Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [175,2,Mod(3,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(60))
chi = DirichletCharacter(H, H._module([21, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.3");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.x (of order \(60\), degree \(16\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.39738203537\) |
Analytic rank: | \(0\) |
Dimension: | \(288\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{60})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{60}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −1.36631 | + | 2.10393i | 0.553395 | − | 1.44164i | −1.74625 | − | 3.92214i | 0.644473 | + | 2.14118i | 2.27701 | + | 3.13403i | 0.377880 | − | 2.61863i | 5.68228 | + | 0.899985i | 0.457347 | + | 0.411797i | −5.38544 | − | 1.56958i |
3.2 | −1.20294 | + | 1.85237i | 0.944233 | − | 2.45981i | −1.17073 | − | 2.62951i | −1.77209 | − | 1.36371i | 3.42063 | + | 4.70809i | −2.43764 | + | 1.02854i | 1.91615 | + | 0.303488i | −2.92966 | − | 2.63788i | 4.65782 | − | 1.64211i |
3.3 | −1.15251 | + | 1.77471i | −0.686737 | + | 1.78901i | −1.00784 | − | 2.26365i | −0.960426 | + | 2.01930i | −2.38350 | − | 3.28061i | 1.78481 | + | 1.95307i | 0.998771 | + | 0.158190i | −0.499520 | − | 0.449770i | −2.47677 | − | 4.03174i |
3.4 | −1.09978 | + | 1.69351i | 0.0195422 | − | 0.0509090i | −0.844998 | − | 1.89790i | 1.92424 | − | 1.13899i | 0.0647231 | + | 0.0890837i | −0.0453616 | + | 2.64536i | 0.154579 | + | 0.0244829i | 2.22722 | + | 2.00540i | −0.187337 | + | 4.51137i |
3.5 | −0.863911 | + | 1.33031i | −0.702377 | + | 1.82975i | −0.209899 | − | 0.471441i | −2.03789 | − | 0.920336i | −1.82734 | − | 2.51512i | −2.08368 | − | 1.63042i | −2.32486 | − | 0.368222i | −0.625235 | − | 0.562964i | 2.98488 | − | 1.91592i |
3.6 | −0.467632 | + | 0.720090i | 1.11331 | − | 2.90028i | 0.513623 | + | 1.15362i | 1.62243 | + | 1.53874i | 1.56784 | + | 2.15795i | 1.61121 | + | 2.09857i | −2.76697 | − | 0.438245i | −4.94272 | − | 4.45045i | −1.86673 | + | 0.448731i |
3.7 | −0.423319 | + | 0.651855i | 0.402507 | − | 1.04857i | 0.567758 | + | 1.27521i | 0.567586 | − | 2.16283i | 0.513123 | + | 0.706254i | 1.24404 | − | 2.33503i | −2.60695 | − | 0.412900i | 1.29196 | + | 1.16328i | 1.16958 | + | 1.28555i |
3.8 | −0.365924 | + | 0.563474i | −0.784887 | + | 2.04470i | 0.629871 | + | 1.41471i | 1.68811 | + | 1.46639i | −0.864927 | − | 1.19047i | 0.965333 | − | 2.46336i | −2.35483 | − | 0.372968i | −1.33532 | − | 1.20233i | −1.44399 | + | 0.414616i |
3.9 | −0.000514176 | 0 | 0.000791762i | −0.955405 | + | 2.48892i | 0.813473 | + | 1.82709i | 1.57098 | − | 1.59123i | −0.00147938 | − | 0.00203619i | −1.45449 | + | 2.21008i | −0.00372978 | 0.000590739i | −3.05247 | − | 2.74845i | 0.000452119 | 0.00206202i | ||
3.10 | 0.0204066 | − | 0.0314234i | −0.0391619 | + | 0.102020i | 0.812902 | + | 1.82581i | −2.17394 | − | 0.523442i | 0.00240666 | + | 0.00331248i | 1.46457 | + | 2.20341i | 0.147975 | + | 0.0234370i | 2.22056 | + | 1.99940i | −0.0608110 | + | 0.0576309i |
3.11 | 0.437609 | − | 0.673859i | 1.12462 | − | 2.92974i | 0.550889 | + | 1.23732i | −2.22451 | + | 0.227106i | −1.48209 | − | 2.03992i | −0.782993 | − | 2.52724i | 2.66204 | + | 0.421625i | −5.08915 | − | 4.58229i | −0.820427 | + | 1.59839i |
3.12 | 0.466637 | − | 0.718557i | 0.476012 | − | 1.24005i | 0.514898 | + | 1.15648i | 2.23345 | + | 0.108225i | −0.668925 | − | 0.920697i | −2.64513 | + | 0.0574557i | 2.76373 | + | 0.437732i | 0.918288 | + | 0.826830i | 1.11997 | − | 1.55436i |
