Properties

Label 175.2.x.a.33.9
Level $175$
Weight $2$
Character 175.33
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 33.9
Character \(\chi\) \(=\) 175.33
Dual form 175.2.x.a.122.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0144040 - 0.00935405i) q^{2} +(1.05595 - 0.405343i) q^{3} +(-0.813353 + 1.82682i) q^{4} +(-0.770525 + 2.09912i) q^{5} +(0.0114183 - 0.0157160i) q^{6} +(-0.822022 + 2.51481i) q^{7} +(0.0107461 + 0.0678483i) q^{8} +(-1.27870 + 1.15134i) q^{9} +O(q^{10})\) \(q+(0.0144040 - 0.00935405i) q^{2} +(1.05595 - 0.405343i) q^{3} +(-0.813353 + 1.82682i) q^{4} +(-0.770525 + 2.09912i) q^{5} +(0.0114183 - 0.0157160i) q^{6} +(-0.822022 + 2.51481i) q^{7} +(0.0107461 + 0.0678483i) q^{8} +(-1.27870 + 1.15134i) q^{9} +(0.00853662 + 0.0374431i) q^{10} +(3.39365 - 3.76903i) q^{11} +(-0.118375 + 2.25873i) q^{12} +(-0.145799 - 0.286147i) q^{13} +(0.0116833 + 0.0439125i) q^{14} +(0.0372227 + 2.52890i) q^{15} +(-2.67534 - 2.97126i) q^{16} +(2.90424 - 2.35181i) q^{17} +(-0.00764859 + 0.0285449i) q^{18} +(6.10342 - 2.71742i) q^{19} +(-3.20800 - 3.11494i) q^{20} +(0.151343 + 2.98873i) q^{21} +(0.0136263 - 0.0860334i) q^{22} +(1.86170 + 2.86676i) q^{23} +(0.0388492 + 0.0672888i) q^{24} +(-3.81258 - 3.23484i) q^{25} +(-0.00477673 - 0.00275784i) q^{26} +(-2.42406 + 4.75748i) q^{27} +(-3.92552 - 3.54712i) q^{28} +(1.99592 + 2.74715i) q^{29} +(0.0241916 + 0.0360780i) q^{30} +(0.746861 + 0.0784982i) q^{31} +(-0.199035 - 0.0533314i) q^{32} +(2.05579 - 5.35552i) q^{33} +(0.0198337 - 0.0610417i) q^{34} +(-4.64549 - 3.66325i) q^{35} +(-1.06327 - 3.27240i) q^{36} +(-3.29137 - 0.172493i) q^{37} +(0.0624947 - 0.0962334i) q^{38} +(-0.269945 - 0.243060i) q^{39} +(-0.150702 - 0.0297215i) q^{40} +(7.88534 + 2.56210i) q^{41} +(0.0301367 + 0.0416339i) q^{42} +(-3.99562 - 3.99562i) q^{43} +(4.12511 + 9.26514i) q^{44} +(-1.43154 - 3.57127i) q^{45} +(0.0536317 + 0.0238784i) q^{46} +(-3.96152 + 4.89207i) q^{47} +(-4.02942 - 2.05309i) q^{48} +(-5.64856 - 4.13446i) q^{49} +(-0.0851752 - 0.0109315i) q^{50} +(2.11346 - 3.66061i) q^{51} +(0.641326 - 0.0336105i) q^{52} +(-4.04766 - 10.5445i) q^{53} +(0.00958565 + 0.0912013i) q^{54} +(5.29674 + 10.0278i) q^{55} +(-0.179459 - 0.0287484i) q^{56} +(5.34345 - 5.34345i) q^{57} +(0.0544462 + 0.0208999i) q^{58} +(9.35373 - 1.98820i) q^{59} +(-4.65012 - 1.98889i) q^{60} +(0.570023 - 2.68175i) q^{61} +(0.0114920 - 0.00585548i) q^{62} +(-1.84430 - 4.16211i) q^{63} +(7.60172 - 2.46995i) q^{64} +(0.712999 - 0.0855661i) q^{65} +(-0.0204842 - 0.0963707i) q^{66} +(-4.10889 - 5.07406i) q^{67} +(1.93416 + 7.21837i) q^{68} +(3.12789 + 2.27255i) q^{69} +(-0.101180 - 0.00931112i) q^{70} +(-3.66851 + 2.66533i) q^{71} +(-0.0918577 - 0.0743849i) q^{72} +(0.528792 + 10.0900i) q^{73} +(-0.0490223 + 0.0283030i) q^{74} +(-5.33714 - 1.87045i) q^{75} +13.3601i q^{76} +(6.68874 + 11.6326i) q^{77} +(-0.00616188 - 0.000975946i) q^{78} +(-8.16023 + 0.857674i) q^{79} +(8.29845 - 3.32641i) q^{80} +(-0.0917101 + 0.872564i) q^{81} +(0.137546 - 0.0368554i) q^{82} +(-1.28282 + 0.203179i) q^{83} +(-5.58297 - 2.15442i) q^{84} +(2.69893 + 7.90846i) q^{85} +(-0.0949280 - 0.0201776i) q^{86} +(3.22114 + 2.09183i) q^{87} +(0.292191 + 0.189751i) q^{88} +(-0.969707 - 0.206118i) q^{89} +(-0.0540257 - 0.0380499i) q^{90} +(0.839457 - 0.131438i) q^{91} +(-6.75128 + 1.06930i) q^{92} +(0.820470 - 0.219844i) q^{93} +(-0.0113010 + 0.107521i) q^{94} +(1.00134 + 14.9056i) q^{95} +(-0.231790 + 0.0243621i) q^{96} +(-12.2690 - 1.94322i) q^{97} +(-0.120036 - 0.00671581i) q^{98} +8.72671i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0144040 0.00935405i 0.0101851 0.00661431i −0.539536 0.841962i \(-0.681400\pi\)
0.549722 + 0.835348i \(0.314734\pi\)
\(3\) 1.05595 0.405343i 0.609656 0.234025i −0.0338987 0.999425i \(-0.510792\pi\)
0.643554 + 0.765400i \(0.277459\pi\)
\(4\) −0.813353 + 1.82682i −0.406677 + 0.913411i
\(5\) −0.770525 + 2.09912i −0.344589 + 0.938754i
\(6\) 0.0114183 0.0157160i 0.00466152 0.00641603i
\(7\) −0.822022 + 2.51481i −0.310695 + 0.950510i
\(8\) 0.0107461 + 0.0678483i 0.00379932 + 0.0239880i
\(9\) −1.27870 + 1.15134i −0.426232 + 0.383781i
\(10\) 0.00853662 + 0.0374431i 0.00269952 + 0.0118406i
\(11\) 3.39365 3.76903i 1.02322 1.13641i 0.0326443 0.999467i \(-0.489607\pi\)
0.990580 0.136938i \(-0.0437262\pi\)
\(12\) −0.118375 + 2.25873i −0.0341719 + 0.652039i
\(13\) −0.145799 0.286147i −0.0404375 0.0793630i 0.869904 0.493222i \(-0.164181\pi\)
−0.910341 + 0.413859i \(0.864181\pi\)
\(14\) 0.0116833 + 0.0439125i 0.00312249 + 0.0117361i
\(15\) 0.0372227 + 2.52890i 0.00961085 + 0.652959i
\(16\) −2.67534 2.97126i −0.668835 0.742816i
\(17\) 2.90424 2.35181i 0.704381 0.570397i −0.208796 0.977959i \(-0.566954\pi\)
0.913177 + 0.407562i \(0.133621\pi\)
\(18\) −0.00764859 + 0.0285449i −0.00180279 + 0.00672810i
\(19\) 6.10342 2.71742i 1.40022 0.623419i 0.438822 0.898574i \(-0.355396\pi\)
0.961400 + 0.275155i \(0.0887293\pi\)
\(20\) −3.20800 3.11494i −0.717331 0.696521i
\(21\) 0.151343 + 2.98873i 0.0330257 + 0.652194i
\(22\) 0.0136263 0.0860334i 0.00290515 0.0183424i
\(23\) 1.86170 + 2.86676i 0.388191 + 0.597762i 0.977702 0.209999i \(-0.0673461\pi\)
−0.589511 + 0.807761i \(0.700679\pi\)
\(24\) 0.0388492 + 0.0672888i 0.00793006 + 0.0137353i
\(25\) −3.81258 3.23484i −0.762516 0.646969i
\(26\) −0.00477673 0.00275784i −0.000936793 0.000540858i
\(27\) −2.42406 + 4.75748i −0.466510 + 0.915577i
\(28\) −3.92552 3.54712i −0.741853 0.670342i
\(29\) 1.99592 + 2.74715i 0.370633 + 0.510133i 0.953073 0.302741i \(-0.0979018\pi\)
−0.582440 + 0.812874i \(0.697902\pi\)
\(30\) 0.0241916 + 0.0360780i 0.00441676 + 0.00658691i
\(31\) 0.746861 + 0.0784982i 0.134140 + 0.0140987i 0.171361 0.985208i \(-0.445184\pi\)
−0.0372204 + 0.999307i \(0.511850\pi\)
\(32\) −0.199035 0.0533314i −0.0351848 0.00942775i
\(33\) 2.05579 5.35552i 0.357867 0.932276i
\(34\) 0.0198337 0.0610417i 0.00340145 0.0104686i
\(35\) −4.64549 3.66325i −0.785232 0.619202i
\(36\) −1.06327 3.27240i −0.177211 0.545400i
\(37\) −3.29137 0.172493i −0.541098 0.0283577i −0.220170 0.975461i \(-0.570661\pi\)
−0.320928 + 0.947104i \(0.603995\pi\)
\(38\) 0.0624947 0.0962334i 0.0101380 0.0156111i
\(39\) −0.269945 0.243060i −0.0432258 0.0389207i
\(40\) −0.150702 0.0297215i −0.0238280 0.00469937i
\(41\) 7.88534 + 2.56210i 1.23148 + 0.400133i 0.851252 0.524758i \(-0.175844\pi\)
0.380232 + 0.924891i \(0.375844\pi\)
