Properties

Label 175.2.x.a.108.9
Level $175$
Weight $2$
Character 175.108
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 108.9
Character \(\chi\) \(=\) 175.108
Dual form 175.2.x.a.47.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.000898858 + 0.0171512i) q^{2} +(0.879015 + 0.711812i) q^{3} +(1.98875 - 0.209026i) q^{4} +(1.43263 + 1.71685i) q^{5} +(-0.0114183 + 0.0157160i) q^{6} +(-2.51481 + 0.822022i) q^{7} +(0.0107461 + 0.0678483i) q^{8} +(-0.357745 - 1.68306i) q^{9} +O(q^{10})\) \(q+(0.000898858 + 0.0171512i) q^{2} +(0.879015 + 0.711812i) q^{3} +(1.98875 - 0.209026i) q^{4} +(1.43263 + 1.71685i) q^{5} +(-0.0114183 + 0.0157160i) q^{6} +(-2.51481 + 0.822022i) q^{7} +(0.0107461 + 0.0678483i) q^{8} +(-0.357745 - 1.68306i) q^{9} +(-0.0281584 + 0.0261145i) q^{10} +(-4.96090 - 1.05447i) q^{11} +(1.89693 + 1.23188i) q^{12} +(0.145799 + 0.286147i) q^{13} +(-0.0163592 - 0.0423932i) q^{14} +(0.0372227 + 2.52890i) q^{15} +(3.91086 - 0.831279i) q^{16} +(3.48884 + 1.33924i) q^{17} +(0.0285449 - 0.00764859i) q^{18} +(0.698358 - 6.64443i) q^{19} +(3.20800 + 3.11494i) q^{20} +(-2.79568 - 1.06750i) q^{21} +(0.0136263 - 0.0860334i) q^{22} +(-3.41354 + 0.178896i) q^{23} +(-0.0388492 + 0.0672888i) q^{24} +(-0.895167 + 4.91922i) q^{25} +(-0.00477673 + 0.00275784i) q^{26} +(2.42406 - 4.75748i) q^{27} +(-4.82951 + 2.16046i) q^{28} +(1.99592 + 2.74715i) q^{29} +(-0.0433403 + 0.00291154i) q^{30} +(0.305449 + 0.686049i) q^{31} +(0.0533314 + 0.199035i) q^{32} +(-3.61012 - 4.45813i) q^{33} +(-0.0198337 + 0.0610417i) q^{34} +(-5.01408 - 3.13991i) q^{35} +(-1.06327 - 3.27240i) q^{36} +(1.79507 - 2.76416i) q^{37} +(0.114588 + 0.00600530i) q^{38} +(-0.0755233 + 0.355309i) q^{39} +(-0.101090 + 0.115651i) q^{40} +(-7.88534 - 2.56210i) q^{41} +(0.0157961 - 0.0489089i) q^{42} +(-3.99562 - 3.99562i) q^{43} +(-10.0864 - 1.06012i) q^{44} +(2.37705 - 3.02538i) q^{45} +(-0.00613657 - 0.0583856i) q^{46} +(2.25590 + 5.87681i) q^{47} +(4.02942 + 2.05309i) q^{48} +(5.64856 - 4.13446i) q^{49} +(-0.0851752 - 0.0109315i) q^{50} +(2.11346 + 3.66061i) q^{51} +(0.349771 + 0.538600i) q^{52} +(-7.10798 + 8.77763i) q^{53} +(0.0837755 + 0.0372993i) q^{54} +(-5.29674 - 10.0278i) q^{55} +(-0.0827972 - 0.161792i) q^{56} +(5.34345 - 5.34345i) q^{57} +(-0.0453229 + 0.0367018i) q^{58} +(6.39870 + 7.10647i) q^{59} +(0.602633 + 5.02157i) q^{60} +(-2.03745 - 1.83453i) q^{61} +(-0.0114920 + 0.00585548i) q^{62} +(2.28317 + 3.93850i) q^{63} +(7.60172 - 2.46995i) q^{64} +(-0.282397 + 0.660258i) q^{65} +(0.0732173 - 0.0659252i) q^{66} +(-2.33982 + 6.09544i) q^{67} +(7.21837 + 1.93416i) q^{68} +(-3.12789 - 2.27255i) q^{69} +(0.0493464 - 0.0888199i) q^{70} +(-3.66851 + 2.66533i) q^{71} +(0.110348 - 0.0423587i) q^{72} +(-8.47376 + 5.50292i) q^{73} +(0.0490223 + 0.0283030i) q^{74} +(-4.28842 + 3.68687i) q^{75} -13.3601i q^{76} +(13.3425 - 1.42617i) q^{77} +(-0.00616188 - 0.000975946i) q^{78} +(3.33735 - 7.49580i) q^{79} +(7.02998 + 5.52346i) q^{80} +(0.801517 - 0.356859i) q^{81} +(0.0368554 - 0.137546i) q^{82} +(1.28282 - 0.203179i) q^{83} +(-5.78305 - 1.53863i) q^{84} +(2.69893 + 7.90846i) q^{85} +(0.0649383 - 0.0721212i) q^{86} +(-0.201010 + 3.83550i) q^{87} +(0.0182337 - 0.347920i) q^{88} +(-0.663356 + 0.736732i) q^{89} +(0.0540257 + 0.0380499i) q^{90} +(-0.601877 - 0.599756i) q^{91} +(-6.75128 + 1.06930i) q^{92} +(-0.219844 + 0.820470i) q^{93} +(-0.0987668 + 0.0439738i) q^{94} +(12.4080 - 8.32000i) q^{95} +(-0.0947968 + 0.212917i) q^{96} +(12.2690 + 1.94322i) q^{97} +(0.0759884 + 0.0931634i) q^{98} +8.72671i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.000898858 0.0171512i 0.000635588 0.0121278i 0.998929 0.0462711i \(-0.0147338\pi\)
−0.998293 + 0.0583989i \(0.981400\pi\)
\(3\) 0.879015 + 0.711812i 0.507499 + 0.410965i 0.848578 0.529070i \(-0.177459\pi\)
−0.341079 + 0.940035i \(0.610792\pi\)
\(4\) 1.98875 0.209026i 0.994375 0.104513i
\(5\) 1.43263 + 1.71685i 0.640690 + 0.767800i
\(6\) −0.0114183 + 0.0157160i −0.00466152 + 0.00641603i
\(7\) −2.51481 + 0.822022i −0.950510 + 0.310695i
\(8\) 0.0107461 + 0.0678483i 0.00379932 + 0.0239880i
\(9\) −0.357745 1.68306i −0.119248 0.561019i
\(10\) −0.0281584 + 0.0261145i −0.00890447 + 0.00825813i
\(11\) −4.96090 1.05447i −1.49577 0.317935i −0.613882 0.789398i \(-0.710393\pi\)
−0.881886 + 0.471463i \(0.843726\pi\)
\(12\) 1.89693 + 1.23188i 0.547596 + 0.355613i
\(13\) 0.145799 + 0.286147i 0.0404375 + 0.0793630i 0.910341 0.413859i \(-0.135819\pi\)
−0.869904 + 0.493222i \(0.835819\pi\)
\(14\) −0.0163592 0.0423932i −0.00437217 0.0113301i
\(15\) 0.0372227 + 2.52890i 0.00961085 + 0.652959i
\(16\) 3.91086 0.831279i 0.977715 0.207820i
\(17\) 3.48884 + 1.33924i 0.846169 + 0.324814i 0.742540 0.669802i \(-0.233621\pi\)
0.103629 + 0.994616i \(0.466954\pi\)
\(18\) 0.0285449 0.00764859i 0.00672810 0.00180279i
\(19\) 0.698358 6.64443i 0.160214 1.52434i −0.558777 0.829318i \(-0.688729\pi\)
0.718991 0.695019i \(-0.244604\pi\)
\(20\) 3.20800 + 3.11494i 0.717331 + 0.696521i
\(21\) −2.79568 1.06750i −0.610068 0.232948i
\(22\) 0.0136263 0.0860334i 0.00290515 0.0183424i
\(23\) −3.41354 + 0.178896i −0.711772 + 0.0373024i −0.404786 0.914412i \(-0.632654\pi\)
−0.306986 + 0.951714i \(0.599321\pi\)
\(24\) −0.0388492 + 0.0672888i −0.00793006 + 0.0137353i
\(25\) −0.895167 + 4.91922i −0.179033 + 0.983843i
\(26\) −0.00477673 + 0.00275784i −0.000936793 + 0.000540858i
\(27\) 2.42406 4.75748i 0.466510 0.915577i
\(28\) −4.82951 + 2.16046i −0.912691 + 0.408288i
\(29\) 1.99592 + 2.74715i 0.370633 + 0.510133i 0.953073 0.302741i \(-0.0979018\pi\)
−0.582440 + 0.812874i \(0.697902\pi\)
\(30\) −0.0433403 + 0.00291154i −0.00791281 + 0.000531571i
\(31\) 0.305449 + 0.686049i 0.0548602 + 0.123218i 0.938896 0.344202i \(-0.111850\pi\)
−0.884036 + 0.467420i \(0.845184\pi\)
\(32\) 0.0533314 + 0.199035i 0.00942775 + 0.0351848i
