 0.00340693 0.0120052i
\(271\) 0.567128 + 1.27379i 0.0344506 + 0.0773772i 0.929951 0.367683i \(-0.119849\pi\)
−0.895501 + 0.445060i \(0.853182\pi\)
\(272\) 14.7577 2.33738i 0.894814 0.141725i
\(273\) −0.102145 + 0.955618i −0.00618212 + 0.0578366i
\(274\) 0.265502i 0.0160395i
\(275\) 9.62801 + 23.4598i 0.580591 + 1.41468i
\(276\) −6.69562 + 3.86572i −0.403029 + 0.232689i
\(277\) 25.1881 + 16.3574i 1.51341 + 0.982819i 0.991541 + 0.129792i \(0.0414310\pi\)
0.521867 + 0.853027i \(0.325236\pi\)
\(278\) −0.295961 0.113609i −0.0177506 0.00681381i
\(279\) 1.04539 + 0.759518i 0.0625857 + 0.0454712i
\(280\) 0.159156 + 0.373938i 0.00951137 + 0.0223471i
\(281\) −23.1092 + 16.7898i −1.37858 + 1.00160i −0.381567 + 0.924341i \(0.624616\pi\)
−0.997011 + 0.0772549i \(0.975384\pi\)
\(282\) −0.118119 + 0.0316498i −0.00703385 + 0.00188472i
\(283\) −10.0848 26.2719i −0.599482 1.56170i −0.811447 0.584426i \(-0.801320\pi\)
0.211965 0.977277i \(-0.432014\pi\)
\(284\) −6.73862 6.06748i −0.399864 0.360039i
\(285\) 16.8291 1.51875i 0.996869 0.0899631i
\(286\) 0.0266049 + 0.00864446i 0.00157318 + 0.000511158i
\(287\) 21.9363 + 0.0387214i 1.29486 + 0.00228565i
\(288\) 0.315909 + 0.160964i 0.0186151 + 0.00948487i
\(289\) −2.25500 + 2.03041i −0.132647 + 0.119436i
\(290\) −0.127942 + 0.0252329i −0.00751304 + 0.00148173i
\(291\) 9.40141 10.4413i 0.551120 0.612081i
\(292\) −15.7019 12.7152i −0.918887 0.744100i
\(293\) 4.56757 + 4.56757i 0.266840 + 0.266840i 0.827826 0.560986i \(-0.189578\pi\)
−0.560986 + 0.827826i \(0.689578\pi\)
\(294\) 0.000480065 0.135981i 2.79979e−5 0.00793060i
\(295\) −3.03383 21.1665i −0.176636 1.23236i
\(296\) 0.206834 0.0920883i 0.0120220 0.00535252i
\(297\) −17.0421 21.0453i −0.988885 1.22117i
\(298\) 0.137964 0.212447i 0.00799207 0.0123067i
\(299\) −0.548882 + 0.950692i −0.0317427 + 0.0549799i
\(300\) −7.75795 8.22866i −0.447905 0.475082i
\(301\) 13.3327 6.76374i 0.768485 0.389855i
\(302\) −0.0858861 + 0.0437612i −0.00494219 + 0.00251817i
\(303\) 4.77150 12.4302i 0.274115 0.714095i
\(304\) −2.79219 + 26.5660i −0.160143 + 1.52366i
\(305\) 0.230711 + 6.12620i 0.0132105 + 0.350785i
\(306\) 0.109832 0.0115438i 0.00627868 0.000659916i
\(307\) −12.4946 + 12.4946i −0.713104 + 0.713104i −0.967183 0.254080i \(-0.918227\pi\)
0.254080 + 0.967183i \(0.418227\pi\)
\(308\) 26.2369 + 5.62524i 1.49498 + 0.320528i
\(309\) 15.8595 5.15306i 0.902215 0.293148i
\(310\) −0.0265168 + 0.0113414i −0.00150605 + 0.000644149i
\(311\) 1.55465 + 7.31407i 0.0881563 + 0.414743i 0.999991 + 0.00418591i \(0.00133242\pi\)
−0.911835 + 0.410557i \(0.865334\pi\)
\(312\) −0.0249187 + 0.00130593i −0.00141074 + 7.39340e-5i
\(313\) −15.1587 23.3423i −0.856819 1.31939i −0.946264 0.323394i \(-0.895176\pi\)
0.0894451 0.995992i \(-0.471491\pi\)
\(314\) 0.0278431 0.0856923i 0.00157128 0.00483590i
\(315\) −3.49089 9.56226i −0.196689 0.538772i
\(316\) 5.07033 + 15.6049i 0.285228 + 0.877843i
\(317\) 17.9833 22.2075i 1.01004 1.24730i 0.0413185 0.999146i \(-0.486844\pi\)
0.968722 0.248150i \(-0.0798225\pi\)
\(318\) −0.0567878 + 0.211935i −0.00318450 + 0.0118847i
\(319\) −7.00477 + 15.7330i −0.392192 + 0.880878i
\(320\) 15.1310 9.51252i 0.845846 0.531766i
\(321\) −6.89929 + 9.49606i −0.385081 + 0.530019i
\(322\) 0.0634266 0.141784i 0.00353463 0.00790134i
\(323\) 11.3350 + 22.2461i 0.630694 + 1.23781i
\(324\) 1.51943 + 0.877241i 0.0844125 + 0.0487356i
\(325\) −1.53813 0.461069i −0.0853204 0.0255755i
\(326\) 0.152523 + 0.264177i 0.00844745 + 0.0146314i
\(327\) −10.2791 0.538704i −0.568434 0.0297904i
\(328\) 0.0890975 + 0.562539i 0.00491959 + 0.0310610i
\(329\) −10.5040 + 12.9247i −0.579105 + 0.712560i
\(330\) 0.218077 0.0312573i 0.0120047 0.00172066i
\(331\) −1.74558 16.6081i −0.0959457 0.912863i −0.931570 0.363561i \(-0.881561\pi\)
0.835624 0.549301i \(-0.185106\pi\)