\(42\) 0.0301367 + 0.0416339i 0.00465019 + 0.00642425i
\(43\) −3.99562 3.99562i −0.609326 0.609326i 0.333444 0.942770i \(-0.391789\pi\)
−0.942770 + 0.333444i \(0.891789\pi\)
\(44\) 4.12511 + 9.26514i 0.621883 + 1.39677i
\(45\) −1.43154 3.57127i −0.213401 0.532374i
\(46\) 0.0536317 + 0.0238784i 0.00790756 + 0.00352067i
\(47\) −3.96152 + 4.89207i −0.577847 + 0.713581i −0.979326 0.202287i \(-0.935163\pi\)
0.401480 + 0.915868i \(0.368496\pi\)
\(48\) −4.02942 2.05309i −0.581596 0.296338i
\(49\) −5.64856 4.13446i −0.806937 0.590638i
\(50\) −0.0851752 0.0109315i −0.0120456 0.00154595i
\(51\) 2.11346 3.66061i 0.295943 0.512588i
\(52\) 0.641326 0.0336105i 0.0889360 0.00466094i
\(53\) −4.04766 10.5445i −0.555988 1.44840i −0.867152 0.498043i \(-0.834052\pi\)
0.311164 0.950356i \(-0.399281\pi\)
\(54\) 0.00958565 + 0.0912013i 0.00130444 + 0.0124109i
\(55\) 5.29674 + 10.0278i 0.714212 + 1.35215i
\(56\) −0.179459 0.0287484i −0.0239812 0.00384166i
\(57\) 5.34345 5.34345i 0.707757 0.707757i
\(58\) 0.0544462 + 0.0208999i 0.00714913 + 0.00274429i
\(59\) 9.35373 1.98820i 1.21775 0.258841i 0.446157 0.894955i \(-0.352792\pi\)
0.771595 + 0.636114i \(0.219459\pi\)
\(60\) −4.65012 1.98889i −0.600328 0.256765i
\(61\) 0.570023 2.68175i 0.0729840 0.343363i −0.926471 0.376365i \(-0.877174\pi\)
0.999455 + 0.0330028i \(0.0105070\pi\)
\(62\) 0.0114920 0.00585548i 0.00145949 0.000743647i
\(63\) −1.84430 4.16211i −0.232359 0.524377i
\(64\) 7.60172 2.46995i 0.950215 0.308744i
\(65\) 0.712999 0.0855661i 0.0884366 0.0106132i
\(66\) −0.0204842 0.0963707i −0.00252143 0.0118624i
\(67\) −4.10889 5.07406i −0.501981 0.619895i 0.461672 0.887051i \(-0.347250\pi\)
−0.963653 + 0.267155i \(0.913916\pi\)
\(68\) 1.93416 + 7.21837i 0.234551 + 0.875357i
\(69\) 3.12789 + 2.27255i 0.376554 + 0.273582i
\(70\) −0.101180 0.00931112i −0.0120933 0.00111289i
\(71\) −3.66851 + 2.66533i −0.435372 + 0.316316i −0.783793 0.621022i \(-0.786718\pi\)
0.348422 + 0.937338i \(0.386718\pi\)
\(72\) −0.0918577 0.0743849i −0.0108255 0.00876635i
\(73\) 0.528792 + 10.0900i 0.0618904 + 1.18094i 0.836306 + 0.548263i \(0.184711\pi\)
−0.774416 + 0.632677i \(0.781956\pi\)
\(74\) −0.0490223 + 0.0283030i −0.00569873 + 0.00329016i
\(75\) −5.33714 1.87045i −0.616279 0.215980i
\(76\) 13.3601i 1.53251i
\(77\) 6.68874 + 11.6326i 0.762253 + 1.32566i
\(78\) −0.00616188 0.000975946i −0.000697695 0.000110504i
\(79\) −8.16023 + 0.857674i −0.918097 + 0.0964959i −0.551776 0.833992i \(-0.686050\pi\)
−0.366321 + 0.930488i \(0.619383\pi\)
\(80\) 8.29845 3.32641i 0.927794 0.371904i
\(81\) −0.0917101 + 0.872564i −0.0101900 + 0.0969515i
\(82\) 0.137546 0.0368554i 0.0151894 0.00407000i
\(83\) −1.28282 + 0.203179i −0.140808 + 0.0223018i −0.226441 0.974025i \(-0.572709\pi\)
0.0856324 + 0.996327i \(0.472709\pi\)
\(84\) −5.58297 2.15442i −0.609152 0.235066i
\(85\) 2.69893 + 7.90846i 0.292740 + 0.857793i
\(86\) −0.0949280 0.0201776i −0.0102363 0.00217580i
\(87\) 3.22114 + 2.09183i 0.345342 + 0.224268i
\(88\) 0.292191 + 0.189751i 0.0311476 + 0.0202275i
\(89\) −0.969707 0.206118i −0.102789 0.0218484i 0.156230 0.987721i \(-0.450066\pi\)
−0.259019 + 0.965872i \(0.583399\pi\)
\(90\) −0.0540257 0.0380499i −0.00569481 0.00401081i
\(91\) 0.839457 0.131438i 0.0879990 0.0137785i
\(92\) −6.75128 + 1.06930i −0.703870 + 0.111482i
\(93\) 0.820470 0.219844i 0.0850787 0.0227968i
\(94\) −0.0113010 + 0.107521i −0.00116560 + 0.0110900i
\(95\) 1.00134 + 14.9056i 0.102735 + 1.52929i
\(96\) −0.231790 + 0.0243621i −0.0236570 + 0.00248645i
\(97\) −12.2690 1.94322i −1.24573 0.197304i −0.501457 0.865183i \(-0.667202\pi\)
−0.744270 + 0.667879i \(0.767202\pi\)
\(98\) −0.120036 0.00671581i −0.0121254 0.000678400i
\(99\) 8.72671i 0.877067i
\(100\) 9.01046 4.33384i 0.901046 0.433384i
\(101\) 10.1944 5.88575i 1.01438 0.585654i 0.101911 0.994794i \(-0.467504\pi\)
0.912472 + 0.409139i \(0.134171\pi\)
\(102\) −0.00379939 0.0724967i −0.000376196 0.00717825i
\(103\) 11.4576 + 9.27815i 1.12895 + 0.914203i 0.997027 0.0770569i \(-0.0245523\pi\)
0.131920 + 0.991260i \(0.457886\pi\)
\(104\) 0.0178478 0.0129672i 0.00175012 0.00127154i
\(105\) −6.39030 1.98520i −0.623630 0.193736i
\(106\) −0.156936 0.114021i −0.0152430 0.0110747i
\(107\) 2.68589 + 10.0239i 0.259655 + 0.969046i 0.965441 + 0.260621i \(0.0839272\pi\)
−0.705786 + 0.708425i \(0.749406\pi\)
\(108\) −6.71945 8.29783i −0.646579 0.798459i
\(109\) −1.89206 8.90145i −0.181227 0.852604i −0.970976 0.239175i \(-0.923123\pi\)
0.789750 0.613429i \(-0.210210\pi\)
\(110\) 0.170095 + 0.0948942i 0.0162179 + 0.00904780i
\(111\) −3.54546 + 1.15199i −0.336520 + 0.109342i
\(112\) 9.67136 4.28553i 0.913857 0.404944i
\(113\) 7.60273 3.87378i 0.715204 0.364415i −0.0582196 0.998304i \(-0.518542\pi\)
0.773424 + 0.633889i \(0.218542\pi\)
\(114\) 0.0269840 0.126950i 0.00252729 0.0118899i
\(115\) −7.45216 + 1.69901i −0.694917 + 0.158433i
\(116\) −6.64194 + 1.41179i −0.616689 + 0.131081i
\(117\) 0.515887 + 0.198031i 0.0476938 + 0.0183079i
\(118\) 0.116133 0.116133i 0.0106909 0.0106909i
\(119\) 3.52700 + 9.23685i 0.323320 + 0.846741i
\(120\) −0.171181 + 0.0297013i −0.0156267 + 0.00271135i
\(121\) −1.53891 14.6418i −0.139901 1.33107i
\(122\) −0.0168746 0.0439598i −0.00152775 0.00397994i
\(123\) 9.36510 0.490804i 0.844422 0.0442543i
\(124\) −0.750864 + 1.30053i −0.0674296 + 0.116791i
\(125\) 9.72801 5.51053i 0.870099 0.492876i
\(126\) −0.0654978 0.0426993i −0.00583501 0.00380396i
\(127\) −14.3784 7.32616i −1.27588 0.650091i −0.320996 0.947081i \(-0.604017\pi\)
−0.954881 + 0.296989i \(0.904017\pi\)
\(128\) 0.345742 0.426956i 0.0305596 0.0377379i
\(129\) −5.83879 2.59960i −0.514076 0.228882i
\(130\) 0.00946962 0.00790192i 0.000830541 0.000693044i
\(131\) −1.21211 2.72244i −0.105902 0.237860i 0.852820 0.522205i \(-0.174891\pi\)
−0.958722 + 0.284345i \(0.908224\pi\)
\(132\) 8.11149 + 8.11149i 0.706015 + 0.706015i
\(133\) 1.81665 + 17.5827i 0.157523 + 1.52462i
\(134\) −0.106647 0.0346518i −0.00921293 0.00299346i
\(135\) −8.11871 8.75413i −0.698747 0.753436i
\(136\) 0.190775 + 0.171775i 0.0163588 + 0.0147296i
\(137\) 8.41948 12.9649i 0.719324 1.10766i −0.270131 0.962824i \(-0.587067\pi\)
0.989455 0.144839i \(-0.0462664\pi\)
\(138\) 0.0663116 + 0.00347524i 0.00564482 + 0.000295832i
\(139\) −5.70394 17.5549i −0.483801 1.48899i −0.833709 0.552204i \(-0.813787\pi\)
0.349908 0.936784i \(-0.386213\pi\)
\(140\) 10.4705 5.50698i 0.884921 0.465424i
\(141\) −2.20022 + 6.77157i −0.185292 + 0.570269i