\(33\) −3.61012 4.45813i −0.628441 0.776060i
\(34\) −0.0198337 + 0.0610417i −0.00340145 + 0.0104686i
\(35\) −5.01408 3.13991i −0.847534 0.530742i
\(36\) −1.06327 3.27240i −0.177211 0.545400i
\(37\) 1.79507 2.76416i 0.295107 0.454426i −0.659752 0.751483i \(-0.729339\pi\)
0.954860 + 0.297058i \(0.0960054\pi\)
\(38\) 0.114588 + 0.00600530i 0.0185886 + 0.000974188i
\(39\) −0.0755233 + 0.355309i −0.0120934 + 0.0568950i
\(40\) −0.101090 + 0.115651i −0.0159838 + 0.0182860i
\(41\) −7.88534 2.56210i −1.23148 0.400133i −0.380232 0.924891i \(-0.624156\pi\)
−0.851252 + 0.524758i \(0.824156\pi\)
\(42\) 0.0157961 0.0489089i 0.00243739 0.00754681i
\(43\) −3.99562 3.99562i −0.609326 0.609326i 0.333444 0.942770i \(-0.391789\pi\)
−0.942770 + 0.333444i \(0.891789\pi\)
\(44\) −10.0864 1.06012i −1.52058 0.159820i
\(45\) 2.37705 3.02538i 0.354349 0.450998i
\(46\) −0.00613657 0.0583856i −0.000904788 0.00860849i
\(47\) 2.25590 + 5.87681i 0.329056 + 0.857221i 0.993905 + 0.110242i \(0.0351627\pi\)
−0.664849 + 0.746978i \(0.731504\pi\)
\(48\) 4.02942 + 2.05309i 0.581596 + 0.296338i
\(49\) 5.64856 4.13446i 0.806937 0.590638i
\(50\) −0.0851752 0.0109315i −0.0120456 0.00154595i
\(51\) 2.11346 + 3.66061i 0.295943 + 0.512588i
\(52\) 0.349771 + 0.538600i 0.0485045 + 0.0746903i
\(53\) −7.10798 + 8.77763i −0.976356 + 1.20570i 0.00225825 + 0.999997i \(0.499281\pi\)
−0.978615 + 0.205702i \(0.934052\pi\)
\(54\) 0.0837755 + 0.0372993i 0.0114004 + 0.00507579i
\(55\) −5.29674 10.0278i −0.714212 1.35215i
\(56\) −0.0827972 0.161792i −0.0110642 0.0216204i
\(57\) 5.34345 5.34345i 0.707757 0.707757i
\(58\) −0.0453229 + 0.0367018i −0.00595119 + 0.00481918i
\(59\) 6.39870 + 7.10647i 0.833039 + 0.925184i 0.998132 0.0610943i \(-0.0194590\pi\)
−0.165093 + 0.986278i \(0.552792\pi\)
\(60\) 0.602633 + 5.02157i 0.0777995 + 0.648282i
\(61\) −2.03745 1.83453i −0.260869 0.234887i 0.528309 0.849052i \(-0.322826\pi\)
−0.789178 + 0.614165i \(0.789493\pi\)
\(62\) −0.0114920 + 0.00585548i −0.00145949 + 0.000743647i
\(63\) 2.28317 + 3.93850i 0.287652 + 0.496204i
\(64\) 7.60172 2.46995i 0.950215 0.308744i
\(65\) −0.282397 + 0.660258i −0.0350270 + 0.0818949i
\(66\) 0.0732173 0.0659252i 0.00901243 0.00811483i
\(67\) −2.33982 + 6.09544i −0.285854 + 0.744676i 0.713190 + 0.700971i \(0.247250\pi\)
−0.999044 + 0.0437055i \(0.986084\pi\)
\(68\) 7.21837 + 1.93416i 0.875357 + 0.234551i
\(69\) −3.12789 2.27255i −0.376554 0.273582i
\(70\) 0.0493464 0.0888199i 0.00589802 0.0106160i
\(71\) −3.66851 + 2.66533i −0.435372 + 0.316316i −0.783793 0.621022i \(-0.786718\pi\)
0.348422 + 0.937338i \(0.386718\pi\)
\(72\) 0.110348 0.0423587i 0.0130046 0.00499202i
\(73\) −8.47376 + 5.50292i −0.991779 + 0.644069i −0.935122 0.354325i \(-0.884711\pi\)
−0.0566564 + 0.998394i \(0.518044\pi\)
\(74\) 0.0490223 + 0.0283030i 0.00569873 + 0.00329016i
\(75\) −4.28842 + 3.68687i −0.495184 + 0.425723i
\(76\) 13.3601i 1.53251i
\(77\) 13.3425 1.42617i 1.52052 0.162528i
\(78\) −0.00616188 0.000975946i −0.000697695 0.000110504i
\(79\) 3.33735 7.49580i 0.375481 0.843344i −0.622666 0.782488i \(-0.713950\pi\)
0.998147 0.0608557i \(-0.0193829\pi\)
\(80\) 7.02998 + 5.52346i 0.785976 + 0.617541i
\(81\) 0.801517 0.356859i 0.0890575 0.0396510i
\(82\) 0.0368554 0.137546i 0.00407000 0.0151894i
\(83\) 1.28282 0.203179i 0.140808 0.0223018i −0.0856324 0.996327i \(-0.527291\pi\)
0.226441 + 0.974025i \(0.427291\pi\)
\(84\) −5.78305 1.53863i −0.630983 0.167878i
\(85\) 2.69893 + 7.90846i 0.292740 + 0.857793i
\(86\) 0.0649383 0.0721212i 0.00700247 0.00777703i
\(87\) −0.201010 + 3.83550i −0.0215506 + 0.411209i
\(88\) 0.0182337 0.347920i 0.00194372 0.0370884i
\(89\) −0.663356 + 0.736732i −0.0703156 + 0.0780934i −0.777276 0.629160i \(-0.783399\pi\)
0.706960 + 0.707253i \(0.250066\pi\)
\(90\) 0.0540257 + 0.0380499i 0.00569481 + 0.00401081i
\(91\) −0.601877 0.599756i −0.0630939 0.0628715i
\(92\) −6.75128 + 1.06930i −0.703870 + 0.111482i
\(93\) −0.219844 + 0.820470i −0.0227968 + 0.0850787i
\(94\) −0.0987668 + 0.0439738i −0.0101870 + 0.00453555i
\(95\) 12.4080 8.32000i 1.27303 0.853614i
\(96\) −0.0947968 + 0.212917i −0.00967515 + 0.0217308i
\(97\) 12.2690 + 1.94322i 1.24573 + 0.197304i 0.744270 0.667879i \(-0.232798\pi\)
0.501457 + 0.865183i \(0.332798\pi\)
\(98\) 0.0759884 + 0.0931634i 0.00767599 + 0.00941093i
\(99\) 8.72671i 0.877067i
\(100\) −0.752018 + 9.97020i −0.0752018 + 0.997020i
\(101\) 10.1944 + 5.88575i 1.01438 + 0.585654i 0.912472 0.409139i \(-0.134171\pi\)
0.101911 + 0.994794i \(0.467504\pi\)
\(102\) −0.0608843 + 0.0395387i −0.00602845 + 0.00391492i
\(103\) 13.7639 5.28346i 1.35620 0.520595i 0.431780 0.901979i \(-0.357886\pi\)
0.924417 + 0.381384i \(0.124552\pi\)
\(104\) −0.0178478 + 0.0129672i −0.00175012 + 0.00127154i
\(105\) −2.17242 6.32911i −0.212006 0.617658i
\(106\) −0.156936 0.114021i −0.0152430 0.0110747i
\(107\) −10.0239 2.68589i −0.969046 0.259655i −0.260621 0.965441i \(-0.583927\pi\)
−0.708425 + 0.705786i \(0.750594\pi\)
\(108\) 3.82641 9.96813i 0.368196 0.959184i
\(109\) −6.76285 + 6.08930i −0.647763 + 0.583249i −0.926120 0.377229i \(-0.876877\pi\)
0.278357 + 0.960478i \(0.410210\pi\)
\(110\) 0.167228 0.0998592i 0.0159446 0.00952120i
\(111\) 3.54546 1.15199i 0.336520 0.109342i
\(112\) −9.15175 + 5.30532i −0.864759 + 0.501306i
\(113\) 7.60273 3.87378i 0.715204 0.364415i −0.0582196 0.998304i \(-0.518542\pi\)
0.773424 + 0.633889i \(0.218542\pi\)
\(114\) 0.0964498 + 0.0868438i 0.00903335 + 0.00813366i
\(115\) −5.19746 5.60425i −0.484666 0.522599i
\(116\) 4.54361 + 5.04619i 0.421864 + 0.468527i
\(117\) 0.429443 0.347756i 0.0397020 0.0321501i
\(118\) −0.116133 + 0.116133i −0.0106909 + 0.0106909i
\(119\) −9.87467 0.500033i −0.905210 0.0458379i
\(120\) −0.171181 + 0.0297013i −0.0156267 + 0.00271135i
\(121\) 13.4496 + 5.98816i 1.22269 + 0.544378i
\(122\) 0.0296330 0.0365938i 0.00268285 0.00331304i