\(332\) 2.50875 + 0.672217i 0.137685 + 0.0368927i
\(333\) −5.29442 + 2.03234i −0.290132 + 0.111371i
\(334\) −0.0966189 0.0205370i −0.00528675 0.00112373i
\(335\) −13.8171 4.71536i −0.754906 0.257627i
\(336\) −11.8209 + 1.85087i −0.644884 + 0.100973i
\(337\) −10.8501 + 21.2946i −0.591044 + 1.15999i 0.380865 + 0.924631i \(0.375626\pi\)
−0.971909 + 0.235358i \(0.924374\pi\)
\(338\) 0.185766 0.120638i 0.0101043 0.00656184i
\(339\) 9.44031 2.00660i 0.512728 0.108984i
\(340\) 7.02057 15.1638i 0.380744 0.822373i
\(341\) −0.791882 + 3.72551i −0.0428828 + 0.201748i
\(342\) −0.0308859 + 0.195006i −0.00167012 + 0.0105447i
\(343\) −10.8064 15.0406i −0.583493 0.812118i
\(344\) 0.228158 + 0.314033i 0.0123015 + 0.0169315i
\(345\) −0.579471 + 8.62584i −0.0311977 + 0.464399i
\(346\) 0.0385893 + 0.00405590i 0.00207457 + 0.000218046i
\(347\) 2.85404 2.31115i 0.153213 0.124069i −0.549649 0.835396i \(-0.685239\pi\)
0.702862 + 0.711326i \(0.251905\pi\)
\(348\) 0.401961 7.66988i 0.0215474 0.411149i
\(349\) −1.21897 −0.0652497 −0.0326249 0.999468i \(-0.510387\pi\)
−0.0326249 + 0.999468i \(0.510387\pi\)
\(350\) 0.223186 + 0.0425252i 0.0119298 + 0.00227307i
\(351\) 1.71477 0.0915274
\(352\) −0.0546944 + 1.04363i −0.00291522 + 0.0556258i
\(353\) −19.7399 + 15.9851i −1.05065 + 0.850799i −0.989091 0.147304i \(-0.952940\pi\)
−0.0615584 + 0.998103i \(0.519607\pi\)
\(354\) −0.184748 0.0194178i −0.00981924 0.00103204i
\(355\) −9.83157 + 2.47987i −0.521806 + 0.131618i
\(356\) −1.16525 1.60383i −0.0617583 0.0850031i
\(357\) −8.32405 + 7.46845i −0.440556 + 0.395272i
\(358\) 0.0623428 0.393617i 0.00329492 0.0208033i
\(359\) −2.33682 + 10.9939i −0.123333 + 0.580235i 0.872467 + 0.488674i \(0.162519\pi\)
−0.995799 + 0.0915616i \(0.970814\pi\)
\(360\) 0.230811 0.128767i 0.0121648 0.00678663i
\(361\) −25.0759 + 5.33005i −1.31979 + 0.280529i
\(362\) −0.0263361 + 0.0171029i −0.00138420 + 0.000898908i
\(363\) 7.55997 14.8373i 0.396796 0.778755i
\(364\) −1.32235 + 1.06696i −0.0693099 + 0.0559238i
\(365\) −21.5874 + 6.66457i −1.12994 + 0.348839i
\(366\) 0.0520958 + 0.0110733i 0.00272309 + 0.000578810i
\(367\) −6.73383 + 2.58488i −0.351503 + 0.134929i −0.527712 0.849423i \(-0.676950\pi\)
0.176209 + 0.984353i \(0.443617\pi\)
\(368\) −13.2012 3.53724i −0.688158 0.184391i
\(369\) −1.49122 14.1881i −0.0776301 0.738601i
\(370\) 0.0216385 0.124712i 0.00112493 0.00648345i
\(371\) 10.6598 + 27.9170i 0.553431 + 1.44938i
\(372\) −0.265716 1.67766i −0.0137767 0.0869827i
\(373\) −3.89404 0.204078i −0.201626 0.0105667i −0.0487442 0.998811i \(-0.515522\pi\)
−0.152881 + 0.988245i \(0.548855\pi\)
\(374\) 0.162760 + 0.281908i 0.00841610 + 0.0145771i
\(375\) −12.4735 + 2.08068i −0.644130 + 0.107446i
\(376\) −0.374489 0.216211i −0.0193128 0.0111503i
\(377\) −0.495085 0.971660i −0.0254982 0.0500430i
\(378\) −0.241340 + 0.0249353i −0.0124132 + 0.00128253i
\(379\) −2.70772 + 3.72686i −0.139086 + 0.191436i −0.872878 0.487939i \(-0.837749\pi\)
0.733792 + 0.679375i \(0.237749\pi\)
\(380\) 22.9373 + 19.1400i 1.17666 + 0.981862i
\(381\) −7.42397 + 16.6745i −0.380342 + 0.854261i
\(382\) 0.00327433 0.0122200i 0.000167529 0.000625228i
\(383\) −17.8962 + 22.1000i −0.914454 + 1.12926i 0.0767678 + 0.997049i \(0.475540\pi\)
−0.991222 + 0.132208i \(0.957793\pi\)
\(384\) −0.192024 0.590991i −0.00979921 0.0301589i
\(385\) 21.5634 20.8640i 1.09897 1.06333i
\(386\) 0.0766136 0.235792i 0.00389953 0.0120015i
\(387\) −5.29544 8.15426i −0.269182 0.414504i
\(388\) 24.8061 1.30003i 1.25934 0.0659992i
\(389\) 6.09298 + 28.6652i 0.308926 + 1.45338i 0.809208 + 0.587522i \(0.199896\pi\)
−0.500282 + 0.865863i \(0.666770\pi\)
\(390\) −0.00715211 + 0.0119772i −0.000362161 + 0.000606489i
\(391\) −12.1489 + 3.94741i −0.614396 + 0.199629i
\(392\) 0.341216 0.338815i 0.0172340 0.0171128i