\(142\) −0.0279095 + 0.0727067i −0.00234211 + 0.00610141i
\(143\) −1.57329 0.421562i −0.131565 0.0352528i
\(144\) 6.84189 + 0.719112i 0.570158 + 0.0599260i
\(145\) −7.30449 + 2.07292i −0.606605 + 0.172147i
\(146\) 0.101999 + 0.140389i 0.00844147 + 0.0116187i
\(147\) −7.64050 2.07620i −0.630178 0.171242i
\(148\) 2.99216 5.87245i 0.245954 0.482712i
\(149\) −12.7732 7.37458i −1.04642 0.604149i −0.124773 0.992185i \(-0.539820\pi\)
−0.921644 + 0.388036i \(0.873154\pi\)
\(150\) −0.0943722 + 0.0229820i −0.00770546 + 0.00187647i
\(151\) −2.80622 4.86051i −0.228367 0.395543i 0.728957 0.684559i \(-0.240005\pi\)
−0.957324 + 0.289016i \(0.906672\pi\)
\(152\) 0.249960 + 0.384905i 0.0202745 + 0.0312199i
\(153\) −1.00590 + 6.35103i −0.0813225 + 0.513450i
\(154\) 0.205157 + 0.104989i 0.0165320 + 0.00846026i
\(155\) −0.740252 + 1.50726i −0.0594585 + 0.121066i
\(156\) 0.663588 0.295448i 0.0531295 0.0236548i
\(157\) 1.35782 5.06744i 0.108366 0.404426i −0.890340 0.455297i \(-0.849533\pi\)
0.998705 + 0.0508712i \(0.0161998\pi\)
\(158\) −0.109517 + 0.0886851i −0.00871270 + 0.00705541i
\(159\) −8.54828 9.49383i −0.677923 0.752910i
\(160\) 0.265311 0.376705i 0.0209746 0.0297812i
\(161\) −8.73973 + 2.32528i −0.688787 + 0.183257i
\(162\) 0.00684101 + 0.0134262i 0.000537481 + 0.00105487i
\(163\) −0.929553 + 17.7369i −0.0728082 + 1.38926i 0.681055 + 0.732232i \(0.261521\pi\)
−0.753864 + 0.657031i \(0.771812\pi\)
\(164\) −11.0941 + 12.3212i −0.866302 + 0.962126i
\(165\) 9.65782 + 8.44190i 0.751860 + 0.657201i
\(166\) −0.0165772 + 0.0149262i −0.00128664 + 0.00115850i
\(167\) −0.899703 5.68050i −0.0696211 0.439571i −0.997735 0.0672731i \(-0.978570\pi\)
0.928113 0.372297i \(-0.121430\pi\)
\(168\) −0.201154 + 0.0423856i −0.0155193 + 0.00327012i
\(169\) 7.58059 10.4338i 0.583122 0.802599i
\(170\) 0.112851 + 0.0886674i 0.00865531 + 0.00680048i
\(171\) −4.67575 + 10.5019i −0.357563 + 0.803100i
\(172\) 10.5491 4.04943i 0.804363 0.308766i
\(173\) 1.89475 1.23047i 0.144055 0.0935507i −0.470599 0.882347i \(-0.655962\pi\)
0.614654 + 0.788797i \(0.289295\pi\)
\(174\) 0.0659643 0.00500074
\(175\) 11.2691 6.92881i 0.851860 0.523769i
\(176\) −20.2779 −1.52851
\(177\) 9.07122 5.89092i 0.681834 0.442788i
\(178\) −0.0158957 + 0.00610177i −0.00119143 + 0.000457347i
\(179\) −9.43793 + 21.1979i −0.705424 + 1.58441i 0.102237 + 0.994760i \(0.467400\pi\)
−0.807661 + 0.589648i \(0.799267\pi\)
\(180\) 7.68843 + 0.289545i 0.573061 + 0.0215814i
\(181\) 1.07470 1.47920i 0.0798820 0.109948i −0.767206 0.641401i \(-0.778354\pi\)
0.847088 + 0.531453i \(0.178354\pi\)
\(182\) 0.0108620 0.00974556i 0.000805147 0.000722389i
\(183\) −0.485109 3.06286i −0.0358603 0.226413i
\(184\) −0.174499 + 0.157120i −0.0128642 + 0.0115830i
\(185\) 2.89817 6.77606i 0.213077 0.498186i
\(186\) 0.00976159 0.0108413i 0.000715754 0.000794926i
\(187\) 0.991941 18.9274i 0.0725379 1.38411i
\(188\) −5.71482 11.2160i −0.416796 0.818008i
\(189\) −9.97154 10.0068i −0.725322 0.727888i
\(190\) 0.153851 + 0.205334i 0.0111615 + 0.0148965i
\(191\) −0.492886 0.547405i −0.0356640 0.0396088i 0.725049 0.688697i \(-0.241817\pi\)
−0.760713 + 0.649089i \(0.775150\pi\)
\(192\) 7.02590 5.68946i 0.507050 0.410601i
\(193\) −3.73619 + 13.9437i −0.268937 + 1.00369i 0.690860 + 0.722989i \(0.257232\pi\)
−0.959796 + 0.280697i \(0.909434\pi\)
\(194\) −0.194899 + 0.0867746i −0.0139929 + 0.00623006i
\(195\) 0.718211 0.379363i 0.0514321 0.0271667i
\(196\) 12.1472 6.95613i 0.867657 0.496866i
\(197\) 1.57277 9.93010i 0.112055 0.707490i −0.866140 0.499802i \(-0.833406\pi\)
0.978195 0.207688i \(-0.0665940\pi\)
\(198\) 0.0816300 + 0.125699i 0.00580119 + 0.00893306i
\(199\) 3.19046 + 5.52604i 0.226166 + 0.391731i 0.956669 0.291179i \(-0.0940475\pi\)
−0.730503 + 0.682910i \(0.760714\pi\)
\(200\) 0.178508 0.293439i 0.0126224 0.0207493i
\(201\) −6.39554 3.69247i −0.451107 0.260447i
\(202\) 0.0917845 0.180137i 0.00645794 0.0126744i
\(203\) −8.54926 + 2.76115i −0.600040 + 0.193795i
\(204\) 4.96830 + 6.83828i 0.347851 + 0.478775i
\(205\) −11.4540 + 14.5781i −0.799983 + 1.01818i
\(206\) 0.251823 + 0.0264676i 0.0175453 + 0.00184409i
\(207\) −5.68118 1.52227i −0.394869 0.105805i
\(208\) −0.460157 + 1.19875i −0.0319061 + 0.0831183i
\(209\) 10.4708 32.2260i 0.724284 2.22912i
\(210\) −0.110615 + 0.0311804i −0.00763319 + 0.00215165i
\(211\) 8.73583 + 26.8861i 0.601399 + 1.85092i 0.519868 + 0.854246i \(0.325981\pi\)
0.0815311 + 0.996671i \(0.474019\pi\)
\(212\) 22.5551 + 1.18206i 1.54909 + 0.0811844i
\(213\) −2.79341 + 4.30147i −0.191401 + 0.294732i
\(214\) 0.132451 + 0.119260i 0.00905419 + 0.00815243i
\(215\) 11.4660 5.30854i 0.781974 0.362040i
\(216\) −0.348836 0.113344i −0.0237353 0.00771206i
\(217\) −0.811344 + 1.81369i −0.0550776 + 0.123121i
\(218\) −0.110518 0.110518i −0.00748521 0.00748521i
\(219\) 4.64827 + 10.4402i 0.314101 + 0.705483i
\(220\) −22.6271 + 1.52006i −1.52552 + 0.102482i
\(221\) −1.09640 0.488148i −0.0737518 0.0328364i
\(222\) −0.0402929 + 0.0497576i −0.00270428 + 0.00333951i
\(223\) −18.8633 9.61132i −1.26318 0.643622i −0.311362 0.950291i \(-0.600785\pi\)
−0.951816 + 0.306670i \(0.900785\pi\)
\(224\) 0.297730 0.456697i 0.0198929 0.0305144i
\(225\) 8.59956 0.253207i 0.573304 0.0168805i
\(226\) 0.0732739 0.126914i 0.00487411 0.00844220i
\(227\) −19.9144 + 1.04367i −1.32176 + 0.0692707i −0.700117 0.714028i \(-0.746869\pi\)
−0.621646 + 0.783299i \(0.713536\pi\)
\(228\) 5.41542 + 14.1076i 0.358645 + 0.934302i
\(229\) 1.04973 + 9.98747i 0.0693678 + 0.659991i 0.972861 + 0.231389i \(0.0743270\pi\)
−0.903493 + 0.428602i \(0.859006\pi\)
\(230\) −0.0914481 + 0.0941803i −0.00602991 + 0.00621007i
\(231\) 11.7782 + 9.57228i 0.774949 + 0.629810i
\(232\) −0.164941 + 0.164941i −0.0108289 + 0.0108289i
\(233\) 2.60583 + 1.00029i 0.170714 + 0.0655309i 0.442224 0.896905i \(-0.354190\pi\)
−0.271510 + 0.962436i \(0.587523\pi\)
\(234\) 0.00928321 0.00197321i 0.000606863 0.000128993i
\(235\) −7.21657 12.0851i −0.470757 0.788348i
\(236\) −3.97581 + 18.7047i −0.258803 + 1.21757i
\(237\) −8.26918 + 4.21336i −0.537141 + 0.273687i
\(238\) 0.137205 + 0.100056i 0.00889366 + 0.00648564i
\(239\) −3.96154 + 1.28718i −0.256251 + 0.0832609i −0.434325 0.900756i \(-0.643013\pi\)
0.178075 + 0.984017i \(0.443013\pi\)
\(240\) 7.41444 6.87626i 0.478600 0.443861i
\(241\) −1.47575 6.94288i −0.0950617 0.447230i −0.999775 0.0212092i \(-0.993248\pi\)
0.904713 0.426021i \(-0.140085\pi\)