\(123\) −5.10760 7.86501i −0.460536 0.709164i
\(124\) 0.750864 + 1.30053i 0.0674296 + 0.116791i
\(125\) −9.72801 + 5.51053i −0.870099 + 0.492876i
\(126\) −0.0654978 + 0.0426993i −0.00583501 + 0.00380396i
\(127\) −14.3784 7.32616i −1.27588 0.650091i −0.320996 0.947081i \(-0.604017\pi\)
−0.954881 + 0.296989i \(0.904017\pi\)
\(128\) 0.196884 + 0.512900i 0.0174022 + 0.0453344i
\(129\) −0.668078 6.35633i −0.0588210 0.559644i
\(130\) −0.0115781 0.00424998i −0.00101546 0.000372748i
\(131\) −2.96375 0.311503i −0.258944 0.0272161i −0.0258332 0.999666i \(-0.508224\pi\)
−0.233111 + 0.972450i \(0.574891\pi\)
\(132\) −8.11149 8.11149i −0.706015 0.706015i
\(133\) 3.70563 + 17.2836i 0.321319 + 1.49867i
\(134\) −0.106647 0.0346518i −0.00921293 0.00299346i
\(135\) 11.6407 2.65394i 1.00187 0.228415i
\(136\) −0.0533737 + 0.251104i −0.00457676 + 0.0215320i
\(137\) −15.4376 0.809052i −1.31893 0.0691220i −0.620162 0.784474i \(-0.712933\pi\)
−0.698764 + 0.715352i \(0.746266\pi\)
\(138\) 0.0361654 0.0556899i 0.00307861 0.00474064i
\(139\) 5.70394 + 17.5549i 0.483801 + 1.48899i 0.833709 + 0.552204i \(0.186213\pi\)
−0.349908 + 0.936784i \(0.613787\pi\)
\(140\) −10.6281 5.19643i −0.898236 0.439178i
\(141\) −2.20022 + 6.77157i −0.185292 + 0.570269i
\(142\) −0.0490111 0.0605237i −0.00411292 0.00507903i
\(143\) −0.421562 1.57329i −0.0352528 0.131565i
\(144\) −2.79818 6.28481i −0.233182 0.523734i
\(145\) −1.85704 + 7.36234i −0.154219 + 0.611409i
\(146\) −0.101999 0.140389i −0.00844147 0.0116187i
\(147\) 7.90813 + 0.386457i 0.652251 + 0.0318745i
\(148\) 2.99216 5.87245i 0.245954 0.482712i
\(149\) 12.7732 7.37458i 1.04642 0.604149i 0.124773 0.992185i \(-0.460180\pi\)
0.921644 + 0.388036i \(0.126846\pi\)
\(150\) −0.0670891 0.0702377i −0.00547780 0.00573489i
\(151\) −2.80622 + 4.86051i −0.228367 + 0.395543i −0.957324 0.289016i \(-0.906672\pi\)
0.728957 + 0.684559i \(0.240005\pi\)
\(152\) 0.458318 0.0240194i 0.0371745 0.00194823i
\(153\) 1.00590 6.35103i 0.0813225 0.513450i
\(154\) 0.0364537 + 0.227559i 0.00293752 + 0.0183372i
\(155\) −0.740252 + 1.50726i −0.0594585 + 0.121066i
\(156\) −0.0759281 + 0.722408i −0.00607912 + 0.0578389i
\(157\) 5.06744 1.35782i 0.404426 0.108366i −0.0508712 0.998705i \(-0.516200\pi\)
0.455297 + 0.890340i \(0.349533\pi\)
\(158\) 0.131562 + 0.0505019i 0.0104665 + 0.00401772i
\(159\) −12.4960 + 2.65612i −0.991000 + 0.210644i
\(160\) −0.265311 + 0.376705i −0.0209746 + 0.0297812i
\(161\) 8.43735 3.25590i 0.664957 0.256601i
\(162\) 0.00684101 + 0.0134262i 0.000537481 + 0.00105487i
\(163\) −14.8958 9.67348i −1.16673 0.757685i −0.192074 0.981381i \(-0.561521\pi\)
−0.974659 + 0.223695i \(0.928188\pi\)
\(164\) −16.2175 3.44714i −1.26638 0.269177i
\(165\) 2.48200 12.5849i 0.193223 0.979731i
\(166\) 0.00463785 + 0.0218194i 0.000359967 + 0.00169351i
\(167\) 0.899703 + 5.68050i 0.0696211 + 0.439571i 0.997735 + 0.0672731i \(0.0214299\pi\)
−0.928113 + 0.372297i \(0.878570\pi\)
\(168\) 0.0423856 0.201154i 0.00327012 0.0155193i
\(169\) 7.58059 10.4338i 0.583122 0.802599i
\(170\) −0.133214 + 0.0533985i −0.0102170 + 0.00409548i
\(171\) −11.4328 + 1.20163i −0.874287 + 0.0918912i
\(172\) −8.78147 7.11110i −0.669581 0.542216i
\(173\) −0.118239 2.25614i −0.00898956 0.171531i −0.999435 0.0336229i \(-0.989295\pi\)
0.990445 0.137908i \(-0.0440379\pi\)
\(174\) −0.0659643 −0.00500074
\(175\) −1.79253 13.1067i −0.135503 0.990777i
\(176\) −20.2779 −1.52851
\(177\) 0.566075 + 10.8014i 0.0425488 + 0.811880i
\(178\) −0.0132321 0.0107152i −0.000991789 0.000803135i
\(179\) 23.0769 2.42548i 1.72485 0.181289i 0.810369 0.585920i \(-0.199267\pi\)
0.914480 + 0.404631i \(0.132600\pi\)
\(180\) 4.09497 6.51360i 0.305221 0.485495i
\(181\) −1.07470 + 1.47920i −0.0798820 + 0.109948i −0.847088 0.531453i \(-0.821646\pi\)
0.767206 + 0.641401i \(0.221646\pi\)
\(182\) 0.00974556 0.0108620i 0.000722389 0.000805147i
\(183\) −0.485109 3.06286i −0.0358603 0.226413i
\(184\) −0.0488201 0.229680i −0.00359906 0.0169323i
\(185\) 7.31732 0.878143i 0.537980 0.0645624i
\(186\) −0.0142697 0.00303311i −0.00104630 0.000222399i
\(187\) −15.8956 10.3227i −1.16240 0.754873i
\(188\) 5.71482 + 11.2160i 0.416796 + 0.818008i
\(189\) −2.18529 + 13.9568i −0.158957 + 1.01521i
\(190\) 0.153851 + 0.205334i 0.0111615 + 0.0148965i
\(191\) 0.720510 0.153149i 0.0521342 0.0110815i −0.181771 0.983341i \(-0.558183\pi\)
0.233905 + 0.972259i \(0.424850\pi\)
\(192\) 8.44016 + 3.23987i 0.609116 + 0.233818i
\(193\) 13.9437 3.73619i 1.00369 0.268937i 0.280697 0.959796i \(-0.409434\pi\)
0.722989 + 0.690860i \(0.242768\pi\)
\(194\) −0.0223005 + 0.212175i −0.00160108 + 0.0152333i
\(195\) −0.718211 + 0.379363i −0.0514321 + 0.0271667i
\(196\) 10.3694 9.40311i 0.740669 0.671651i
\(197\) 1.57277 9.93010i 0.112055 0.707490i −0.866140 0.499802i \(-0.833406\pi\)
0.978195 0.207688i \(-0.0665940\pi\)
\(198\) −0.149674 + 0.00784407i −0.0106368 + 0.000557454i
\(199\) −3.19046 + 5.52604i −0.226166 + 0.391731i −0.956669 0.291179i \(-0.905952\pi\)
0.730503 + 0.682910i \(0.239286\pi\)
\(200\) −0.343380 0.00787307i −0.0242806 0.000556710i
\(201\) −6.39554 + 3.69247i −0.451107 + 0.260447i
\(202\) −0.0917845 + 0.180137i −0.00645794 + 0.0126744i
\(203\) −7.27758 5.26787i −0.510786 0.369732i
\(204\) 4.96830 + 6.83828i 0.347851 + 0.478775i
\(205\) −6.89799 17.2085i −0.481777 1.20189i
\(206\) 0.102990 + 0.231319i 0.00717563 + 0.0161167i
\(207\) 1.52227 + 5.68118i 0.105805 + 0.394869i
\(208\) 0.808069 + 0.997882i 0.0560295 + 0.0691907i
\(209\) −10.4708 + 32.2260i −0.724284 + 2.22912i
\(210\) 0.106599 0.0429486i 0.00735605 0.00296374i
\(211\) 8.73583 + 26.8861i 0.601399 + 1.85092i 0.519868 + 0.854246i \(0.325981\pi\)
0.0815311 + 0.996671i \(0.474019\pi\)
\(212\) −12.3012 + 18.9423i −0.844853 + 1.30096i
\(213\) −5.12188 0.268427i −0.350946 0.0183923i
\(214\) 0.0370563 0.174336i 0.00253312 0.0119174i