3.13 | 0.668598 | − | 1.02955i | −0.0902073 | + | 0.234998i | 0.200523 | + | 0.450382i | −0.532453 | + | 2.17175i | 0.181630 | + | 0.249992i | 1.56284 | − | 2.13484i | 3.02273 | + | 0.478753i | 2.18235 | + | 1.96499i | 1.87993 | + | 2.00021i |
3.14 | 0.882496 | − | 1.35892i | −0.978941 | + | 2.55023i | −0.254403 | − | 0.571398i | −1.48415 | + | 1.67252i | 2.60166 | + | 3.58087i | −2.64114 | + | 0.156130i | 2.19977 | + | 0.348409i | −3.31591 | − | 2.98566i | 0.963067 | + | 3.49283i |
3.15 | 0.986015 | − | 1.51833i | −0.756771 | + | 1.97146i | −0.519626 | − | 1.16710i | 0.208311 | − | 2.22634i | 2.24713 | + | 3.09291i | 2.61446 | − | 0.405696i | 1.29182 | + | 0.204604i | −1.08450 | − | 0.976490i | −3.17493 | − | 2.51149i |
3.16 | 1.13877 | − | 1.75355i | 0.297680 | − | 0.775483i | −0.964662 | − | 2.16667i | −1.08500 | − | 1.95519i | −1.02086 | − | 1.40509i | −2.15744 | + | 1.53148i | −0.767632 | − | 0.121581i | 1.71667 | + | 1.54570i | −4.66408 | − | 0.323915i |
3.17 | 1.32350 | − | 2.03802i | 0.732885 | − | 1.90923i | −1.58838 | − | 3.56756i | −0.600501 | + | 2.15393i | −2.92107 | − | 4.02051i | 1.28591 | + | 2.31224i | −4.57269 | − | 0.724243i | −0.878604 | − | 0.791099i | 3.59497 | + | 4.07456i |
3.18 | 1.51333 | − | 2.33033i | −0.475498 | + | 1.23871i | −2.32679 | − | 5.22605i | 2.19854 | + | 0.407943i | 2.16703 | + | 2.98265i | −1.54641 | − | 2.14677i | −10.2108 | − | 1.61724i | 0.921121 | + | 0.829381i | 4.27777 | − | 4.50597i |
12.1 | −2.43914 | − | 0.936298i | 2.98133 | − | 0.156245i | 3.58646 | + | 3.22926i | −1.61949 | − | 1.54184i | −7.41816 | − | 2.41031i | −1.17017 | − | 2.37291i | −3.35206 | − | 6.57879i | 5.88033 | − | 0.618047i | 2.50654 | + | 5.27708i |
12.2 | −2.43845 | − | 0.936034i | −2.16962 | + | 0.113705i | 3.58360 | + | 3.22669i | −2.10335 | + | 0.758905i | 5.39694 | + | 1.75357i | 2.32567 | + | 1.26145i | −3.34656 | − | 6.56798i | 1.71075 | − | 0.179807i | 5.83927 | + | 0.118249i |
See next 80 embeddings (of 288 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
25.f | odd | 20 | 1 | inner |
175.x | even | 60 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 175.2.x.a | ✓ | 288 |
5.b | even | 2 | 1 | 875.2.bb.c | 288 | ||
5.c | odd | 4 | 1 | 875.2.bb.a | 288 | ||
5.c | odd | 4 | 1 | 875.2.bb.b | 288 | ||
7.d | odd | 6 | 1 | inner | 175.2.x.a | ✓ | 288 |
25.d | even | 5 | 1 | 875.2.bb.b | 288 | ||
25.e | even | 10 | 1 | 875.2.bb.a | 288 | ||
25.f | odd | 20 | 1 | inner | 175.2.x.a | ✓ | 288 |
25.f | odd | 20 | 1 | 875.2.bb.c | 288 | ||
35.i | odd | 6 | 1 | 875.2.bb.c | 288 | ||
35.k | even | 12 | 1 | 875.2.bb.a | 288 | ||
35.k | even | 12 | 1 | 875.2.bb.b | 288 | ||
175.u | odd | 30 | 1 | 875.2.bb.a | 288 | ||
175.v | odd | 30 | 1 | 875.2.bb.b | 288 | ||
175.x | even | 60 | 1 | inner | 175.2.x.a | ✓ | 288 |
175.x | even | 60 | 1 | 875.2.bb.c | 288 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
175.2.x.a | ✓ | 288 | 1.a | even | 1 | 1 | trivial |
175.2.x.a | ✓ | 288 | 7.d | odd | 6 | 1 | inner |
175.2.x.a | ✓ | 288 | 25.f | odd | 20 | 1 | inner |
175.2.x.a | ✓ | 288 | 175.x | even | 60 | 1 | inner |
875.2.bb.a | 288 | 5.c | odd | 4 | 1 | ||
875.2.bb.a | 288 | 25.e | even | 10 | 1 | ||
875.2.bb.a | 288 | 35.k | even | 12 | 1 | ||
875.2.bb.a | 288 | 175.u | odd | 30 | 1 | ||
875.2.bb.b | 288 | 5.c | odd | 4 | 1 | ||
875.2.bb.b | 288 | 25.d | even | 5 | 1 | ||
875.2.bb.b | 288 | 35.k | even | 12 | 1 | ||
875.2.bb.b | 288 | 175.v | odd | 30 | 1 | ||
875.2.bb.c | 288 | 5.b | even | 2 | 1 | ||
875.2.bb.c | 288 | 25.f | odd | 20 | 1 | ||
875.2.bb.c | 288 | 35.i | odd | 6 | 1 | ||
875.2.bb.c | 288 | 175.x | even | 60 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(175, [\chi])\).