\(393\) −2.38345 + 2.38345i −0.120229 + 0.120229i
\(394\) 0.171727 0.0180493i 0.00865149 0.000909308i
\(395\) 17.6504 + 5.00895i 0.888086 + 0.252027i
\(396\) 1.82411 17.3552i 0.0916649 0.872134i
\(397\) 0.399283 1.04017i 0.0200394 0.0522045i −0.923196 0.384330i \(-0.874432\pi\)
0.943235 + 0.332126i \(0.107766\pi\)
\(398\) −0.0976462 + 0.0497532i −0.00489456 + 0.00249390i
\(399\) −9.04534 17.8302i −0.452833 0.892627i
\(400\) 0.588369 19.9825i 0.0294184 0.999125i
\(401\) −4.29812 + 7.44456i −0.214638 + 0.371764i −0.953160 0.302465i \(-0.902190\pi\)
0.738523 + 0.674229i \(0.235524\pi\)
\(402\) −0.0690790 + 0.106372i −0.00344535 + 0.00530537i
\(403\) −0.151777 0.187429i −0.00756055 0.00933650i
\(404\) 21.5044 9.57439i 1.06989 0.476344i
\(405\) 1.76095 0.864843i 0.0875022 0.0429744i
\(406\) 0.0838090 + 0.129555i 0.00415937 + 0.00642969i
\(407\) −11.8199 11.8199i −0.585890 0.585890i
\(408\) −0.225655 0.182732i −0.0111716 0.00904657i
\(409\) −10.3987 + 11.5490i −0.514185 + 0.571060i −0.943195 0.332240i \(-0.892196\pi\)
0.429010 + 0.903300i \(0.358862\pi\)
\(410\) 0.288947 + 0.133777i 0.0142701 + 0.00660678i
\(411\) −12.9940 + 11.6999i −0.640947 + 0.577112i
\(412\) 26.2686 + 13.3845i 1.29416 + 0.659407i
\(413\) −21.9332 + 12.6116i −1.07926 + 0.620575i
\(414\) −0.0960709 0.0312153i −0.00472163 0.00153415i
\(415\) 2.18664 1.91134i 0.107338 0.0938240i
\(416\) −0.0491778 0.0442799i −0.00241114 0.00217100i
\(417\) −7.48195 19.4912i −0.366393 0.954486i
\(418\) −0.562127 + 0.150621i −0.0274945 + 0.00736713i
\(419\) 5.12758 3.72540i 0.250499 0.181998i −0.455449 0.890262i \(-0.650521\pi\)
0.705948 + 0.708264i \(0.250521\pi\)
\(420\) −5.64335 + 12.1329i −0.275367 + 0.592026i
\(421\) −17.9408 13.0347i −0.874380 0.635274i 0.0573790 0.998352i \(-0.481726\pi\)
−0.931759 + 0.363079i \(0.881726\pi\)
\(422\) −0.453278 0.173997i −0.0220652 0.00847004i
\(423\) 9.08396 + 5.89920i 0.441677 + 0.286829i
\(424\) −0.671930 + 0.387939i −0.0326318 + 0.0188400i
\(425\) −9.71111 15.9635i −0.471058 0.774345i
\(426\) 0.0880879i 0.00426787i
\(427\) 6.63183 2.93866i 0.320937 0.142212i
\(428\) −20.4964 + 3.24632i −0.990732 + 0.156917i
\(429\) 0.749328 + 1.68302i 0.0361779 + 0.0812568i
\(430\) 0.216854 0.00816667i 0.0104576 0.000393832i
\(431\) −8.89080 3.95844i −0.428255 0.190671i 0.181279 0.983432i \(-0.441976\pi\)
−0.609533 + 0.792761i \(0.708643\pi\)
\(432\) 5.52535 + 20.6209i 0.265839 + 0.992123i
\(433\) −12.2911 1.94672i −0.590674 0.0935535i −0.146060 0.989276i \(-0.546659\pi\)
−0.444614 + 0.895722i \(0.646659\pi\)
\(434\) 0.0240870 + 0.0241722i 0.00115621 + 0.00116030i
\(435\) −6.87297 5.14974i −0.329534 0.246911i
\(436\) −12.1768 13.5237i −0.583163 0.647668i
\(437\) −1.19521 22.8060i −0.0571746 1.09096i
\(438\) 0.0102723 + 0.196008i 0.000490831 + 0.00936562i
\(439\) 16.4159 + 18.2318i 0.783490 + 0.870154i 0.994217 0.107391i \(-0.0342497\pi\)
−0.210727 + 0.977545i \(0.567583\pi\)
\(440\) 0.623449 + 0.467135i 0.0297218 + 0.0222698i
\(441\) −8.97928 + 8.02776i −0.427585 + 0.382274i
\(442\) −0.0203587 0.00322450i −0.000968363 0.000153374i
\(443\) 1.81367 + 6.76871i 0.0861701 + 0.321591i 0.995533 0.0944121i \(-0.0300971\pi\)
−0.909363 + 0.416003i \(0.863430\pi\)
\(444\) 6.81023 + 3.03211i 0.323199 + 0.143898i
\(445\) −2.21520 + 0.0834241i −0.105011 + 0.00395468i
\(446\) −0.147891 0.332168i −0.00700282 0.0157286i
\(447\) 16.4771 2.60972i 0.779340 0.123435i
\(448\) −17.0865 12.4602i −0.807263 0.588691i
\(449\) 11.3776i 0.536943i 0.963288 + 0.268472i \(0.0865186\pi\)
−0.963288 + 0.268472i \(0.913481\pi\)
\(450\) 0.0120726 0.147265i 0.000569108 0.00694216i
\(451\) 36.4167 21.0252i 1.71480 0.990039i
\(452\) 14.3102 + 9.29316i 0.673095 + 0.437113i
\(453\) −5.92648 2.27496i −0.278450 0.106887i
\(454\) 0.277083 + 0.201313i 0.0130042 + 0.00944808i