\(215\) 1.13566 12.5841i 0.0774515 0.858229i
\(216\) 0.348836 + 0.113344i 0.0237353 + 0.00771206i
\(217\) −1.33209 1.47420i −0.0904285 0.100075i
\(218\) −0.110518 0.110518i −0.00748521 0.00748521i
\(219\) −11.3656 1.19457i −0.768017 0.0807218i
\(220\) −12.6300 18.8356i −0.851512 1.26990i
\(221\) 0.125451 + 1.19358i 0.00843873 + 0.0802891i
\(222\) 0.0229449 + 0.0597735i 0.00153996 + 0.00401173i
\(223\) 18.8633 + 9.61132i 1.26318 + 0.643622i 0.951816 0.306670i \(-0.0992147\pi\)
0.311362 + 0.950291i \(0.399215\pi\)
\(224\) −0.297730 0.456697i −0.0198929 0.0305144i
\(225\) 8.59956 0.253207i 0.573304 0.0168805i
\(226\) 0.0732739 + 0.126914i 0.00487411 + 0.00844220i
\(227\) −10.8610 16.7245i −0.720872 1.11004i −0.989179 0.146712i \(-0.953131\pi\)
0.268308 0.963333i \(-0.413536\pi\)
\(228\) 9.50987 11.7437i 0.629807 0.777746i
\(229\) 9.17427 + 4.08465i 0.606253 + 0.269921i 0.686819 0.726828i \(-0.259006\pi\)
−0.0805667 + 0.996749i \(0.525673\pi\)
\(230\) 0.0914481 0.0941803i 0.00602991 0.00621007i
\(231\) 12.7434 + 8.24375i 0.838457 + 0.542399i
\(232\) −0.164941 + 0.164941i −0.0108289 + 0.0108289i
\(233\) −2.16919 + 1.75658i −0.142108 + 0.115077i −0.697739 0.716352i \(-0.745810\pi\)
0.555630 + 0.831429i \(0.312477\pi\)
\(234\) 0.00635045 + 0.00705289i 0.000415142 + 0.000461062i
\(235\) −6.85776 + 12.2923i −0.447351 + 0.801862i
\(236\) 14.2108 + 12.7955i 0.925047 + 0.832916i
\(237\) 8.26918 4.21336i 0.537141 0.273687i
\(238\) −0.000299749 0.169812i −1.94298e−5 0.0110073i
\(239\) −3.96154 + 1.28718i −0.256251 + 0.0832609i −0.434325 0.900756i \(-0.643013\pi\)
0.178075 + 0.984017i \(0.443013\pi\)
\(240\) 2.24779 + 9.85923i 0.145094 + 0.636410i
\(241\) 5.27483 4.74948i 0.339782 0.305941i −0.481520 0.876435i \(-0.659915\pi\)
0.821301 + 0.570494i \(0.193248\pi\)
\(242\) −0.0906150 + 0.236060i −0.00582495 + 0.0151745i
\(243\) −14.5140 3.88900i −0.931071 0.249480i
\(244\) −4.43544 3.22254i −0.283950 0.206302i
\(245\) 15.1905 + 3.77460i 0.970488 + 0.241151i
\(246\) 0.130304 0.0946711i 0.00830785 0.00603601i
\(247\) 2.00311 0.768920i 0.127455 0.0489252i
\(248\) −0.0432649 + 0.0280965i −0.00274732 + 0.00178413i
\(249\) 1.27225 + 0.734532i 0.0806254 + 0.0465491i
\(250\) −0.103256 0.161894i −0.00653051 0.0102391i
\(251\) 3.67076i 0.231697i −0.993267 0.115848i \(-0.963041\pi\)
0.993267 0.115848i \(-0.0369586\pi\)
\(252\) 5.36390 + 7.35544i 0.337894 + 0.463349i
\(253\) 17.1229 + 2.71200i 1.07651 + 0.170502i
\(254\) 0.112728 0.253192i 0.00707321 0.0158867i
\(255\) −3.25694 + 8.87278i −0.203958 + 0.555635i
\(256\) 14.5952 6.49819i 0.912198 0.406137i
\(257\) 1.42369 5.31329i 0.0888074 0.331434i −0.907201 0.420698i \(-0.861785\pi\)
0.996008 + 0.0892647i \(0.0284517\pi\)
\(258\) 0.108418 0.0171718i 0.00674984 0.00106907i
\(259\) −2.24206 + 8.42694i −0.139315 + 0.523624i
\(260\) −0.423606 + 1.37212i −0.0262709 + 0.0850951i
\(261\) 3.90958 4.34202i 0.241997 0.268765i
\(262\) 0.00267867 0.0511120i 0.000165489 0.00315771i
\(263\) 1.08855 20.7708i 0.0671229 1.28078i −0.732703 0.680549i \(-0.761741\pi\)
0.799826 0.600232i \(-0.204925\pi\)
\(264\) 0.263681 0.292848i 0.0162285 0.0180235i
\(265\) −25.2530 + 0.371697i −1.55128 + 0.0228331i
\(266\) −0.293103 + 0.0790916i −0.0179713 + 0.00484942i
\(267\) −1.10751 + 0.175413i −0.0677788 + 0.0107351i
\(268\) −3.37921 + 12.6114i −0.206418 + 0.770363i
\(269\) 0.143111 0.0637171i 0.00872562 0.00388490i −0.402369 0.915477i \(-0.631813\pi\)
0.411095 + 0.911593i \(0.365147\pi\)
\(270\) 0.0559816 + 0.197266i 0.00340693 + 0.0120052i
\(271\) 0.567128 1.27379i 0.0344506 0.0773772i −0.895501 0.445060i \(-0.853182\pi\)
0.929951 + 0.367683i \(0.119849\pi\)
\(272\) 14.7577 + 2.33738i 0.894814 + 0.141725i
\(273\) −0.102145 0.955618i −0.00618212 0.0578366i
\(274\) 0.265502i 0.0160395i
\(275\) 9.62801 23.4598i 0.580591 1.41468i
\(276\) −6.69562 3.86572i −0.403029 0.232689i
\(277\) 25.1881 16.3574i 1.51341 0.982819i 0.521867 0.853027i \(-0.325236\pi\)
0.991541 0.129792i \(-0.0414310\pi\)
\(278\) −0.295961 + 0.113609i −0.0177506 + 0.00681381i
\(279\) 1.04539 0.759518i 0.0625857 0.0454712i
\(280\) 0.159156 0.373938i 0.00951137 0.0223471i
\(281\) −23.1092 16.7898i −1.37858 1.00160i −0.997011 0.0772549i \(-0.975384\pi\)
−0.381567 0.924341i \(-0.624616\pi\)
\(282\) −0.118119 0.0316498i −0.00703385 0.00188472i
\(283\) −10.0848 + 26.2719i −0.599482 + 1.56170i 0.211965 + 0.977277i \(0.432014\pi\)
−0.811447 + 0.584426i \(0.801320\pi\)
\(284\) −6.73862 + 6.06748i −0.399864 + 0.360039i
\(285\) 16.8291 + 1.51875i 0.996869 + 0.0899631i
\(286\) 0.0266049 0.00864446i 0.00157318 0.000511158i
\(287\) 21.9363 0.0387214i 1.29486 0.00228565i
\(288\) 0.315909 0.160964i 0.0186151 0.00948487i
\(289\) −2.25500 2.03041i −0.132647 0.119436i
\(290\) −0.127942 0.0252329i −0.00751304 0.00148173i
\(291\) 9.40141 + 10.4413i 0.551120 + 0.612081i
\(292\) −15.7019 + 12.7152i −0.918887 + 0.744100i
\(293\) 4.56757 4.56757i 0.266840 0.266840i −0.560986 0.827826i \(-0.689578\pi\)
0.827826 + 0.560986i \(0.189578\pi\)
\(294\) 0.000480065 0.135981i 2.79979e−5 0.00793060i
\(295\) −3.03383 + 21.1665i −0.176636 + 1.23236i
\(296\) 0.206834 + 0.0920883i 0.0120220 + 0.00535252i
\(297\) −17.0421 + 21.0453i −0.988885 + 1.22117i
\(298\) 0.137964 + 0.212447i 0.00799207 + 0.0123067i
\(299\) −0.548882 0.950692i −0.0317427 0.0549799i
\(300\) −7.75795 + 8.22866i −0.447905 + 0.475082i
\(301\) 13.3327 + 6.76374i 0.768485 + 0.389855i
\(302\) −0.0858861 0.0437612i −0.00494219 0.00251817i
\(303\) 4.77150 + 12.4302i 0.274115 + 0.714095i
\(304\) −2.79219 26.5660i −0.160143 1.52366i
\(305\) 0.230711 6.12620i 0.0132105 0.350785i
\(306\) 0.109832 + 0.0115438i 0.00627868 + 0.000659916i
\(307\) −12.4946 12.4946i −0.713104 0.713104i 0.254080 0.967183i \(-0.418227\pi\)
−0.967183 + 0.254080i \(0.918227\pi\)
\(308\) 26.2369 5.62524i 1.49498 0.320528i