\(242\) −0.159127 0.196505i −0.0102290 0.0126318i
\(243\) −3.88900 14.5140i −0.249480 0.931071i
\(244\) 4.43544 + 3.22254i 0.283950 + 0.206302i
\(245\) 13.0311 8.67127i 0.832525 0.553987i
\(246\) 0.130304 0.0946711i 0.00830785 0.00603601i
\(247\) −1.66746 1.35028i −0.106098 0.0859163i
\(248\) 0.00269988 + 0.0515167i 0.000171442 + 0.00327132i
\(249\) −1.27225 + 0.734532i −0.0806254 + 0.0465491i
\(250\) 0.0885762 0.170370i 0.00560205 0.0107751i
\(251\) 3.67076i 0.231697i 0.993267 + 0.115848i \(0.0369586\pi\)
−0.993267 + 0.115848i \(0.963041\pi\)
\(252\) 9.10350 + 0.0160693i 0.573467 + 0.00101227i
\(253\) 17.1229 + 2.71200i 1.07651 + 0.170502i
\(254\) −0.275635 + 0.0289704i −0.0172949 + 0.00181777i
\(255\) 6.05558 + 7.25699i 0.379215 + 0.454450i
\(256\) −1.66999 + 15.8889i −0.104374 + 0.993055i
\(257\) 5.31329 1.42369i 0.331434 0.0888074i −0.0892647 0.996008i \(-0.528452\pi\)
0.420698 + 0.907201i \(0.361785\pi\)
\(258\) −0.108418 + 0.0171718i −0.00674984 + 0.00106907i
\(259\) 3.13937 8.13538i 0.195071 0.505508i
\(260\) −0.423606 + 1.37212i −0.0262709 + 0.0850951i
\(261\) −5.71509 1.21478i −0.353755 0.0751930i
\(262\) −0.0429249 0.0278758i −0.00265191 0.00172217i
\(263\) 17.4437 + 11.3281i 1.07563 + 0.698521i 0.955724 0.294265i \(-0.0950748\pi\)
0.119904 + 0.992786i \(0.461741\pi\)
\(264\) 0.385454 + 0.0819308i 0.0237231 + 0.00504249i
\(265\) 25.2530 0.371697i 1.55128 0.0228331i
\(266\) 0.190637 + 0.236268i 0.0116887 + 0.0144865i
\(267\) −1.10751 + 0.175413i −0.0677788 + 0.0107351i
\(268\) 12.6114 3.37921i 0.770363 0.206418i
\(269\) 0.0163748 0.155796i 0.000998391 0.00949906i −0.994011 0.109277i \(-0.965147\pi\)
0.995010 + 0.0997777i \(0.0318132\pi\)
\(270\) −0.198828 0.0501515i −0.0121003 0.00305212i
\(271\) 1.38670 0.145748i 0.0842359 0.00885355i −0.0623167 0.998056i \(-0.519849\pi\)
0.146553 + 0.989203i \(0.453182\pi\)
\(272\) −14.7577 2.33738i −0.894814 0.141725i
\(273\) 0.833151 0.479061i 0.0504246 0.0289941i
\(274\) 0.265502i 0.0160395i
\(275\) −25.1308 + 3.39181i −1.51544 + 0.204534i
\(276\) −6.69562 + 3.86572i −0.403029 + 0.232689i
\(277\) 1.57183 + 29.9922i 0.0944419 + 1.80206i 0.477809 + 0.878464i \(0.341431\pi\)
−0.383367 + 0.923596i \(0.625236\pi\)
\(278\) −0.246369 0.199506i −0.0147762 0.0119655i
\(279\) −1.04539 + 0.759518i −0.0625857 + 0.0454712i
\(280\) 0.198624 0.354554i 0.0118701 0.0211887i
\(281\) −23.1092 16.7898i −1.37858 1.00160i −0.997011 0.0772549i \(-0.975384\pi\)
−0.381567 0.924341i \(-0.624616\pi\)
\(282\) 0.0316498 + 0.118119i 0.00188472 + 0.00703385i
\(283\) 17.7097 + 21.8697i 1.05273 + 1.30002i 0.952329 + 0.305071i \(0.0986803\pi\)
0.100404 + 0.994947i \(0.467986\pi\)
\(284\) −1.88528 8.86956i −0.111871 0.526312i
\(285\) 7.09926 + 15.3338i 0.420524 + 0.908295i
\(286\) −0.0266049 + 0.00864446i −0.00157318 + 0.000511158i
\(287\) −12.9251 + 17.7240i −0.762947 + 1.04622i
\(288\) 0.315909 0.160964i 0.0186151 0.00948487i
\(289\) −0.630888 + 2.96810i −0.0371111 + 0.174594i
\(290\) −0.0858235 + 0.0981849i −0.00503973 + 0.00576562i
\(291\) −13.7432 + 2.92120i −0.805638 + 0.171244i
\(292\) −18.8626 7.24069i −1.10385 0.423729i
\(293\) −4.56757 + 4.56757i −0.266840 + 0.266840i −0.827826 0.560986i \(-0.810422\pi\)
0.560986 + 0.827826i \(0.310422\pi\)
\(294\) −0.129474 + 0.0415640i −0.00755110 + 0.00242406i
\(295\) −3.03383 + 21.1665i −0.176636 + 1.23236i
\(296\) −0.0236660 0.225167i −0.00137556 0.0130876i
\(297\) 9.70468 + 25.2816i 0.563123 + 1.46698i
\(298\) −0.252966 + 0.0132574i −0.0146539 + 0.000767981i
\(299\) 0.548882 0.950692i 0.0317427 0.0549799i
\(300\) 7.75795 8.22866i 0.447905 0.475082i
\(301\) 13.3327 6.76374i 0.768485 0.389855i
\(302\) −0.0858861 0.0437612i −0.00494219 0.00251817i
\(303\) 8.37910 10.3473i 0.481367 0.594438i
\(304\) −24.4029 10.8649i −1.39960 0.623143i
\(305\) 5.19009 + 3.26290i 0.297183 + 0.186833i
\(306\) 0.0449188 + 0.100889i 0.00256784 + 0.00576746i
\(307\) 12.4946 + 12.4946i 0.713104 + 0.713104i 0.967183 0.254080i \(-0.0817725\pi\)
−0.254080 + 0.967183i \(0.581773\pi\)
\(308\) −26.6910 + 2.75771i −1.52086 + 0.157135i
\(309\) 15.8595 + 5.15306i 0.902215 + 0.293148i
\(310\) 0.00343644 + 0.0286349i 0.000195177 + 0.00162635i
\(311\) −5.55685 5.00341i −0.315100 0.283717i 0.496371 0.868111i \(-0.334666\pi\)
−0.811470 + 0.584394i \(0.801332\pi\)
\(312\) 0.0135903 0.0209273i 0.000769401 0.00118477i
\(313\) −27.7944 1.45664i −1.57103 0.0823343i −0.753200 0.657792i \(-0.771491\pi\)
−0.817832 + 0.575458i \(0.804824\pi\)
\(314\) −0.0278431 0.0856923i −0.00157128 0.00483590i
\(315\) 10.1578 0.664379i 0.572329 0.0374335i
\(316\) 5.07033 15.6049i 0.285228 0.877843i
\(317\) 10.2406 26.6777i 0.575170 1.49837i −0.269457 0.963012i \(-0.586844\pi\)
0.844627 0.535356i \(-0.179823\pi\)
\(318\) −0.211935 0.0567878i −0.0118847 0.00318450i
\(319\) 17.1275 + 1.80018i 0.958958 + 0.100791i
\(320\) −0.672606 + 17.8601i −0.0375998 + 0.998407i
\(321\) 6.89929 + 9.49606i 0.385081 + 0.530019i
\(322\) −0.104136 + 0.115245i −0.00580328 + 0.00642236i
\(323\) 11.3350 22.2461i 0.630694 1.23781i
\(324\) −1.51943 0.877241i −0.0844125 0.0487356i
\(325\) −0.369770 + 1.56260i −0.0205112 + 0.0866773i
\(326\) 0.152523 + 0.264177i 0.00844745 + 0.0146314i
\(327\) −5.60607 8.63259i −0.310016 0.477383i
\(328\) −0.0890975 + 0.562539i −0.00491959 + 0.0310610i
\(329\) −9.04617 13.9839i −0.498732 0.770955i
\(330\) 0.218077 + 0.0312573i 0.0120047 + 0.00172066i
\(331\) 15.2558 6.79232i 0.838535 0.373340i 0.0578965 0.998323i \(-0.481561\pi\)
0.780639 + 0.624983i \(0.214894\pi\)
\(332\) 0.672217 2.50875i 0.0368927 0.137685i
\(333\) 4.40726 3.56893i 0.241517 0.195576i
\(334\) −0.0660950 0.0734059i −0.00361656 0.00401659i
\(335\) 13.8171 4.71536i 0.754906 0.257627i
\(336\) 8.47541 8.44554i 0.462371 0.460742i
\(337\) −10.8501 21.2946i −0.591044 1.15999i −0.971909 0.235358i \(-0.924374\pi\)
0.380865 0.924631i \(-0.375626\pi\)
\(338\) 0.0115924 0.221197i 0.000630546 0.0120315i
\(339\) 6.45792 7.17225i 0.350746 0.389543i
\(340\) −16.6425 1.50192i −0.902568 0.0814529i
\(341\) 2.83045 2.54854i 0.153277 0.138011i
\(342\) 0.0308859 + 0.195006i 0.00167012 + 0.0105447i
\(343\) 15.0406 10.8064i 0.812118 0.583493i
\(344\) 0.228158 0.314033i 0.0123015 0.0169315i
\(345\) −7.18046 + 4.81476i −0.386583 + 0.259218i
\(346\) 0.0157821 0.0354472i 0.000848452 0.00190566i
\(347\) −3.42854 + 1.31609i −0.184053 + 0.0706515i −0.448649 0.893708i \(-0.648095\pi\)