\(455\) 0.167428 + 1.89256i 0.00784915 + 0.0887246i
\(456\) 0.419965 0.305123i 0.0196667 0.0142887i
\(457\) 6.62325 1.77469i 0.309822 0.0830167i −0.100558 0.994931i \(-0.532063\pi\)
0.410380 + 0.911915i \(0.365396\pi\)
\(458\) −0.0618104 0.161021i −0.00288821 0.00752404i
\(459\) 14.8286 + 13.3517i 0.692138 + 0.623204i
\(460\) −11.5079 + 10.0591i −0.536558 + 0.469006i
\(461\) 6.19822 + 2.01392i 0.288680 + 0.0937978i 0.449777 0.893141i \(-0.351503\pi\)
−0.161097 + 0.986939i \(0.551503\pi\)
\(462\) −0.129936 0.225976i −0.00604516 0.0105133i
\(463\) 3.99566 + 2.03589i 0.185694 + 0.0946158i 0.544366 0.838848i \(-0.316770\pi\)
−0.358672 + 0.933464i \(0.616770\pi\)
\(464\) 10.0894 9.08455i 0.468389 0.421740i
\(465\) −1.72358 0.797986i −0.0799291 0.0370057i
\(466\) −0.0320772 + 0.0356254i −0.00148595 + 0.00165031i
\(467\) 31.2205 + 25.2819i 1.44471 + 1.16991i 0.954465 + 0.298322i \(0.0964271\pi\)
0.490248 + 0.871583i \(0.336906\pi\)
\(468\) 0.781365 + 0.781365i 0.0361186 + 0.0361186i
\(469\) 0.873619 + 17.2523i 0.0403400 + 0.796636i
\(470\) −0.216992 + 0.106570i −0.0100091 + 0.00491571i
\(471\) 5.42086 2.41352i 0.249780 0.111209i
\(472\) −0.413401 0.510507i −0.0190283 0.0234980i
\(473\) 15.6086 24.0351i 0.717684 1.10514i
\(474\) 0.0796971 0.138039i 0.00366061 0.00634036i
\(475\) 32.0602 9.38324i 1.47102 0.430533i
\(476\) −19.7428 1.06962i −0.904909 0.0490261i
\(477\) 17.3161 8.82298i 0.792849 0.403977i
\(478\) −0.0256376 + 0.0667882i −0.00117264 + 0.00305482i
\(479\) 2.16757 20.6230i 0.0990386 0.942290i −0.826321 0.563199i \(-0.809570\pi\)
0.925360 0.379090i \(-0.123763\pi\)
\(480\) −0.501355 0.142278i −0.0228836 0.00649409i
\(481\) 1.05268 0.110641i 0.0479980 0.00504479i
\(482\) 0.0862007 0.0862007i 0.00392633 0.00392633i
\(483\) 9.73414 3.14383i 0.442919 0.143049i
\(484\) 27.9996 9.09763i 1.27271 0.413529i
\(485\) 14.2406 23.8479i 0.646634 1.08288i
\(486\) 0.0536552 + 0.252428i 0.00243385 + 0.0114504i
\(487\) −7.42319 + 0.389033i −0.336377 + 0.0176288i −0.219777 0.975550i \(-0.570533\pi\)
−0.116600 + 0.993179i \(0.537200\pi\)
\(488\) 0.102575 + 0.157952i 0.00464335 + 0.00715013i
\(489\) −6.20797 + 19.1062i −0.280734 + 0.864011i
\(490\) −0.0510849 0.263929i −0.00230778 0.0119231i
\(491\) −6.27403 19.3095i −0.283143 0.871425i −0.986949 0.161033i \(-0.948518\pi\)
0.703806 0.710392i \(-0.251482\pi\)
\(492\) −11.8017 + 14.5739i −0.532063 + 0.657043i
\(493\) 3.28436 12.2574i 0.147920 0.552045i
\(494\) 0.0149884 0.0336646i 0.000674362 0.00151464i
\(495\) −14.9825 12.5021i −0.673412 0.561928i
\(496\) 1.76487 2.42913i 0.0792448 0.109071i
\(497\) 7.03465 + 9.71839i 0.315547 + 0.435929i
\(498\) −0.0114546 0.0224808i −0.000513291 0.00100739i
\(499\) 7.97198 + 4.60262i 0.356875 + 0.206042i 0.667709 0.744422i \(-0.267275\pi\)
−0.310834 + 0.950464i \(0.600608\pi\)
\(500\) −18.1947 12.9925i −0.813693 0.581041i
\(501\) −3.25260 5.63367i −0.145315 0.251694i
\(502\) 0.0629581 + 0.00329950i 0.00280996 + 0.000147264i
\(503\) −3.27358 20.6686i −0.145962 0.921565i −0.946598 0.322415i \(-0.895505\pi\)
0.800637 0.599150i \(-0.204495\pi\)
\(504\) −0.242685 0.197233i −0.0108100 0.00878544i
\(505\) 4.49982 25.9344i 0.200239 1.15407i
\(506\) −0.0311230 0.296116i −0.00138359 0.0131640i
\(507\) 14.0903 + 3.77549i 0.625774 + 0.167676i
\(508\) −30.1264 + 11.5644i −1.33664 + 0.513089i
\(509\) 6.93922 + 1.47498i 0.307575 + 0.0653772i 0.359114 0.933294i \(-0.383079\pi\)
−0.0515382 + 0.998671i \(0.516412\pi\)
\(510\) −0.155107 + 0.0478852i −0.00686824 + 0.00212039i
\(511\) 16.7864 + 20.8044i 0.742586 + 0.920334i
\(512\) 0.623407 1.22350i 0.0275509 0.0540718i
\(513\) −29.9179 + 19.4289i −1.32091 + 0.857807i
\(514\) 0.0924091 0.0196422i 0.00407599 0.000866379i
\(515\) 28.7894 16.0614i 1.26861 0.707748i
\(516\) −2.65728 + 12.5015i −0.116980 + 0.550349i