\(309\) 15.8595 + 5.15306i 0.902215 + 0.293148i
\(310\) −0.0265168 0.0113414i −0.00150605 0.000644149i
\(311\) 1.55465 7.31407i 0.0881563 0.414743i −0.911835 0.410557i \(-0.865334\pi\)
0.999991 0.00418591i \(-0.00133242\pi\)
\(312\) −0.0249187 0.00130593i −0.00141074 7.39340e-5i
\(313\) −15.1587 + 23.3423i −0.856819 + 1.31939i 0.0894451 + 0.995992i \(0.471491\pi\)
−0.946264 + 0.323394i \(0.895176\pi\)
\(314\) 0.0278431 + 0.0856923i 0.00157128 + 0.00483590i
\(315\) −3.49089 + 9.56226i −0.196689 + 0.538772i
\(316\) 5.07033 15.6049i 0.285228 0.877843i
\(317\) 17.9833 + 22.2075i 1.01004 + 1.24730i 0.968722 + 0.248150i \(0.0798225\pi\)
0.0413185 + 0.999146i \(0.486844\pi\)
\(318\) −0.0567878 0.211935i −0.00318450 0.0118847i
\(319\) −7.00477 15.7330i −0.392192 0.880878i
\(320\) 15.1310 + 9.51252i 0.845846 + 0.531766i
\(321\) −6.89929 9.49606i −0.385081 0.530019i
\(322\) 0.0634266 + 0.141784i 0.00353463 + 0.00790134i
\(323\) 11.3350 22.2461i 0.630694 1.23781i
\(324\) 1.51943 0.877241i 0.0844125 0.0487356i
\(325\) −1.53813 + 0.461069i −0.0853204 + 0.0255755i
\(326\) 0.152523 0.264177i 0.00844745 0.0146314i
\(327\) −10.2791 + 0.538704i −0.568434 + 0.0297904i
\(328\) 0.0890975 0.562539i 0.00491959 0.0310610i
\(329\) −10.5040 12.9247i −0.579105 0.712560i
\(330\) 0.218077 + 0.0312573i 0.0120047 + 0.00172066i
\(331\) −1.74558 + 16.6081i −0.0959457 + 0.912863i 0.835624 + 0.549301i \(0.185106\pi\)
−0.931570 + 0.363561i \(0.881561\pi\)
\(332\) 2.50875 0.672217i 0.137685 0.0368927i
\(333\) −5.29442 2.03234i −0.290132 0.111371i
\(334\) −0.0966189 + 0.0205370i −0.00528675 + 0.00112373i
\(335\) −13.8171 + 4.71536i −0.754906 + 0.257627i
\(336\) −11.8209 1.85087i −0.644884 0.100973i
\(337\) −10.8501 21.2946i −0.591044 1.15999i −0.971909 0.235358i \(-0.924374\pi\)
0.380865 0.924631i \(-0.375626\pi\)
\(338\) 0.185766 + 0.120638i 0.0101043 + 0.00656184i
\(339\) 9.44031 + 2.00660i 0.512728 + 0.108984i
\(340\) 7.02057 + 15.1638i 0.380744 + 0.822373i
\(341\) −0.791882 3.72551i −0.0428828 0.201748i
\(342\) −0.0308859 0.195006i −0.00167012 0.0105447i
\(343\) −10.8064 + 15.0406i −0.583493 + 0.812118i
\(344\) 0.228158 0.314033i 0.0123015 0.0169315i
\(345\) −0.579471 8.62584i −0.0311977 0.464399i
\(346\) 0.0385893 0.00405590i 0.00207457 0.000218046i
\(347\) 2.85404 + 2.31115i 0.153213 + 0.124069i 0.702862 0.711326i \(-0.251905\pi\)
−0.549649 + 0.835396i \(0.685239\pi\)
\(348\) 0.401961 + 7.66988i 0.0215474 + 0.411149i
\(349\) −1.21897 −0.0652497 −0.0326249 0.999468i \(-0.510387\pi\)
−0.0326249 + 0.999468i \(0.510387\pi\)
\(350\) 0.223186 0.0425252i 0.0119298 0.00227307i
\(351\) 1.71477 0.0915274
\(352\) −0.0546944 1.04363i −0.00291522 0.0556258i
\(353\) −19.7399 15.9851i −1.05065 0.850799i −0.0615584 0.998103i \(-0.519607\pi\)
−0.989091 + 0.147304i \(0.952940\pi\)
\(354\) −0.184748 + 0.0194178i −0.00981924 + 0.00103204i
\(355\) −9.83157 2.47987i −0.521806 0.131618i
\(356\) −1.16525 + 1.60383i −0.0617583 + 0.0850031i
\(357\) −8.32405 7.46845i −0.440556 0.395272i
\(358\) 0.0623428 + 0.393617i 0.00329492 + 0.0208033i
\(359\) −2.33682 10.9939i −0.123333 0.580235i −0.995799 0.0915616i \(-0.970814\pi\)
0.872467 0.488674i \(-0.162519\pi\)
\(360\) 0.230811 + 0.128767i 0.0121648 + 0.00678663i
\(361\) −25.0759 5.33005i −1.31979 0.280529i
\(362\) −0.0263361 0.0171029i −0.00138420 0.000898908i
\(363\) 7.55997 + 14.8373i 0.396796 + 0.778755i
\(364\) −1.32235 1.06696i −0.0693099 0.0559238i
\(365\) −21.5874 6.66457i −1.12994 0.348839i
\(366\) 0.0520958 0.0110733i 0.00272309 0.000578810i
\(367\) −6.73383 2.58488i −0.351503 0.134929i 0.176209 0.984353i \(-0.443617\pi\)
−0.527712 + 0.849423i \(0.676950\pi\)
\(368\) −13.2012 + 3.53724i −0.688158 + 0.184391i
\(369\) −1.49122 + 14.1881i −0.0776301 + 0.738601i
\(370\) 0.0216385 + 0.124712i 0.00112493 + 0.00648345i
\(371\) 10.6598 27.9170i 0.553431 1.44938i
\(372\) −0.265716 + 1.67766i −0.0137767 + 0.0869827i
\(373\) −3.89404 + 0.204078i −0.201626 + 0.0105667i −0.152881 0.988245i \(-0.548855\pi\)
−0.0487442 + 0.998811i \(0.515522\pi\)
\(374\) 0.162760 0.281908i 0.00841610 0.0145771i
\(375\) −12.4735 2.08068i −0.644130 0.107446i
\(376\) −0.374489 + 0.216211i −0.0193128 + 0.0111503i
\(377\) −0.495085 + 0.971660i −0.0254982 + 0.0500430i
\(378\) −0.241340 0.0249353i −0.0124132 0.00128253i
\(379\) −2.70772 3.72686i −0.139086 0.191436i 0.733792 0.679375i \(-0.237749\pi\)
−0.872878 + 0.487939i \(0.837749\pi\)
\(380\) 22.9373 19.1400i 1.17666 0.981862i
\(381\) −7.42397 16.6745i −0.380342 0.854261i
\(382\) 0.00327433 + 0.0122200i 0.000167529 + 0.000625228i
\(383\) −17.8962 22.1000i −0.914454 1.12926i −0.991222 0.132208i \(-0.957793\pi\)
0.0767678 0.997049i \(-0.475540\pi\)
\(384\) −0.192024 + 0.590991i −0.00979921 + 0.0301589i
\(385\) 21.5634 + 20.8640i 1.09897 + 1.06333i
\(386\) 0.0766136 + 0.235792i 0.00389953 + 0.0120015i
\(387\) −5.29544 + 8.15426i −0.269182 + 0.414504i
\(388\) 24.8061 + 1.30003i 1.25934 + 0.0659992i
\(389\) 6.09298 28.6652i 0.308926 1.45338i −0.500282 0.865863i \(-0.666770\pi\)
0.809208 0.587522i \(-0.199896\pi\)
\(390\) −0.00715211 0.0119772i −0.000362161 0.000606489i
\(391\) −12.1489 3.94741i −0.614396 0.199629i
\(392\) 0.341216 + 0.338815i 0.0172340 + 0.0171128i
\(393\) −2.38345 2.38345i −0.120229 0.120229i
\(394\) 0.171727 + 0.0180493i 0.00865149 + 0.000909308i
\(395\) 17.6504 5.00895i 0.888086 0.252027i
\(396\) 1.82411 + 17.3552i 0.0916649 + 0.872134i
\(397\) 0.399283 + 1.04017i 0.0200394 + 0.0522045i 0.943235 0.332126i \(-0.107766\pi\)
−0.923196 + 0.384330i \(0.874432\pi\)
\(398\) −0.0976462 0.0497532i −0.00489456 0.00249390i
\(399\) −9.04534 + 17.8302i −0.452833 + 0.892627i
\(400\) 0.588369 + 19.9825i 0.0294184 + 0.999125i
\(401\) −4.29812 7.44456i −0.214638 0.371764i 0.738523 0.674229i \(-0.235524\pi\)
−0.953160 + 0.302465i \(0.902190\pi\)