0.264596 + 0.964359i \(0.414761\pi\)
\(348\) −6.44133 + 4.18305i −0.345291 + 0.224235i
\(349\) 1.21897 0.0652497 0.0326249 0.999468i \(-0.489613\pi\)
0.0326249 + 0.999468i \(0.489613\pi\)
\(350\) 0.0975067 0.205214i 0.00521195 0.0109691i
\(351\) 1.71477 0.0915274
\(352\) −0.876464 + 0.569183i −0.0467157 + 0.0303375i
\(353\) −23.7134 + 9.10273i −1.26214 + 0.484490i −0.895162 0.445741i \(-0.852940\pi\)
−0.366976 + 0.930230i \(0.619607\pi\)
\(354\) 0.0755576 0.169705i 0.00401584 0.00901973i
\(355\) −2.76815 9.75433i −0.146918 0.517706i
\(356\) 1.16525 1.60383i 0.0617583 0.0850031i
\(357\) 7.46845 + 8.32405i 0.395272 + 0.440556i
\(358\) 0.0623428 + 0.393617i 0.00329492 + 0.0208033i
\(359\) −8.35258 + 7.52069i −0.440832 + 0.396927i −0.859437 0.511241i \(-0.829186\pi\)
0.418605 + 0.908168i \(0.362519\pi\)
\(360\) 0.226921 0.135505i 0.0119598 0.00714172i
\(361\) 17.1539 19.0514i 0.902838 1.00270i
\(362\) 0.00164347 0.0313592i 8.63787e−5 0.00164820i
\(363\) −7.55997 14.8373i −0.396796 0.778755i
\(364\) −0.442661 + 1.64044i −0.0232017 + 0.0859826i
\(365\) −21.5874 6.66457i −1.12994 0.348839i
\(366\) −0.0356376 0.0395796i −0.00186281 0.00206886i
\(367\) −5.60548 + 4.53923i −0.292604 + 0.236946i −0.764370 0.644778i \(-0.776950\pi\)
0.471766 + 0.881724i \(0.343617\pi\)
\(368\) 3.53724 13.2012i 0.184391 0.688158i
\(369\) −13.0328 + 5.80259i −0.678462 + 0.302071i
\(370\) −0.0216385 0.124712i −0.00112493 0.00648345i
\(371\) 29.8447 1.51127i 1.54946 0.0784614i
\(372\) −0.265716 + 1.67766i −0.0137767 + 0.0869827i
\(373\) 2.12375 + 3.27030i 0.109964 + 0.169329i 0.889368 0.457192i \(-0.151145\pi\)
−0.779404 + 0.626521i \(0.784478\pi\)
\(374\) −0.162760 0.281908i −0.00841610 0.0145771i
\(375\) 8.03868 9.76204i 0.415116 0.504110i
\(376\) −0.374489 0.216211i −0.0193128 0.0111503i
\(377\) 0.495085 0.971660i 0.0254982 0.0500430i
\(378\) −0.237234 0.0508634i −0.0122020 0.00261613i
\(379\) −2.70772 3.72686i −0.139086 0.191436i 0.733792 0.679375i \(-0.237749\pi\)
−0.872878 + 0.487939i \(0.837749\pi\)
\(380\) −28.0444 10.2943i −1.43865 0.528086i
\(381\) −18.1525 1.90791i −0.929983 0.0977451i
\(382\) −0.0122200 0.00327433i −0.000625228 0.000167529i
\(383\) 10.1910 26.5486i 0.520738 1.35657i −0.381116 0.924527i \(-0.624460\pi\)
0.901854 0.432042i \(-0.142207\pi\)
\(384\) 0.192024 0.590991i 0.00979921 0.0301589i
\(385\) −29.5721 + 5.07723i −1.50713 + 0.258760i
\(386\) 0.0766136 + 0.235792i 0.00389953 + 0.0120015i
\(387\) 9.70951 + 0.508854i 0.493562 + 0.0258665i
\(388\) 13.5289 20.8327i 0.686827 1.05762i
\(389\) 21.7783 + 19.6093i 1.10420 + 0.994230i 1.00000 0.000325536i \(-0.000103621\pi\)
0.104205 + 0.994556i \(0.466770\pi\)
\(390\) 0.00679651 0.0121825i 0.000344154 0.000616885i
\(391\) 12.1489 + 3.94741i 0.614396 + 0.199629i
\(392\) 0.219816 0.427674i 0.0111024 0.0216008i
\(393\) −2.38345 2.38345i −0.120229 0.120229i
\(394\) −0.0702325 0.157745i −0.00353826 0.00794706i
\(395\) 4.48730 17.7901i 0.225781 0.895119i
\(396\) −15.9421 7.09790i −0.801122 0.356683i
\(397\) −0.701171 + 0.865873i −0.0351907 + 0.0434569i −0.794438 0.607346i \(-0.792234\pi\)
0.759247 + 0.650803i \(0.225568\pi\)
\(398\) 0.0976462 + 0.0497532i 0.00489456 + 0.00249390i
\(399\) 9.04534 + 17.8302i 0.452833 + 0.892627i
\(400\) 0.588369 + 19.9825i 0.0294184 + 0.999125i
\(401\) −4.29812 + 7.44456i −0.214638 + 0.371764i −0.953160 0.302465i \(-0.902190\pi\)
0.738523 + 0.674229i \(0.235524\pi\)
\(402\) −0.126661 + 0.00663801i −0.00631726 + 0.000331074i
\(403\) −0.0864297 0.225157i −0.00430537 0.0112159i
\(404\) 2.46055 + 23.4106i 0.122417 + 1.16472i
\(405\) −1.76095 0.864843i −0.0875022 0.0429744i
\(406\) −0.0973153 + 0.119742i −0.00482968 + 0.00594268i
\(407\) −11.8199 + 11.8199i −0.585890 + 0.585890i
\(408\) 0.271078 + 0.104057i 0.0134203 + 0.00515159i
\(409\) −15.2011 + 3.23109i −0.751645 + 0.159767i −0.567775 0.823184i \(-0.692196\pi\)
−0.183869 + 0.982951i \(0.558862\pi\)
\(410\) −0.0286191 + 0.317124i −0.00141339 + 0.0156616i
\(411\) 3.63537 17.1031i 0.179320 0.843633i
\(412\) −26.2686 + 13.3845i −1.29416 + 0.659407i
\(413\) −2.68904 + 25.1572i −0.132319 + 1.23791i
\(414\) −0.0960709 + 0.0312153i −0.00472163 + 0.00153415i
\(415\) 0.561951 2.84935i 0.0275851 0.139869i
\(416\) 0.0137586 + 0.0647291i 0.000674571 + 0.00317361i
\(417\) −13.1389 16.2251i −0.643413 0.794548i
\(418\) −0.150621 0.562127i −0.00736713 0.0274945i
\(419\) −5.12758 3.72540i −0.250499 0.181998i 0.455449 0.890262i \(-0.349479\pi\)
−0.705948 + 0.708264i \(0.749479\pi\)
\(420\) 8.82419 10.0593i 0.430576 0.490842i
\(421\) −17.9408 + 13.0347i −0.874380 + 0.635274i −0.931759 0.363079i \(-0.881726\pi\)
0.0573790 + 0.998352i \(0.481726\pi\)
\(422\) 0.377325 + 0.305552i 0.0183679 + 0.0148740i
\(423\) −0.566871 10.8165i −0.0275622 0.525918i
\(424\) 0.671930 0.387939i 0.0326318 0.0188400i
\(425\) −18.6804 0.428307i −0.906131 0.0207759i
\(426\) 0.0880879i 0.00426787i
\(427\) 6.27552 + 3.63796i 0.303694 + 0.176053i
\(428\) −20.4964 3.24632i −0.990732 0.156917i
\(429\) −1.83220 + 0.192572i −0.0884594 + 0.00929746i
\(430\) 0.115499 0.183718i 0.00556988 0.00885965i
\(431\) 1.01729 9.67888i 0.0490012 0.466215i −0.942316 0.334724i \(-0.891357\pi\)
0.991317 0.131491i \(-0.0419764\pi\)
\(432\) 20.6209 5.52535i 0.992123 0.265839i
\(433\) 12.2911 1.94672i 0.590674 0.0935535i 0.146060 0.989276i \(-0.453341\pi\)
0.444614 + 0.895722i \(0.353341\pi\)
\(434\) 0.00527873 + 0.0337136i 0.000253387 + 0.00161831i
\(435\) −6.87297 + 5.14974i −0.329534 + 0.246911i
\(436\) 17.8003 + 3.78356i 0.852478 + 0.181200i
\(437\) 19.1529 + 12.4381i 0.916209 + 0.594993i
\(438\) 0.164612 + 0.106900i 0.00786545 + 0.00510788i
\(439\) 23.9971 + 5.10075i 1.14532 + 0.243445i 0.741215 0.671267i \(-0.234250\pi\)
0.404105 + 0.914713i \(0.367583\pi\)
\(440\) −0.623449 + 0.467135i −0.0297218 + 0.0222698i
\(441\) 11.9830 1.21671i 0.570618 0.0579384i
\(442\) −0.0203587 + 0.00322450i −0.000968363 + 0.000153374i
\(443\) −6.76871 + 1.81367i −0.321591 + 0.0861701i −0.416003 0.909363i \(-0.636570\pi\)
0.0944121 + 0.995533i \(0.469903\pi\)
\(444\) 0.779231 7.41389i 0.0369807 0.351848i
\(445\) 1.17985 1.87671i 0.0559302 0.0889645i
\(446\) −0.361611 + 0.0380068i −0.0171228 + 0.00179968i
\(447\) −16.4771 2.60972i −0.779340 0.123435i
\(448\) −0.0373287 + 21.1472i −0.00176361 + 0.999114i
\(449\) 11.3776i 0.536943i −0.963288 0.268472i \(-0.913481\pi\)
0.963288 0.268472i \(-0.0865186\pi\)