\(517\) −4.99434 + 31.5330i −0.219651 + 1.38682i
\(518\) −0.146548 + 0.0308794i −0.00643893 + 0.00135676i
\(519\) 1.50201 + 2.06734i 0.0659310 + 0.0907463i
\(520\) −0.0478320 + 0.0120649i −0.00209757 + 0.000529082i
\(521\) −15.1966 1.59723i −0.665775 0.0699757i −0.234388 0.972143i \(-0.575309\pi\)
−0.431386 + 0.902167i \(0.641975\pi\)
\(522\) 0.0779852 0.0631512i 0.00341332 0.00276405i
\(523\) 0.242708 4.63114i 0.0106129 0.202506i −0.988177 0.153319i \(-0.951004\pi\)
0.998790 0.0491867i \(-0.0156629\pi\)
\(524\) −5.95927 −0.260332
\(525\) 7.75388 + 12.7970i 0.338407 + 0.558505i
\(526\) 0.357223 0.0155757
\(527\) 0.146877 2.80259i 0.00639808 0.122083i
\(528\) −17.8246 + 14.4341i −0.775717 + 0.628163i
\(529\) −11.2538 1.18282i −0.489294 0.0514268i
\(530\) −0.0290739 + 0.432785i −0.00126289 + 0.0187990i
\(531\) 9.67149 + 13.3117i 0.419707 + 0.577677i
\(532\) 10.9823 33.5981i 0.476143 1.45666i
\(533\) −0.416539 + 2.62992i −0.0180423 + 0.113915i
\(534\) −0.00400405 + 0.0188376i −0.000173272 + 0.000815181i
\(535\) −9.74920 + 21.0574i −0.421495 + 0.910391i
\(536\) −0.438709 + 0.0932504i −0.0189493 + 0.00402781i
\(537\) 22.0114 14.2944i 0.949863 0.616848i
\(538\) 0.00122146 0.00239725i 5.26610e−5 0.000103353i
\(539\) −32.3816 14.5544i −1.39477 0.626903i
\(540\) 22.5956 + 7.71122i 0.972361 + 0.331838i
\(541\) −24.8117 5.27390i −1.06674 0.226743i −0.359088 0.933304i \(-0.616912\pi\)
−0.707652 + 0.706561i \(0.750246\pi\)
\(542\) 0.0223568 0.00858198i 0.000960308 0.000368628i
\(543\) −1.99759 0.535254i −0.0857249 0.0229699i
\(544\) −0.0804917 0.765827i −0.00345105 0.0328346i
\(545\) −20.1431 + 2.88713i −0.862834 + 0.123671i
\(546\) 0.0162982 + 0.00261088i 0.000697499 + 0.000111735i
\(547\) −1.41055 8.90589i −0.0603110 0.380788i −0.999319 0.0368938i \(-0.988254\pi\)
0.939008 0.343895i \(-0.111746\pi\)
\(548\) −30.8707 1.61787i −1.31873 0.0691118i
\(549\) −2.35873 4.08544i −0.100668 0.174362i
\(550\) 0.411019 0.144045i 0.0175259 0.00614210i
\(551\) 19.6471 + 11.3433i 0.836995 + 0.483239i
\(552\) 0.120576 + 0.236643i 0.00513204 + 0.0100722i
\(553\) −2.23108 21.5939i −0.0948752 0.918266i
\(554\) 0.303190 0.417305i 0.0128813 0.0177296i
\(555\) 7.05711 4.43666i 0.299557 0.188326i
\(556\) 15.0131 33.7201i 0.636699 1.43005i
\(557\) 4.38542 16.3666i 0.185816 0.693475i −0.808638 0.588306i \(-0.799795\pi\)
0.994454 0.105169i \(-0.0335383\pi\)
\(558\) 0.0139663 0.0172470i 0.000591242 0.000730123i
\(559\) 0.560777 + 1.72589i 0.0237183 + 0.0729975i
\(560\) −22.2195 + 8.11166i −0.938945 + 0.342780i
\(561\) −6.62463 + 20.3885i −0.279692 + 0.860804i
\(562\) 0.267194 + 0.411443i 0.0112709 + 0.0173557i
\(563\) 43.2943 2.26896i 1.82464 0.0956252i 0.891035 0.453935i \(-0.149980\pi\)
0.933603 + 0.358310i \(0.116647\pi\)
\(564\) −2.96025 13.9269i −0.124649 0.586427i
\(565\) 17.5426 7.50308i 0.738022 0.315657i
\(566\) −0.459661 + 0.149353i −0.0193210 + 0.00627776i
\(567\) −1.72232 1.55630i −0.0723306 0.0653584i
\(568\) −0.220260 + 0.220260i −0.00924190 + 0.00924190i
\(569\) −9.81623 + 1.03173i −0.411518 + 0.0432522i −0.308026 0.951378i \(-0.599668\pi\)
−0.103492 + 0.994630i \(0.533002\pi\)
\(570\) −0.0109215 0.290005i −0.000457452 0.0121470i
\(571\) 0.152474 1.45070i 0.00638085 0.0607098i −0.990868 0.134835i \(-0.956950\pi\)
0.997249 + 0.0741249i \(0.0236163\pi\)
\(572\) −1.16724 + 3.04076i −0.0488047 + 0.127141i
\(573\) 0.742352 0.378247i 0.0310122 0.0158015i
\(574\) 0.0203817 0.376199i 0.000850716 0.0157022i
\(575\) 2.17566 + 16.9521i 0.0907312 + 0.706950i
\(576\) −6.87654 + 11.9105i −0.286522 + 0.496271i
\(577\) −3.06593 + 4.72112i −0.127636 + 0.196543i −0.896711 0.442616i \(-0.854051\pi\)
0.769075 + 0.639159i \(0.220717\pi\)
\(578\) 0.0327972 + 0.0405011i 0.00136418 + 0.00168462i
\(579\) 14.9161 6.64109i 0.619894 0.275994i