\(402\) −0.0690790 0.106372i −0.00344535 0.00530537i
\(403\) −0.151777 + 0.187429i −0.00756055 + 0.00933650i
\(404\) 21.5044 + 9.57439i 1.06989 + 0.476344i
\(405\) 1.76095 + 0.864843i 0.0875022 + 0.0429744i
\(406\) 0.0838090 0.129555i 0.00415937 0.00642969i
\(407\) −11.8199 + 11.8199i −0.585890 + 0.585890i
\(408\) −0.225655 + 0.182732i −0.0111716 + 0.00904657i
\(409\) −10.3987 11.5490i −0.514185 0.571060i 0.429010 0.903300i \(-0.358862\pi\)
−0.943195 + 0.332240i \(0.892196\pi\)
\(410\) 0.288947 0.133777i 0.0142701 0.00660678i
\(411\) −12.9940 11.6999i −0.640947 0.577112i
\(412\) 26.2686 13.3845i 1.29416 0.659407i
\(413\) −21.9332 12.6116i −1.07926 0.620575i
\(414\) −0.0960709 + 0.0312153i −0.00472163 + 0.00153415i
\(415\) 2.18664 + 1.91134i 0.107338 + 0.0938240i
\(416\) −0.0491778 + 0.0442799i −0.00241114 + 0.00217100i
\(417\) −7.48195 + 19.4912i −0.366393 + 0.954486i
\(418\) −0.562127 0.150621i −0.0274945 0.00736713i
\(419\) 5.12758 + 3.72540i 0.250499 + 0.181998i 0.705948 0.708264i \(-0.250521\pi\)
−0.455449 + 0.890262i \(0.650521\pi\)
\(420\) −5.64335 12.1329i −0.275367 0.592026i
\(421\) −17.9408 + 13.0347i −0.874380 + 0.635274i −0.931759 0.363079i \(-0.881726\pi\)
0.0573790 + 0.998352i \(0.481726\pi\)
\(422\) −0.453278 + 0.173997i −0.0220652 + 0.00847004i
\(423\) 9.08396 5.89920i 0.441677 0.286829i
\(424\) −0.671930 0.387939i −0.0326318 0.0188400i
\(425\) −9.71111 + 15.9635i −0.471058 + 0.774345i
\(426\) 0.0880879i 0.00426787i
\(427\) 6.63183 + 2.93866i 0.320937 + 0.142212i
\(428\) −20.4964 3.24632i −0.990732 0.156917i
\(429\) 0.749328 1.68302i 0.0361779 0.0812568i
\(430\) 0.216854 + 0.00816667i 0.0104576 + 0.000393832i
\(431\) −8.89080 + 3.95844i −0.428255 + 0.190671i −0.609533 0.792761i \(-0.708643\pi\)
0.181279 + 0.983432i \(0.441976\pi\)
\(432\) 5.52535 20.6209i 0.265839 0.992123i
\(433\) −12.2911 + 1.94672i −0.590674 + 0.0935535i −0.444614 0.895722i \(-0.646659\pi\)
−0.146060 + 0.989276i \(0.546659\pi\)
\(434\) 0.0240870 0.0241722i 0.00115621 0.00116030i
\(435\) −6.87297 + 5.14974i −0.329534 + 0.246911i
\(436\) −12.1768 + 13.5237i −0.583163 + 0.647668i
\(437\) −1.19521 + 22.8060i −0.0571746 + 1.09096i
\(438\) 0.0102723 0.196008i 0.000490831 0.00936562i
\(439\) 16.4159 18.2318i 0.783490 0.870154i −0.210727 0.977545i \(-0.567583\pi\)
0.994217 + 0.107391i \(0.0342497\pi\)
\(440\) 0.623449 0.467135i 0.0297218 0.0222698i
\(441\) −8.97928 8.02776i −0.427585 0.382274i
\(442\) −0.0203587 + 0.00322450i −0.000968363 + 0.000153374i
\(443\) 1.81367 6.76871i 0.0861701 0.321591i −0.909363 0.416003i \(-0.863430\pi\)
0.995533 + 0.0944121i \(0.0300971\pi\)
\(444\) 6.81023 3.03211i 0.323199 0.143898i
\(445\) −2.21520 0.0834241i −0.105011 0.00395468i
\(446\) −0.147891 + 0.332168i −0.00700282 + 0.0157286i
\(447\) 16.4771 + 2.60972i 0.779340 + 0.123435i
\(448\) −17.0865 + 12.4602i −0.807263 + 0.588691i
\(449\) 11.3776i 0.536943i −0.963288 0.268472i \(-0.913481\pi\)
0.963288 0.268472i \(-0.0865186\pi\)
\(450\) 0.0120726 + 0.147265i 0.000569108 + 0.00694216i
\(451\) 36.4167 + 21.0252i 1.71480 + 0.990039i
\(452\) 14.3102 9.29316i 0.673095 0.437113i
\(453\) −5.92648 + 2.27496i −0.278450 + 0.106887i
\(454\) 0.277083 0.201313i 0.0130042 0.00944808i
\(455\) 0.167428 1.89256i 0.00784915 0.0887246i
\(456\) 0.419965 + 0.305123i 0.0196667 + 0.0142887i
\(457\) 6.62325 + 1.77469i 0.309822 + 0.0830167i 0.410380 0.911915i \(-0.365396\pi\)
−0.100558 + 0.994931i \(0.532063\pi\)
\(458\) −0.0618104 + 0.161021i −0.00288821 + 0.00752404i
\(459\) 14.8286 13.3517i 0.692138 0.623204i
\(460\) −11.5079 10.0591i −0.536558 0.469006i
\(461\) 6.19822 2.01392i 0.288680 0.0937978i −0.161097 0.986939i \(-0.551503\pi\)
0.449777 + 0.893141i \(0.351503\pi\)
\(462\) −0.129936 + 0.225976i −0.00604516 + 0.0105133i
\(463\) 3.99566 2.03589i 0.185694 0.0946158i −0.358672 0.933464i \(-0.616770\pi\)
0.544366 + 0.838848i \(0.316770\pi\)
\(464\) 10.0894 + 9.08455i 0.468389 + 0.421740i
\(465\) −1.72358 + 0.797986i −0.0799291 + 0.0370057i
\(466\) −0.0320772 0.0356254i −0.00148595 0.00165031i
\(467\) 31.2205 25.2819i 1.44471 1.16991i 0.490248 0.871583i \(-0.336906\pi\)
0.954465 0.298322i \(-0.0964271\pi\)
\(468\) 0.781365 0.781365i 0.0361186 0.0361186i
\(469\) 0.873619 17.2523i 0.0403400 0.796636i
\(470\) −0.216992 0.106570i −0.0100091 0.00491571i
\(471\) 5.42086 + 2.41352i 0.249780 + 0.111209i
\(472\) −0.413401 + 0.510507i −0.0190283 + 0.0234980i
\(473\) 15.6086 + 24.0351i 0.717684 + 1.10514i
\(474\) 0.0796971 + 0.138039i 0.00366061 + 0.00634036i
\(475\) 32.0602 + 9.38324i 1.47102 + 0.430533i
\(476\) −19.7428 + 1.06962i −0.904909 + 0.0490261i
\(477\) 17.3161 + 8.82298i 0.792849 + 0.403977i
\(478\) −0.0256376 0.0667882i −0.00117264 0.00305482i
\(479\) 2.16757 + 20.6230i 0.0990386 + 0.942290i 0.925360 + 0.379090i \(0.123763\pi\)
−0.826321 + 0.563199i \(0.809570\pi\)
\(480\) −0.501355 + 0.142278i −0.0228836 + 0.00649409i
\(481\) 1.05268 + 0.110641i 0.0479980 + 0.00504479i
\(482\) 0.0862007 + 0.0862007i 0.00392633 + 0.00392633i
\(483\) 9.73414 + 3.14383i 0.442919 + 0.143049i
\(484\) 27.9996 + 9.09763i 1.27271 + 0.413529i
\(485\) 14.2406 + 23.8479i 0.646634 + 1.08288i
\(486\) 0.0536552 0.252428i 0.00243385 0.0114504i
\(487\) −7.42319 0.389033i −0.336377 0.0176288i −0.116600 0.993179i \(-0.537200\pi\)
−0.219777 + 0.975550i \(0.570533\pi\)
\(488\) 0.102575 0.157952i 0.00464335 0.00715013i
\(489\) −6.20797 19.1062i −0.280734 0.864011i
\(490\) −0.0510849 + 0.263929i −0.00230778 + 0.0119231i
\(491\) −6.27403 + 19.3095i −0.283143 + 0.871425i 0.703806 + 0.710392i \(0.251482\pi\)
−0.986949 + 0.161033i \(0.948518\pi\)
\(492\) −11.8017 14.5739i −0.532063 0.657043i
\(493\) 3.28436 + 12.2574i 0.147920 + 0.552045i
\(494\) 0.0149884 + 0.0336646i 0.000674362 + 0.00151464i
\(495\) −14.9825 + 12.5021i −0.673412 + 0.561928i
\(496\) 1.76487 + 2.42913i 0.0792448 + 0.109071i