\(450\) 0.121499 0.0840879i 0.00572753 0.00396394i
\(451\) 36.4167 21.0252i 1.71480 0.990039i
\(452\) 0.893007 + 17.0396i 0.0420035 + 0.801474i
\(453\) −4.93341 3.99500i −0.231792 0.187701i
\(454\) −0.277083 + 0.201313i −0.0130042 + 0.00944808i
\(455\) −0.370918 + 1.86339i −0.0173889 + 0.0873573i
\(456\) 0.419965 + 0.305123i 0.0196667 + 0.0142887i
\(457\) −1.77469 6.62325i −0.0830167 0.309822i 0.911915 0.410380i \(-0.134604\pi\)
−0.994931 + 0.100558i \(0.967937\pi\)
\(458\) 0.108544 + 0.134040i 0.00507191 + 0.00626328i
\(459\) 4.14863 + 19.5178i 0.193641 + 0.911011i
\(460\) 2.95745 14.9957i 0.137892 0.699176i
\(461\) −6.19822 + 2.01392i −0.288680 + 0.0937978i −0.449777 0.893141i \(-0.648497\pi\)
0.161097 + 0.986939i \(0.448497\pi\)
\(462\) 0.259193 + 0.0277049i 0.0120587 + 0.00128895i
\(463\) 3.99566 2.03589i 0.185694 0.0946158i −0.358672 0.933464i \(-0.616770\pi\)
0.544366 + 0.838848i \(0.316770\pi\)
\(464\) 2.82274 13.2800i 0.131043 0.616507i
\(465\) −0.170714 + 1.89166i −0.00791667 + 0.0877235i
\(466\) 0.0468911 0.00996701i 0.00217219 0.000461713i
\(467\) 37.5050 + 14.3968i 1.73552 + 0.666205i 0.999937 0.0112245i \(-0.00357295\pi\)
0.735587 + 0.677430i \(0.236906\pi\)
\(468\) −0.781365 + 0.781365i −0.0361186 + 0.0361186i
\(469\) 16.1379 6.16210i 0.745180 0.284539i
\(470\) −0.216992 0.106570i −0.0100091 0.00491571i
\(471\) −0.620259 5.90137i −0.0285800 0.271921i
\(472\) 0.235412 + 0.613269i 0.0108357 + 0.0282280i
\(473\) −28.6193 + 1.49988i −1.31592 + 0.0689643i
\(474\) −0.0796971 + 0.138039i −0.00366061 + 0.00634036i
\(475\) −32.0602 9.38324i −1.47102 0.430533i
\(476\) −19.7428 1.06962i −0.904909 0.0490261i
\(477\) 17.3161 + 8.82298i 0.792849 + 0.403977i
\(478\) −0.0450215 + 0.0555969i −0.00205924 + 0.00254294i
\(479\) 18.9438 + 8.43434i 0.865566 + 0.385375i 0.790982 0.611840i \(-0.209570\pi\)
0.0745845 + 0.997215i \(0.476237\pi\)
\(480\) 0.127461 0.505326i 0.00581778 0.0230649i
\(481\) 0.430521 + 0.966966i 0.0196301 + 0.0440898i
\(482\) −0.0862007 0.0862007i −0.00392633 0.00392633i
\(483\) −8.28622 + 5.99797i −0.377036 + 0.272917i
\(484\) 27.9996 + 9.09763i 1.27271 + 0.413529i
\(485\) 13.5326 24.2567i 0.614484 1.10144i
\(486\) −0.191781 0.172681i −0.00869938 0.00783296i
\(487\) 4.04851 6.23415i 0.183455 0.282496i −0.734963 0.678107i \(-0.762800\pi\)
0.918418 + 0.395611i \(0.129467\pi\)
\(488\) 0.188077 + 0.00985672i 0.00851387 + 0.000446193i
\(489\) 6.20797 + 19.1062i 0.280734 + 0.864011i
\(490\) 0.106588 0.246794i 0.00481514 0.0111490i
\(491\) −6.27403 + 19.3095i −0.283143 + 0.871425i 0.703806 + 0.710392i \(0.251482\pi\)
−0.986949 + 0.161033i \(0.948518\pi\)
\(492\) −6.72052 + 17.5076i −0.302984 + 0.789302i
\(493\) 12.2574 + 3.28436i 0.552045 + 0.147920i
\(494\) −0.0366486 0.00385192i −0.00164890 0.000173306i
\(495\) −18.3184 6.72415i −0.823350 0.302228i
\(496\) −1.76487 2.42913i −0.0792448 0.109071i
\(497\) −3.68720 11.4166i −0.165393 0.512103i
\(498\) −0.0114546 + 0.0224808i −0.000513291 + 0.00100739i
\(499\) −7.97198 4.60262i −0.356875 0.206042i 0.310834 0.950464i \(-0.399392\pi\)
−0.667709 + 0.744422i \(0.732725\pi\)
\(500\) 2.15444 + 22.2533i 0.0963495 + 0.995199i
\(501\) −3.25260 5.63367i −0.145315 0.251694i
\(502\) 0.0343365 + 0.0528736i 0.00153251 + 0.00235986i
\(503\) 3.27358 20.6686i 0.145962 0.921565i −0.800637 0.599150i \(-0.795505\pi\)
0.946598 0.322415i \(-0.104495\pi\)
\(504\) 0.262573 0.169859i 0.0116959 0.00756611i
\(505\) 4.49982 + 25.9344i 0.200239 + 1.15407i
\(506\) 0.272005 0.121105i 0.0120921 0.00538376i
\(507\) 3.77549 14.0903i 0.167676 0.625774i
\(508\) 25.0783 20.3080i 1.11267 0.901022i
\(509\) 4.74698 + 5.27205i 0.210406 + 0.233680i 0.839105 0.543969i \(-0.183079\pi\)
−0.628699 + 0.777648i \(0.716412\pi\)
\(510\) 0.155107 + 0.0478852i 0.00686824 + 0.00212039i
\(511\) −25.8090 6.96436i −1.14172 0.308085i
\(512\) 0.623407 + 1.22350i 0.0275509 + 0.0540718i
\(513\) −1.86698 + 35.6241i −0.0824291 + 1.57284i
\(514\) 0.0632152 0.0702076i 0.00278830 0.00309672i
\(515\) −28.3043 + 16.9017i −1.24723 + 0.744778i
\(516\) 9.49799 8.55203i 0.418126 0.376482i
\(517\) 4.99434 + 31.5330i 0.219651 + 1.38682i
\(518\) −0.0308794 0.146548i −0.00135676 0.00643893i
\(519\) 1.50201 2.06734i 0.0659310 0.0907463i
\(520\) 0.0134675 + 0.0474562i 0.000590588 + 0.00208109i
\(521\) −6.21506 + 13.9592i −0.272287 + 0.611566i −0.996993 0.0774921i \(-0.975309\pi\)
0.724706 + 0.689058i \(0.241975\pi\)
\(522\) −0.0936831 + 0.0359616i −0.00410040 + 0.00157400i
\(523\) −3.88934 + 2.52576i −0.170069 + 0.110444i −0.626867 0.779127i \(-0.715663\pi\)
0.456798 + 0.889571i \(0.348996\pi\)
\(524\) 5.95927 0.260332
\(525\) 9.09106 11.8843i 0.396767 0.518675i
\(526\) 0.357223 0.0155757
\(527\) 2.35367 1.52849i 0.102528 0.0665822i
\(528\) −21.4126 + 8.21952i −0.931863 + 0.357709i
\(529\) 4.60253 10.3374i 0.200110 0.449454i
\(530\) 0.360266 0.241571i 0.0156490 0.0104932i
\(531\) −9.67149 + 13.3117i −0.419707 + 0.577677i
\(532\) −33.5981 10.9823i −1.45666 0.476143i
\(533\) −0.416539 2.62992i −0.0180423 0.113915i
\(534\) −0.0143118 + 0.0128864i −0.000619332 + 0.000557649i
\(535\) −23.1109 2.08566i −0.999169 0.0901707i
\(536\) 0.300112 0.333308i 0.0129628 0.0143967i
\(537\) −1.37359 + 26.2097i −0.0592748 + 1.13103i
\(538\) −0.00122146 0.00239725i −5.26610e−5 0.000103353i
\(539\) −34.7521 + 7.25866i −1.49688 + 0.312653i
\(540\) 22.5956 7.71122i 0.972361 0.331838i
\(541\) 16.9732 + 18.8507i 0.729735 + 0.810453i 0.987809 0.155672i \(-0.0497544\pi\)
−0.258074 + 0.966125i \(0.583088\pi\)
\(542\) 0.0186106 0.0150706i 0.000799395 0.000647337i
\(543\) 0.535254 1.99759i 0.0229699 0.0857249i
\(544\) −0.703472 + 0.313206i −0.0301611 + 0.0134286i
\(545\) 20.1431 + 2.88713i 0.862834 + 0.123671i
\(546\) 0.00751952 0.0146937i 0.000321806 0.000628833i
\(547\) −1.41055 + 8.90589i −0.0603110 + 0.380788i 0.939008 + 0.343895i \(0.111746\pi\)
−0.999319 + 0.0368938i \(0.988254\pi\)
\(548\) 16.8365 + 25.9259i 0.719218 + 1.10750i
\(549\) 2.35873 + 4.08544i 0.100668 + 0.174362i
\(550\) −0.330256 + 0.283930i −0.0140822 + 0.0121068i
\(551\) 19.6471 + 11.3433i 0.836995 + 0.483239i
\(552\) −0.120576 + 0.236643i −0.00513204 + 0.0100722i
\(553\) 4.55100 21.2265i 0.193528 0.902641i
\(554\) 0.303190 + 0.417305i 0.0128813 + 0.0177296i
\(555\) 0.313705 8.32996i 0.0133160 0.353587i
\(556\) 36.7090 + 3.85827i 1.55681 + 0.163627i
\(557\) −16.3666 4.38542i −0.693475 0.185816i −0.105169 0.994454i \(-0.533538\pi\)