\(580\) −2.15427 15.0300i −0.0894514 0.624088i
\(581\) −3.05904 1.56547i −0.126911 0.0649466i
\(582\) −0.170631 0.170631i −0.00707288 0.00707288i
\(583\) 44.5177 + 36.0498i 1.84374 + 1.49303i
\(584\) −0.464424 + 0.515795i −0.0192180 + 0.0213437i
\(585\) 1.21228 0.239086i 0.0501215 0.00988499i
\(586\) 0.0824450 0.0742338i 0.00340577 0.00306657i
\(587\) −18.5011 9.42678i −0.763622 0.389085i 0.0283850 0.999597i \(-0.490964\pi\)
−0.792007 + 0.610512i \(0.790964\pi\)
\(588\) 15.8081 + 0.884438i 0.651914 + 0.0364736i
\(589\) 4.77172 + 1.55043i 0.196615 + 0.0638842i
\(590\) −0.365759 + 0.0330082i −0.0150581 + 0.00135893i
\(591\) 8.45086 + 7.60919i 0.347622 + 0.313000i
\(592\) 4.72247 + 12.3025i 0.194092 + 0.505628i
\(593\) 14.1905 3.80233i 0.582733 0.156143i 0.0446033 0.999005i \(-0.485798\pi\)
0.538130 + 0.842862i \(0.319131\pi\)
\(594\) −0.376271 + 0.273377i −0.0154386 + 0.0112168i
\(595\) −13.2882 + 17.6697i −0.544764 + 0.724388i
\(596\) 23.8611 + 17.3361i 0.977390 + 0.710116i
\(597\) −6.73797 2.58646i −0.275767 0.105857i
\(598\) 0.0158122 + 0.0102685i 0.000646608 + 0.000419912i
\(599\) 8.74982 5.05171i 0.357508 0.206407i −0.310479 0.950580i \(-0.600489\pi\)
0.667987 + 0.744173i \(0.267156\pi\)
\(600\) −0.296232 + 0.251342i −0.0120936 + 0.0102610i
\(601\) 22.6515i 0.923974i 0.886887 + 0.461987i \(0.152863\pi\)
−0.886887 + 0.461987i \(0.847137\pi\)
\(602\) −0.104022 0.234752i −0.00423963 0.00956778i
\(603\) 11.0960 1.75744i 0.451865 0.0715684i
\(604\) −4.56489 10.2529i −0.185743 0.417185i
\(605\) 8.98749 31.6698i 0.365393 1.28756i
\(606\) −0.208904 0.0930100i −0.00848614 0.00377827i
\(607\) −5.16341 19.2701i −0.209576 0.782150i −0.988006 0.154418i \(-0.950650\pi\)
0.778429 0.627732i \(-0.216017\pi\)
\(608\) 1.35972 + 0.215359i 0.0551440 + 0.00873395i
\(609\) −2.64737 + 9.81081i −0.107277 + 0.397554i
\(610\) 0.105279 + 0.00154960i 0.00426263 + 6.27413e-5i
\(611\) −1.35272 1.50235i −0.0547254 0.0607787i
\(612\) 0.672961 + 12.8409i 0.0272028 + 0.519061i
\(613\) −2.00861 38.3266i −0.0811272 1.54800i −0.671584 0.740929i \(-0.734386\pi\)
0.590456 0.807070i \(-0.298948\pi\)
\(614\) 0.203067 + 0.225528i 0.00819510 + 0.00910158i
\(615\) 6.18579 + 20.0366i 0.249435 + 0.807954i
\(616\) 0.240144 0.889942i 0.00967566 0.0358568i
\(617\) −0.589114 0.0933065i −0.0237168 0.00375638i 0.144565 0.989495i \(-0.453822\pi\)
−0.168282 + 0.985739i \(0.553822\pi\)
\(618\) −0.0741259 0.276642i −0.00298178 0.0111282i
\(619\) 2.53843 + 1.13018i 0.102028 + 0.0454258i 0.457116 0.889407i \(-0.348882\pi\)
−0.355088 + 0.934833i \(0.615549\pi\)
\(620\) −1.15712 3.15230i −0.0464710 0.126599i
\(621\) −7.42352 16.6735i −0.297896 0.669084i
\(622\) 0.126843 0.0200899i 0.00508593 0.000805532i
\(623\) 1.06261 + 2.39804i 0.0425724 + 0.0960753i
\(624\) 1.45235i 0.0581404i
\(625\) −23.3974 + 8.80703i −0.935894 + 0.352281i
\(626\) −0.413975 + 0.239009i −0.0165458 + 0.00955270i
\(627\) −32.1429 20.8738i −1.28366 0.833620i
\(628\) 9.79405 + 3.75958i 0.390825 + 0.150024i
\(629\) 9.96459 + 7.23970i 0.397314 + 0.288666i
\(630\) −0.167142 + 0.0512779i −0.00665911 + 0.00204296i
\(631\) 22.3034 16.2043i 0.887883 0.645085i −0.0474420 0.998874i \(-0.515107\pi\)
0.935325 + 0.353789i \(0.115107\pi\)
\(632\) 0.544441 0.145882i 0.0216567 0.00580289i
\(633\) −11.4589 29.8516i −0.455452 1.18649i
\(634\) −0.364721 0.328396i −0.0144849 0.0130423i
\(635\) −8.02093 + 35.1812i −0.318301 + 1.39612i
\(636\) −24.2963 7.89435i −0.963411 0.313031i
\(637\) 2.00662 1.01352i 0.0795052 0.0401570i
\(638\) 0.263544 + 0.134282i 0.0104338 + 0.00531628i
\(639\) 5.79828 5.22080i 0.229377 0.206532i
\(640\) −0.598512 1.07281i −0.0236583 0.0424067i
\(641\) 1.01518 1.12747i 0.0400971 0.0445323i −0.722763 0.691096i \(-0.757128\pi\)
0.762860 + 0.646564i \(0.223795\pi\)