\(497\) 7.03465 9.71839i 0.315547 0.435929i
\(498\) −0.0114546 + 0.0224808i −0.000513291 + 0.00100739i
\(499\) 7.97198 4.60262i 0.356875 0.206042i −0.310834 0.950464i \(-0.600608\pi\)
0.667709 + 0.744422i \(0.267275\pi\)
\(500\) −18.1947 + 12.9925i −0.813693 + 0.581041i
\(501\) −3.25260 + 5.63367i −0.145315 + 0.251694i
\(502\) 0.0629581 0.00329950i 0.00280996 0.000147264i
\(503\) −3.27358 + 20.6686i −0.145962 + 0.921565i 0.800637 + 0.599150i \(0.204495\pi\)
−0.946598 + 0.322415i \(0.895505\pi\)
\(504\) −0.242685 + 0.197233i −0.0108100 + 0.00878544i
\(505\) 4.49982 + 25.9344i 0.200239 + 1.15407i
\(506\) −0.0311230 + 0.296116i −0.00138359 + 0.0131640i
\(507\) 14.0903 3.77549i 0.625774 0.167676i
\(508\) −30.1264 11.5644i −1.33664 0.513089i
\(509\) 6.93922 1.47498i 0.307575 0.0653772i −0.0515382 0.998671i \(-0.516412\pi\)
0.359114 + 0.933294i \(0.383079\pi\)
\(510\) −0.155107 0.0478852i −0.00686824 0.00212039i
\(511\) 16.7864 20.8044i 0.742586 0.920334i
\(512\) 0.623407 + 1.22350i 0.0275509 + 0.0540718i
\(513\) −29.9179 19.4289i −1.32091 0.857807i
\(514\) 0.0924091 + 0.0196422i 0.00407599 + 0.000866379i
\(515\) 28.7894 + 16.0614i 1.26861 + 0.707748i
\(516\) −2.65728 12.5015i −0.116980 0.550349i
\(517\) −4.99434 31.5330i −0.219651 1.38682i
\(518\) −0.146548 0.0308794i −0.00643893 0.00135676i
\(519\) 1.50201 2.06734i 0.0659310 0.0907463i
\(520\) −0.0478320 0.0120649i −0.00209757 0.000529082i
\(521\) −15.1966 + 1.59723i −0.665775 + 0.0699757i −0.431386 0.902167i \(-0.641975\pi\)
−0.234388 + 0.972143i \(0.575309\pi\)
\(522\) 0.0779852 + 0.0631512i 0.00341332 + 0.00276405i
\(523\) 0.242708 + 4.63114i 0.0106129 + 0.202506i 0.998790 + 0.0491867i \(0.0156629\pi\)
−0.988177 + 0.153319i \(0.951004\pi\)
\(524\) −5.95927 −0.260332
\(525\) 7.75388 12.7970i 0.338407 0.558505i
\(526\) 0.357223 0.0155757
\(527\) 0.146877 + 2.80259i 0.00639808 + 0.122083i
\(528\) −17.8246 14.4341i −0.775717 0.628163i
\(529\) −11.2538 + 1.18282i −0.489294 + 0.0514268i
\(530\) −0.0290739 0.432785i −0.00126289 0.0187990i
\(531\) 9.67149 13.3117i 0.419707 0.577677i
\(532\) 10.9823 + 33.5981i 0.476143 + 1.45666i
\(533\) −0.416539 2.62992i −0.0180423 0.113915i
\(534\) −0.00400405 0.0188376i −0.000173272 0.000815181i
\(535\) −9.74920 21.0574i −0.421495 0.910391i
\(536\) −0.438709 0.0932504i −0.0189493 0.00402781i
\(537\) 22.0114 + 14.2944i 0.949863 + 0.616848i
\(538\) 0.00122146 + 0.00239725i 5.26610e−5 + 0.000103353i
\(539\) −32.3816 + 14.5544i −1.39477 + 0.626903i
\(540\) 22.5956 7.71122i 0.972361 0.331838i
\(541\) −24.8117 + 5.27390i −1.06674 + 0.226743i −0.707652 0.706561i \(-0.750246\pi\)
−0.359088 + 0.933304i \(0.616912\pi\)
\(542\) 0.0223568 + 0.00858198i 0.000960308 + 0.000368628i
\(543\) −1.99759 + 0.535254i −0.0857249 + 0.0229699i
\(544\) −0.0804917 + 0.765827i −0.00345105 + 0.0328346i
\(545\) −20.1431 2.88713i −0.862834 0.123671i
\(546\) 0.0162982 0.00261088i 0.000697499 0.000111735i
\(547\) −1.41055 + 8.90589i −0.0603110 + 0.380788i 0.939008 + 0.343895i \(0.111746\pi\)
−0.999319 + 0.0368938i \(0.988254\pi\)
\(548\) −30.8707 + 1.61787i −1.31873 + 0.0691118i
\(549\) −2.35873 + 4.08544i −0.100668 + 0.174362i
\(550\) 0.411019 + 0.144045i 0.0175259 + 0.00614210i
\(551\) 19.6471 11.3433i 0.836995 0.483239i
\(552\) 0.120576 0.236643i 0.00513204 0.0100722i
\(553\) −2.23108 + 21.5939i −0.0948752 + 0.918266i
\(554\) 0.303190 + 0.417305i 0.0128813 + 0.0177296i
\(555\) 7.05711 + 4.43666i 0.299557 + 0.188326i
\(556\) 15.0131 + 33.7201i 0.636699 + 1.43005i
\(557\) 4.38542 + 16.3666i 0.185816 + 0.693475i 0.994454 + 0.105169i \(0.0335383\pi\)
−0.808638 + 0.588306i \(0.799795\pi\)
\(558\) 0.0139663 + 0.0172470i 0.000591242 + 0.000730123i
\(559\) 0.560777 1.72589i 0.0237183 0.0729975i
\(560\) −22.2195 8.11166i −0.938945 0.342780i
\(561\) −6.62463 20.3885i −0.279692 0.860804i
\(562\) 0.267194 0.411443i 0.0112709 0.0173557i
\(563\) 43.2943 + 2.26896i 1.82464 + 0.0956252i 0.933603 0.358310i \(-0.116647\pi\)
0.891035 + 0.453935i \(0.149980\pi\)
\(564\) −2.96025 + 13.9269i −0.124649 + 0.586427i
\(565\) 17.5426 + 7.50308i 0.738022 + 0.315657i
\(566\) −0.459661 0.149353i −0.0193210 0.00627776i
\(567\) −1.72232 + 1.55630i −0.0723306 + 0.0653584i
\(568\) −0.220260 0.220260i −0.00924190 0.00924190i
\(569\) −9.81623 1.03173i −0.411518 0.0432522i −0.103492 0.994630i \(-0.533002\pi\)
−0.308026 + 0.951378i \(0.599668\pi\)
\(570\) −0.0109215 + 0.290005i −0.000457452 + 0.0121470i
\(571\) 0.152474 + 1.45070i 0.00638085 + 0.0607098i 0.997249 0.0741249i \(-0.0236163\pi\)
−0.990868 + 0.134835i \(0.956950\pi\)
\(572\) −1.16724 3.04076i −0.0488047 0.127141i
\(573\) 0.742352 + 0.378247i 0.0310122 + 0.0158015i
\(574\) 0.0203817 + 0.376199i 0.000850716 + 0.0157022i
\(575\) 2.17566 16.9521i 0.0907312 0.706950i
\(576\) −6.87654 11.9105i −0.286522 0.496271i
\(577\) −3.06593 4.72112i −0.127636 0.196543i 0.769075 0.639159i \(-0.220717\pi\)
−0.896711 + 0.442616i \(0.854051\pi\)
\(578\) 0.0327972 0.0405011i 0.00136418 0.00168462i
\(579\) 14.9161 + 6.64109i 0.619894 + 0.275994i
\(580\) −2.15427 + 15.0300i −0.0894514 + 0.624088i
\(581\) −3.05904 + 1.56547i −0.126911 + 0.0649466i
\(582\) −0.170631 + 0.170631i −0.00707288 + 0.00707288i
\(583\) 44.5177 36.0498i 1.84374 1.49303i
\(584\) −0.464424 0.515795i −0.0192180 0.0213437i
\(585\) 1.21228 + 0.239086i 0.0501215 + 0.00988499i
\(586\) 0.0824450 + 0.0742338i 0.00340577 + 0.00306657i
\(587\) −18.5011 + 9.42678i −0.763622 + 0.389085i −0.792007 0.610512i \(-0.790964\pi\)
0.0283850 + 0.999597i \(0.490964\pi\)
\(588\) 15.8081 0.884438i 0.651914 0.0364736i
\(589\) 4.77172 1.55043i 0.196615 0.0638842i
\(590\) −0.365759 0.0330082i −0.0150581 0.00135893i
\(591\) 8.45086 7.60919i 0.347622 0.313000i
\(592\) 4.72247 12.3025i 0.194092 0.505628i
\(593\) 14.1905 + 3.80233i 0.582733 + 0.156143i 0.538130 0.842862i \(-0.319131\pi\)