−0.588306 + 0.808638i \(0.700205\pi\)
\(558\) −0.00795316 + 0.0207187i −0.000336684 + 0.000877092i
\(559\) −0.560777 + 1.72589i −0.0237183 + 0.0729975i
\(560\) 1.54380 + 23.6034i 0.0652373 + 0.997426i
\(561\) −6.62463 20.3885i −0.279692 0.860804i
\(562\) −0.489917 0.0256755i −0.0206659 0.00108305i
\(563\) 23.6121 36.3595i 0.995133 1.53237i 0.156496 0.987679i \(-0.449980\pi\)
0.838637 0.544691i \(-0.183353\pi\)
\(564\) −10.5809 9.52709i −0.445536 0.401163i
\(565\) 2.27343 + 18.9439i 0.0956439 + 0.796974i
\(566\) 0.459661 + 0.149353i 0.0193210 + 0.00627776i
\(567\) −2.11895 0.947901i −0.0889874 0.0398081i
\(568\) −0.220260 0.220260i −0.00924190 0.00924190i
\(569\) 4.01461 + 9.01696i 0.168301 + 0.378011i 0.977930 0.208931i \(-0.0669984\pi\)
−0.809629 + 0.586942i \(0.800332\pi\)
\(570\) 0.245691 + 0.154461i 0.0102908 + 0.00646964i
\(571\) −1.33258 0.593302i −0.0557666 0.0248289i 0.378664 0.925534i \(-0.376384\pi\)
−0.434430 + 0.900705i \(0.643050\pi\)
\(572\) 2.04976 2.53124i 0.0857047 0.105836i
\(573\) −0.742352 0.378247i −0.0310122 0.0158015i
\(574\) −0.0203817 + 0.376199i −0.000850716 + 0.0157022i
\(575\) 2.17566 16.9521i 0.0907312 0.706950i
\(576\) −6.87654 + 11.9105i −0.286522 + 0.496271i
\(577\) −5.62157 + 0.294614i −0.234029 + 0.0122649i −0.168990 0.985618i \(-0.554051\pi\)
−0.0650391 + 0.997883i \(0.520717\pi\)
\(578\) 0.0186764 + 0.0486537i 0.000776837 + 0.00202373i
\(579\) 1.70671 + 16.2383i 0.0709286 + 0.674841i
\(580\) 2.15427 15.0300i 0.0894514 0.624088i
\(581\) 0.543552 3.39308i 0.0225504 0.140769i
\(582\) −0.170631 + 0.170631i −0.00707288 + 0.00707288i
\(583\) −53.4789 20.5286i −2.21487 0.850209i
\(584\) −0.678903 + 0.144305i −0.0280932 + 0.00597140i
\(585\) −0.813193 + 0.930320i −0.0336214 + 0.0384640i
\(586\) −0.0230659 + 0.108516i −0.000952842 + 0.00448277i
\(587\) 18.5011 9.42678i 0.763622 0.389085i −0.0283850 0.999597i \(-0.509036\pi\)
0.792007 + 0.610512i \(0.209036\pi\)
\(588\) 10.0073 12.2691i 0.412693 0.505971i
\(589\) 4.77172 1.55043i 0.196615 0.0638842i
\(590\) 0.154294 + 0.333261i 0.00635217 + 0.0137201i
\(591\) −2.36432 11.1232i −0.0972551 0.457549i
\(592\) 8.29300 + 10.2410i 0.340840 + 0.420903i
\(593\) 3.80233 + 14.1905i 0.156143 + 0.582733i 0.999005 + 0.0446033i \(0.0142024\pi\)
−0.842862 + 0.538130i \(0.819131\pi\)
\(594\) 0.376271 + 0.273377i 0.0154386 + 0.0112168i
\(595\) −22.1069 + 0.286359i −0.906293 + 0.0117396i
\(596\) 23.8611 17.3361i 0.977390 0.710116i
\(597\) 5.60893 + 4.54202i 0.229558 + 0.185892i
\(598\) −0.000986734 0.0188280i −4.03506e−5 0.000769935i
\(599\) −8.74982 + 5.05171i −0.357508 + 0.206407i −0.667987 0.744173i \(-0.732844\pi\)
0.310479 + 0.950580i \(0.399511\pi\)
\(600\) 0.0695531 0.382215i 0.00283949 0.0156039i
\(601\) 22.6515i 0.923974i 0.886887 + 0.461987i \(0.152863\pi\)
−0.886887 + 0.461987i \(0.847137\pi\)
\(602\) 0.128776 0.222140i 0.00524850 0.00905373i
\(603\) 11.0960 + 1.75744i 0.451865 + 0.0715684i
\(604\) 11.1617 1.17315i 0.454165 0.0477346i
\(605\) 31.9206 + 8.05151i 1.29776 + 0.327340i
\(606\) 0.0239029 0.227421i 0.000970990 0.00923835i
\(607\) −19.2701 + 5.16341i −0.782150 + 0.209576i −0.627732 0.778429i \(-0.716017\pi\)
−0.154418 + 0.988006i \(0.549350\pi\)
\(608\) −1.35972 + 0.215359i −0.0551440 + 0.00873395i
\(609\) −7.90841 + 6.38103i −0.320465 + 0.258572i
\(610\) 0.105279 0.00154960i 0.00426263 6.27413e-5i
\(611\) 1.97744 + 0.420317i 0.0799986 + 0.0170042i
\(612\) −10.7840 7.00323i −0.435919 0.283089i
\(613\) −32.1875 20.9028i −1.30004 0.844257i −0.305871 0.952073i \(-0.598948\pi\)
−0.994171 + 0.107815i \(0.965614\pi\)
\(614\) 0.296847 + 0.0630967i 0.0119798 + 0.00254638i
\(615\) −6.18579 + 20.0366i −0.249435 + 0.807954i
\(616\) −0.717375 + 0.578825i −0.0289039 + 0.0233215i
\(617\) −0.589114 + 0.0933065i −0.0237168 + 0.00375638i −0.168282 0.985739i \(-0.553822\pi\)
0.144565 + 0.989495i \(0.453822\pi\)
\(618\) 0.276642 0.0741259i 0.0111282 0.00298178i
\(619\) 0.290449 2.76344i 0.0116741 0.111072i −0.987133 0.159901i \(-0.948882\pi\)
0.998807 + 0.0488294i \(0.0155491\pi\)
\(620\) −2.15141 2.57824i −0.0864028 0.103545i
\(621\) −18.1514 + 1.90779i −0.728392 + 0.0765571i
\(622\) −0.126843 0.0200899i −0.00508593 0.000805532i
\(623\) 1.31547 2.26920i 0.0527031 0.0909134i
\(624\) 1.45235i 0.0581404i
\(625\) 4.07156 + 24.6662i 0.162862 + 0.986649i
\(626\) −0.413975 + 0.239009i −0.0165458 + 0.00955270i
\(627\) −2.00583 38.2734i −0.0801050 1.52849i
\(628\) 8.15292 + 6.60211i 0.325337 + 0.263453i
\(629\) −9.96459 + 7.23970i −0.397314 + 0.288666i
\(630\) 0.140099 0.104587i 0.00558166 0.00416683i
\(631\) 22.3034 + 16.2043i 0.887883 + 0.645085i 0.935325 0.353789i \(-0.115107\pi\)
−0.0474420 + 0.998874i \(0.515107\pi\)
\(632\) −0.145882 0.544441i −0.00580289 0.0216567i
\(633\) 20.1227 + 24.8495i 0.799807 + 0.987680i
\(634\) −0.102039 0.480056i −0.00405249 0.0190655i
\(635\) 26.4574 24.5369i 1.04993 0.973719i
\(636\) 24.2963 7.89435i 0.963411 0.313031i
\(637\) −0.359510 + 2.21912i −0.0142443 + 0.0879248i
\(638\) 0.263544 0.134282i 0.0104338 0.00531628i
\(639\) 1.62220 7.63186i 0.0641733 0.301912i
\(640\) 0.629828 + 1.05473i 0.0248961 + 0.0416920i
\(641\) −1.48400 + 0.315435i −0.0586146 + 0.0124589i −0.237126 0.971479i \(-0.576205\pi\)
0.178511 + 0.983938i \(0.442872\pi\)
\(642\) 0.188204 + 0.0722447i 0.00742781 + 0.00285127i
\(643\) −18.1864 + 18.1864i −0.717201 + 0.717201i −0.968031 0.250830i \(-0.919297\pi\)
0.250830 + 0.968031i \(0.419297\pi\)
\(644\) 2.86062 17.8572i 0.112724 0.703672i
\(645\) 9.95579 10.2532i 0.392009 0.403721i
\(646\) −0.0448227 0.426460i −0.00176353 0.0167788i
\(647\) −2.70505 7.04689i −0.106346 0.277042i 0.870073 0.492922i \(-0.164071\pi\)
−0.976420 + 0.215880i \(0.930738\pi\)
\(648\) −0.0601875 + 0.00315429i −0.00236439 + 0.000123912i
\(649\) 24.2497 42.0017i 0.951885 1.64871i
\(650\) 0.00929046 + 0.0259665i 0.000364402 + 0.00101849i
\(651\) −0.121578 + 2.24404i −0.00476501 + 0.0879510i
\(652\) −31.6461 16.1245i −1.23936 0.631484i
\(653\) 21.7081 26.8073i 0.849503 1.04905i −0.148686 0.988885i \(-0.547504\pi\)
0.998188 0.0601643i \(-0.0191625\pi\)
\(654\) −0.161499 0.0719041i −0.00631512 0.00281167i
\(655\) 6.64867 0.446648i 0.259785 0.0174520i
\(656\) −13.4833 30.2839i −0.526433 1.18239i
\(657\) −12.2932 12.2932i −0.479602 0.479602i
\(658\) −0.261107 0.116805i −0.0101790 0.00455353i