\(642\) 0.156668 + 0.126867i 0.00618318 + 0.00500704i
\(643\) 18.1864 + 18.1864i 0.717201 + 0.717201i 0.968031 0.250830i \(-0.0807034\pi\)
−0.250830 + 0.968031i \(0.580703\pi\)
\(644\) 16.0992 + 8.23879i 0.634398 + 0.324654i
\(645\) 9.95579 + 10.2532i 0.392009 + 0.403721i
\(646\) 0.391737 0.174412i 0.0154127 0.00686216i
\(647\) 4.75026 + 5.86608i 0.186752 + 0.230620i 0.861920 0.507045i \(-0.169262\pi\)
−0.675168 + 0.737664i \(0.735929\pi\)
\(648\) 0.0328254 0.0505467i 0.00128950 0.00198566i
\(649\) −24.2497 + 42.0017i −0.951885 + 1.64871i
\(650\) −0.00929046 + 0.0259665i −0.000364402 + 0.00101849i
\(651\) −0.121578 + 2.24404i −0.00476501 + 0.0879510i
\(652\) −31.6461 + 16.1245i −1.23936 + 0.631484i
\(653\) 12.3617 32.2034i 0.483751 1.26022i −0.446990 0.894539i \(-0.647504\pi\)
0.930742 0.365677i \(-0.119162\pi\)
\(654\) −0.0184789 + 0.175815i −0.000722581 + 0.00687489i
\(655\) −3.71114 + 5.53459i −0.145006 + 0.216254i
\(656\) −32.9683 + 3.46511i −1.28720 + 0.135290i
\(657\) 12.2932 12.2932i 0.479602 0.479602i
\(658\) 0.212232 + 0.191774i 0.00827368 + 0.00747614i
\(659\) −16.9511 + 5.50773i −0.660319 + 0.214551i −0.619959 0.784634i \(-0.712851\pi\)
−0.0403605 + 0.999185i \(0.512851\pi\)
\(660\) 2.30550 + 25.5470i 0.0897416 + 0.994414i
\(661\) 8.15962 + 38.3880i 0.317372 + 1.49312i 0.790684 + 0.612225i \(0.209725\pi\)
−0.473311 + 0.880895i \(0.656941\pi\)
\(662\) −0.286418 + 0.0150105i −0.0111320 + 0.000583401i
\(663\) −0.739334 1.13847i −0.0287134 0.0442147i
\(664\) 0.0275707 0.0848540i 0.00106995 0.00329297i
\(665\) −24.3645 31.1229i −0.944816 1.20689i
\(666\) 0.0300981 + 0.0926326i 0.00116628 + 0.00358944i
\(667\) −7.30461 + 9.02044i −0.282836 + 0.349273i
\(668\) 2.97666 11.1090i 0.115170 0.429822i
\(669\) 9.73964 21.8756i 0.376556 0.845760i
\(670\) −0.0932937 + 0.232741i −0.00360425 + 0.00899157i
\(671\) 8.17313 11.2493i 0.315520 0.434276i
\(672\) 0.0633735 + 0.613371i 0.00244468 + 0.0236613i
\(673\) 7.81076 + 15.3295i 0.301083 + 0.590908i 0.991136 0.132850i \(-0.0424129\pi\)
−0.690053 + 0.723759i \(0.742413\pi\)
\(674\) 0.355475 + 0.205234i 0.0136924 + 0.00790531i
\(675\) 21.2331 16.1832i 0.817263 0.622891i
\(676\) 12.8950 + 22.3347i 0.495960 + 0.859028i
\(677\) −0.636093 0.0333362i −0.0244470 0.00128122i 0.0401085 0.999195i \(-0.487230\pi\)
−0.0645556 + 0.997914i \(0.520563\pi\)
\(678\) −0.0259302 0.163717i −0.000995842 0.00628750i
\(679\) −32.4515 5.19856i −1.24538 0.199502i
\(680\) −0.507572 0.268103i −0.0194645 0.0102813i
\(681\) 2.35771 + 22.4321i 0.0903476 + 0.859600i
\(682\) 0.0631853 + 0.0169304i 0.00241949 + 0.000648300i
\(683\) −16.9681 + 6.51343i −0.649265 + 0.249229i −0.660637 0.750706i \(-0.729714\pi\)
0.0113716 + 0.999935i \(0.496380\pi\)
\(684\) −22.4858 4.77950i −0.859765 0.182749i
\(685\) −20.7273 + 27.6632i −0.791951 + 1.05696i
\(686\) −0.267679 + 0.171824i −0.0102200 + 0.00656028i
\(687\) 5.15681 10.1208i 0.196745 0.386133i
\(688\) −18.9478 + 12.3048i −0.722377 + 0.469117i
\(689\) −3.54803 + 0.754158i −0.135169 + 0.0287311i
\(690\) 0.147423 + 0.0176920i 0.00561229 + 0.000673525i
\(691\) 5.16326 24.2912i 0.196420 0.924081i −0.763934 0.645295i \(-0.776735\pi\)
0.960353 0.278786i \(-0.0899322\pi\)
\(692\) −0.706740 + 4.46218i −0.0268662 + 0.169627i
\(693\) −7.17355 + 21.9460i −0.272501 + 0.833661i
\(694\) −0.0370737 0.0510276i −0.00140730 0.00193698i
\(695\) −21.9676 34.9424i −0.833278 1.32544i
\(696\) −0.262392 0.0275786i −0.00994596 0.00104536i
\(697\) −24.0795 + 19.4992i −0.912074 + 0.738583i
\(698\) −0.00109568 + 0.0209068i −4.14720e−5 + 0.000791333i
\(699\) −3.15710 −0.119413
\(700\) −6.30455 + 25.6914i −0.238289 + 0.971042i
\(701\) −7.79098 −0.294261 −0.147131 0.989117i \(-0.547004\pi\)
−0.147131 + 0.989117i \(0.547004\pi\)
\(702\) 0.00154133 0.0294103i 5.81738e−5 0.00111002i
\(703\) −17.1127 + 13.8576i −0.645417 + 0.522648i
\(704\) −40.3159 4.23737i −1.51946 0.159702i
\(705\) −14.7779 5.92368i −0.556567 0.223099i
\(706\) 0.256420 + 0.352932i 0.00965050 + 0.0132828i
\(707\) −30.4753 + 6.42152i −1.14614 + 0.241506i
\(708\) 3.38355 21.3629i 0.127162 0.802866i
\(709\) −9.38432 + 44.1498i −0.352436 + 1.65808i 0.342884 + 0.939378i \(0.388596\pi\)
−0.695319 + 0.718701i \(0.744737\pi\)
\(710\) 0.0336957 + 0.170853i 0.00126458 + 0.00641198i
\(711\) −13.8098 + 2.93536i −0.517907 + 0.110085i
\(712\) −0.0571145 + 0.0370906i −0.00214046 + 0.00139003i
\(713\) −1.16539 + 2.28721i −0.0436443 + 0.0856568i
\(714\) 0.120611 + 0.149481i 0.00451375 + 0.00559418i
\(715\) 2.09717 + 2.97769i 0.0784296 + 0.111359i
\(716\) 45.3872 + 9.64735i 1.69620 + 0.360539i
\(717\) −4.39848 + 1.68842i −0.164264 + 0.0630552i
\(718\) 0.186458 + 0.0499613i 0.00695856 + 0.00186454i
\(719\) −3.25147 30.9356i −0.121259 1.15370i −0.870762 0.491704i \(-0.836374\pi\)
0.749503 0.662001i \(-0.230292\pi\)
\(720\) 6.78135 + 13.8078i 0.252726 + 0.514588i
\(721\) −30.2705 24.6012i −1.12733 0.916195i
\(722\) 0.0688773 + 0.434874i 0.00256335 + 0.0161843i
\(723\) 8.01739 + 0.420174i 0.298170 + 0.0156264i
\(724\) −1.82812 3.16640i −0.0679417 0.117678i
\(725\) −15.3005 7.35921i −0.568246 0.273314i
\(726\) −0.247682 0.142999i −0.00919235 0.00530721i
\(727\) −9.91394 19.4572i −0.367688 0.721628i 0.630838 0.775915i \(-0.282711\pi\)
−0.998525 + 0.0542869i \(0.982711\pi\)
\(728\) 0.0342246 + 0.0472814i 0.00126845 + 0.00175236i
\(729\) −11.5369 + 15.8791i −0.427291 + 0.588116i
\(730\) 0.0949015 + 0.376242i 0.00351246 + 0.0139253i
\(731\) −8.58899 + 19.2912i −0.317675 + 0.713510i
\(732\) −1.60498 + 5.98986i −0.0593217 + 0.221392i
\(733\) 0.141811 0.175122i 0.00523792 0.00646830i −0.774520 0.632549i \(-0.782009\pi\)
0.779758 + 0.626081i \(0.215342\pi\)
\(734\) 0.0382810 + 0.117817i 0.00141298 + 0.00434870i
\(735\) 10.6659 14.1307i 0.393418 0.521220i
\(736\) −0.217655 + 0.669875i −0.00802289 + 0.0246919i
\(737\) 18.0351 + 27.7716i 0.664331 + 1.02298i
\(738\) −0.244683 + 0.0128233i −0.00900691 + 0.000472032i
\(739\) −8.38752 39.4602i −0.308540 1.45157i −0.810023 0.586398i \(-0.800545\pi\)
0.501483 0.865167i \(-0.332788\pi\)
\(740\) 14.3688 + 3.27592i 0.528207 + 0.120425i
\(741\) 2.30809 0.749943i 0.0847897 0.0275498i
\(742\) 0.488393 0.157736i 0.0179295 0.00579066i
\(743\) −1.97911 + 1.97911i −0.0726064 + 0.0726064i −0.742477 0.669871i \(-0.766349\pi\)
0.669871 + 0.742477i \(0.266349\pi\)
\(744\) −0.0580299 + 0.00609919i −0.00212748 + 0.000223607i
\(745\) 30.9602 11.3646i 1.13429 0.416367i
\(746\) −0.00700037 + 0.0666041i −0.000256302 + 0.00243855i
\(747\) −0.800886 + 2.08638i −0.0293029 + 0.0763366i
\(748\) −33.7701 + 17.2067i −1.23476 + 0.629141i
\(749\) 27.4161 + 1.48535i 1.00176 + 0.0542734i
\(750\) 0.0244743 + 0.215806i 0.000893675 + 0.00788014i
\(751\) 14.9793 25.9449i 0.546602 0.946743i −0.451902 0.892068i \(-0.649254\pi\)
0.998504 0.0546754i \(-0.0174124\pi\)
\(752\) 13.7078 21.1081i 0.499870 0.769733i
\(753\) 2.61289 + 3.22666i 0.0952192 + 0.117586i
\(754\) −0.0171102 + 0.00761794i −0.000623116 + 0.000277429i
\(755\) −12.3650 2.14543i −0.450010 0.0780803i
\(756\) −1.42867 28.2134i −0.0519601 1.02611i
\(757\) 29.2442 + 29.2442i 1.06290 + 1.06290i 0.997884 + 0.0650131i \(0.0207089\pi\)
0.0650131 + 0.997884i \(0.479291\pi\)
\(758\) 0.0614863 + 0.0497906i 0.00223328 + 0.00180848i
\(759\) 13.1208 14.5721i 0.476256 0.528936i
\(760\) 0.697835 0.752453i 0.0253132 0.0272943i
\(761\) 35.3614 31.8396i 1.28185 1.15418i 0.302250 0.953229i \(-0.402262\pi\)
0.979601 0.200954i \(-0.0644043\pi\)
\(762\) 0.279315 + 0.142318i 0.0101185 + 0.00515565i
\(763\) 12.0018 + 20.8726i 0.434493 + 0.755641i
\(764\) 1.40090 + 0.455180i 0.0506828 + 0.0164679i
\(765\) 12.3449