\(659\) −16.9511 5.50773i −0.660319 0.214551i −0.0403605 0.999185i \(-0.512851\pi\)
−0.619959 + 0.784634i \(0.712851\pi\)
\(660\) −23.2771 + 10.7769i −0.906059 + 0.419489i
\(661\) −29.1652 26.2604i −1.13439 1.02141i −0.999533 0.0305478i \(-0.990275\pi\)
−0.134860 0.990865i \(-0.543059\pi\)
\(662\) 0.156209 0.240540i 0.00607122 0.00934885i
\(663\) −1.35562 0.0710448i −0.0526477 0.00275915i
\(664\) −0.0275707 0.0848540i −0.00106995 0.00329297i
\(665\) −38.3080 9.73459i −1.48552 0.377491i
\(666\) 0.0300981 0.0926326i 0.00116628 0.00358944i
\(667\) −4.15963 + 10.8362i −0.161061 + 0.419579i
\(668\) 11.1090 + 2.97666i 0.429822 + 0.115170i
\(669\) −23.8146 2.50302i −0.920727 0.0967724i
\(670\) 0.154913 0.197165i 0.00598480 0.00761716i
\(671\) −8.17313 11.2493i −0.315520 0.434276i
\(672\) 0.129270 0.602934i 0.00498672 0.0232587i
\(673\) 7.81076 15.3295i 0.301083 0.590908i −0.690053 0.723759i \(-0.742413\pi\)
0.991136 + 0.132850i \(0.0424129\pi\)
\(674\) −0.355475 0.205234i −0.0136924 0.00790531i
\(675\) 24.6316 10.2968i 0.948071 0.396325i
\(676\) 12.8950 + 22.3347i 0.495960 + 0.859028i
\(677\) −0.346917 0.534205i −0.0133331 0.0205312i 0.831941 0.554864i \(-0.187230\pi\)
−0.845274 + 0.534333i \(0.820563\pi\)
\(678\) 0.0259302 0.163717i 0.000995842 0.00628750i
\(679\) 14.9722 29.2568i 0.574580 1.12277i
\(680\) −0.507572 + 0.268103i −0.0194645 + 0.0102813i
\(681\) −20.6056 + 9.17421i −0.789609 + 0.351557i
\(682\) 0.0169304 0.0631853i 0.000648300 0.00241949i
\(683\) 14.1248 11.4381i 0.540471 0.437665i −0.319812 0.947481i \(-0.603620\pi\)
0.860284 + 0.509816i \(0.170286\pi\)
\(684\) −15.3821 17.0835i −0.588148 0.653204i
\(685\) 20.7273 + 27.6632i 0.791951 + 1.05696i
\(686\) 0.115561 0.296347i 0.00441214 0.0113146i
\(687\) 5.15681 + 10.1208i 0.196745 + 0.386133i
\(688\) −1.18241 + 22.5617i −0.0450788 + 0.860155i
\(689\) −2.42714 + 2.69561i −0.0924665 + 0.102694i
\(690\) −0.0583897 + 0.136518i −0.00222286 + 0.00519715i
\(691\) −18.4552 + 16.6171i −0.702068 + 0.632145i −0.940809 0.338938i \(-0.889932\pi\)
0.238740 + 0.971083i \(0.423265\pi\)
\(692\) 0.706740 + 4.46218i 0.0268662 + 0.169627i
\(693\) −21.9460 7.17355i −0.833661 0.272501i
\(694\) −0.0370737 + 0.0510276i −0.00140730 + 0.00193698i
\(695\) 41.2448 + 1.55327i 1.56451 + 0.0589190i
\(696\) −0.107312 + 0.241028i −0.00406767 + 0.00913613i
\(697\) 28.9265 11.1038i 1.09567 0.420588i
\(698\) 0.0175580 0.0114023i 0.000664578 0.000431582i
\(699\) 3.15710 0.119413
\(700\) 3.49198 + 26.2221i 0.131984 + 0.991103i
\(701\) −7.79098 −0.294261 −0.147131 0.989117i \(-0.547004\pi\)
−0.147131 + 0.989117i \(0.547004\pi\)
\(702\) 0.0246994 0.0160400i 0.000932220 0.000605391i
\(703\) −20.5574 + 7.89123i −0.775335 + 0.297623i
\(704\) 16.4883 37.0332i 0.621425 1.39574i
\(705\) −12.5190 9.83618i −0.471493 0.370452i
\(706\) −0.256420 + 0.352932i −0.00965050 + 0.0132828i
\(707\) 6.42152 + 30.4753i 0.241506 + 1.14614i
\(708\) 3.38355 + 21.3629i 0.127162 + 0.802866i
\(709\) −33.5426 + 30.2019i −1.25972 + 1.13426i −0.274754 + 0.961515i \(0.588596\pi\)
−0.984967 + 0.172743i \(0.944737\pi\)
\(710\) −0.131115 0.114608i −0.00492065 0.00430115i
\(711\) 9.44698 10.4919i 0.354289 0.393478i
\(712\) 0.00356414 0.0680079i 0.000133572 0.00254870i
\(713\) 1.16539 + 2.28721i 0.0436443 + 0.0856568i
\(714\) 0.185439 + 0.0500392i 0.00693988 + 0.00187267i
\(715\) 2.09717 2.97769i 0.0784296 0.111359i
\(716\) −31.0485 34.4828i −1.16034 1.28868i
\(717\) −3.66145 + 2.96499i −0.136740 + 0.110729i
\(718\) −0.0499613 + 0.186458i −0.00186454 + 0.00695856i
\(719\) −28.4168 + 12.6520i −1.05977 + 0.471839i −0.861209 0.508250i \(-0.830292\pi\)
−0.198558 + 0.980089i \(0.563626\pi\)
\(720\) −6.78135 + 13.8078i −0.252726 + 0.514588i
\(721\) −32.7512 + 21.1868i −1.21972 + 0.789036i
\(722\) 0.0688773 0.434874i 0.00256335 0.0161843i
\(723\) −4.37258 6.73318i −0.162618 0.250409i
\(724\) 1.82812 + 3.16640i 0.0679417 + 0.117678i
\(725\) 1.27699 16.9302i 0.0474262 0.628773i
\(726\) −0.247682 0.142999i −0.00919235 0.00530721i
\(727\) 9.91394 19.4572i 0.367688 0.721628i −0.630838 0.775915i \(-0.717289\pi\)
0.998525 + 0.0542869i \(0.0172886\pi\)
\(728\) 0.0179388 + 0.0555432i 0.000664855 + 0.00205857i
\(729\) −11.5369 15.8791i −0.427291 0.588116i
\(730\) −0.373286 + 0.105934i −0.0138159 + 0.00392078i
\(731\) −21.0011 2.20731i −0.776755 0.0816403i
\(732\) 5.98986 + 1.60498i 0.221392 + 0.0593217i
\(733\) −0.0807548 + 0.210373i −0.00298275 + 0.00777032i −0.935064 0.354480i \(-0.884658\pi\)
0.932081 + 0.362250i \(0.117991\pi\)
\(734\) −0.0382810 + 0.117817i −0.00141298 + 0.00434870i
\(735\) 10.2454 14.4385i 0.377907 0.532573i
\(736\) −0.217655 0.669875i −0.00802289 0.0246919i
\(737\) −33.0684 1.73304i −1.21809 0.0638375i
\(738\) −0.133447 + 0.205490i −0.00491224 + 0.00756419i
\(739\) −29.9797 26.9939i −1.10282 0.992986i −0.102824 0.994700i \(-0.532788\pi\)
−0.999999 + 0.00171350i \(0.999455\pi\)
\(740\) 10.0214 + 10.8058i 0.368395 + 0.397228i
\(741\) −2.30809 0.749943i −0.0847897 0.0275498i
\(742\) 0.415746 0.300937i 0.0152625 0.0110478i
\(743\) −1.97911 1.97911i −0.0726064 0.0726064i 0.669871 0.742477i \(-0.266349\pi\)
−0.742477 + 0.669871i \(0.766349\pi\)
\(744\) 0.0237329 + 0.0533050i 0.000870090 + 0.00195426i
\(745\) 25.3221 21.1300i 0.927732 0.774145i
\(746\) 0.0611810 + 0.0272395i 0.00224000 + 0.000997310i
\(747\) 1.40641 1.73678i 0.0514580 0.0635454i
\(748\) 33.7701 + 17.2067i 1.23476 + 0.629141i
\(749\) −27.4161 1.48535i −1.00176 0.0542734i
\(750\) 0.0244743 0.215806i 0.000893675 0.00788014i
\(751\) 14.9793 25.9449i 0.546602 0.946743i −0.451902 0.892068i \(-0.649254\pi\)
0.998504 0.0546754i \(-0.0174124\pi\)
\(752\) 25.1340 1.31722i 0.916543 0.0480340i
\(753\) 1.48792 + 3.87616i 0.0542228 + 0.141255i
\(754\) −0.00195776 0.0186268i −7.12973e−5 0.000678349i
\(755\) 12.3650 2.14543i 0.450010 0.0780803i
\(756\) 26.3910 10.0771i 0.959832 0.366502i
\(757\) 29.2442 29.2442i 1.06290 1.06290i 0.0650131 0.997884i \(-0.479291\pi\)
0.997884 0.0650131i \(-0.0207089\pi\)
\(758\) −0.0738631 0.0283534i −0.00268283 0.00102984i
\(759\) 19.1803 4.07689i 0.696199 0.147982i
\(760\) −1.00056 + 0.228117i −0.0362942 + 0.00827466i
\(761\) −9.89316 + 46.5437i −0.358627 + 1.68721i 0.315769 + 0.948836i \(0.397738\pi\)
−0.674396 + 0.738370i \(0.735596\pi\)
\(762\) −0.279315 + 0.142318i −0.0101185 + 0.00515565i
\(763\) 23.9408 + 2.55901i 0.866714 + 0.0926424i
\(764\) 1.40090 0.455180i 0.0506828 0.0164679i
\(765\) −12.5565