0.0446033 + 0.999005i \(0.485798\pi\)
\(594\) −0.376271 0.273377i −0.0154386 0.0112168i
\(595\) −13.2882 17.6697i −0.544764 0.724388i
\(596\) 23.8611 17.3361i 0.977390 0.710116i
\(597\) −6.73797 + 2.58646i −0.275767 + 0.105857i
\(598\) 0.0158122 0.0102685i 0.000646608 0.000419912i
\(599\) 8.74982 + 5.05171i 0.357508 + 0.206407i 0.667987 0.744173i \(-0.267156\pi\)
−0.310479 + 0.950580i \(0.600489\pi\)
\(600\) −0.296232 0.251342i −0.0120936 0.0102610i
\(601\) 22.6515i 0.923974i −0.886887 0.461987i \(-0.847137\pi\)
0.886887 0.461987i \(-0.152863\pi\)
\(602\) −0.104022 + 0.234752i −0.00423963 + 0.00956778i
\(603\) 11.0960 + 1.75744i 0.451865 + 0.0715684i
\(604\) −4.56489 + 10.2529i −0.185743 + 0.417185i
\(605\) 8.98749 + 31.6698i 0.365393 + 1.28756i
\(606\) −0.208904 + 0.0930100i −0.00848614 + 0.00377827i
\(607\) −5.16341 + 19.2701i −0.209576 + 0.782150i 0.778429 + 0.627732i \(0.216017\pi\)
−0.988006 + 0.154418i \(0.950650\pi\)
\(608\) 1.35972 0.215359i 0.0551440 0.00873395i
\(609\) −2.64737 9.81081i −0.107277 0.397554i
\(610\) 0.105279 0.00154960i 0.00426263 6.27413e-5i
\(611\) −1.35272 + 1.50235i −0.0547254 + 0.0607787i
\(612\) 0.672961 12.8409i 0.0272028 0.519061i
\(613\) −2.00861 + 38.3266i −0.0811272 + 1.54800i 0.590456 + 0.807070i \(0.298948\pi\)
−0.671584 + 0.740929i \(0.734386\pi\)
\(614\) 0.203067 0.225528i 0.00819510 0.00910158i
\(615\) 6.18579 20.0366i 0.249435 0.807954i
\(616\) 0.240144 + 0.889942i 0.00967566 + 0.0358568i
\(617\) −0.589114 + 0.0933065i −0.0237168 + 0.00375638i −0.168282 0.985739i \(-0.553822\pi\)
0.144565 + 0.989495i \(0.453822\pi\)
\(618\) −0.0741259 + 0.276642i −0.00298178 + 0.0111282i
\(619\) 2.53843 1.13018i 0.102028 0.0454258i −0.355088 0.934833i \(-0.615549\pi\)
0.457116 + 0.889407i \(0.348882\pi\)
\(620\) −1.15712 + 3.15230i −0.0464710 + 0.126599i
\(621\) −7.42352 + 16.6735i −0.297896 + 0.669084i
\(622\) 0.126843 + 0.0200899i 0.00508593 + 0.000805532i
\(623\) 1.06261 2.39804i 0.0425724 0.0960753i
\(624\) 1.45235i 0.0581404i
\(625\) −23.3974 8.80703i −0.935894 0.352281i
\(626\) −0.413975 0.239009i −0.0165458 0.00955270i
\(627\) −32.1429 + 20.8738i −1.28366 + 0.833620i
\(628\) 9.79405 3.75958i 0.390825 0.150024i
\(629\) 9.96459 7.23970i 0.397314 0.288666i
\(630\) −0.167142 0.0512779i −0.00665911 0.00204296i
\(631\) 22.3034 + 16.2043i 0.887883 + 0.645085i 0.935325 0.353789i \(-0.115107\pi\)
−0.0474420 + 0.998874i \(0.515107\pi\)
\(632\) 0.544441 + 0.145882i 0.0216567 + 0.00580289i
\(633\) −11.4589 + 29.8516i −0.455452 + 1.18649i
\(634\) −0.364721 + 0.328396i −0.0144849 + 0.0130423i
\(635\) −8.02093 35.1812i −0.318301 1.39612i
\(636\) −24.2963 + 7.89435i −0.963411 + 0.313031i
\(637\) 2.00662 + 1.01352i 0.0795052 + 0.0401570i
\(638\) 0.263544 0.134282i 0.0104338 0.00531628i
\(639\) 5.79828 + 5.22080i 0.229377 + 0.206532i
\(640\) −0.598512 + 1.07281i −0.0236583 + 0.0424067i
\(641\) 1.01518 + 1.12747i 0.0400971 + 0.0445323i 0.762860 0.646564i \(-0.223795\pi\)
−0.722763 + 0.691096i \(0.757128\pi\)
\(642\) 0.156668 0.126867i 0.00618318 0.00500704i
\(643\) 18.1864 18.1864i 0.717201 0.717201i −0.250830 0.968031i \(-0.580703\pi\)
0.968031 + 0.250830i \(0.0807034\pi\)
\(644\) 16.0992 8.23879i 0.634398 0.324654i
\(645\) 9.95579 10.2532i 0.392009 0.403721i
\(646\) 0.391737 + 0.174412i 0.0154127 + 0.00686216i
\(647\) 4.75026 5.86608i 0.186752 0.230620i −0.675168 0.737664i \(-0.735929\pi\)
0.861920 + 0.507045i \(0.169262\pi\)
\(648\) 0.0328254 + 0.0505467i 0.00128950 + 0.00198566i
\(649\) −24.2497 42.0017i −0.951885 1.64871i
\(650\) −0.00929046 0.0259665i −0.000364402 0.00101849i
\(651\) −0.121578 2.24404i −0.00476501 0.0879510i
\(652\) −31.6461 16.1245i −1.23936 0.631484i
\(653\) 12.3617 + 32.2034i 0.483751 + 1.26022i 0.930742 + 0.365677i \(0.119162\pi\)
−0.446990 + 0.894539i \(0.647504\pi\)
\(654\) −0.0184789 0.175815i −0.000722581 0.00687489i
\(655\) −3.71114 5.53459i −0.145006 0.216254i
\(656\) −32.9683 3.46511i −1.28720 0.135290i
\(657\) 12.2932 + 12.2932i 0.479602 + 0.479602i
\(658\) 0.212232 0.191774i 0.00827368 0.00747614i
\(659\) −16.9511 5.50773i −0.660319 0.214551i −0.0403605 0.999185i \(-0.512851\pi\)
−0.619959 + 0.784634i \(0.712851\pi\)
\(660\) 2.30550 25.5470i 0.0897416 0.994414i
\(661\) 8.15962 38.3880i 0.317372 1.49312i −0.473311 0.880895i \(-0.656941\pi\)
0.790684 0.612225i \(-0.209725\pi\)
\(662\) −0.286418 0.0150105i −0.0111320 0.000583401i
\(663\) −0.739334 + 1.13847i −0.0287134 + 0.0442147i
\(664\) 0.0275707 + 0.0848540i 0.00106995 + 0.00329297i
\(665\) −24.3645 + 31.1229i −0.944816 + 1.20689i
\(666\) 0.0300981 0.0926326i 0.00116628 0.00358944i
\(667\) −7.30461 9.02044i −0.282836 0.349273i
\(668\) 2.97666 + 11.1090i 0.115170 + 0.429822i
\(669\) 9.73964 + 21.8756i 0.376556 + 0.845760i
\(670\) −0.0932937 0.232741i −0.00360425 0.00899157i
\(671\) 8.17313 + 11.2493i 0.315520 + 0.434276i
\(672\) 0.0633735 0.613371i 0.00244468 0.0236613i
\(673\) 7.81076 15.3295i 0.301083 0.590908i −0.690053 0.723759i \(-0.742413\pi\)
0.991136 + 0.132850i \(0.0424129\pi\)
\(674\) 0.355475 0.205234i 0.0136924 0.00790531i
\(675\) 21.2331 + 16.1832i 0.817263 + 0.622891i
\(676\) 12.8950 22.3347i 0.495960 0.859028i
\(677\) −0.636093 + 0.0333362i −0.0244470 + 0.00128122i −0.0645556 0.997914i \(-0.520563\pi\)
0.0401085 + 0.999195i \(0.487230\pi\)
\(678\) −0.0259302 + 0.163717i −0.000995842 + 0.00628750i
\(679\) −32.4515 + 5.19856i −1.24538 + 0.199502i
\(680\) −0.507572 + 0.268103i −0.0194645 + 0.0102813i
\(681\) 2.35771 22.4321i 0.0903476 0.859600i
\(682\) 0.0631853 0.0169304i 0.00241949 0.000648300i
\(683\) −16.9681 6.51343i −0.649265 0.249229i 0.0113716 0.999935i \(-0.496380\pi\)
−0.660637 + 0.750706i \(0.729714\pi\)
\(684\) −22.4858 + 4.77950i −0.859765 + 0.182749i
\(685\) −20.7273 27.6632i −0.791951 1.05696i
\(686\) −0.267679 0.171824i −0.0102200 0.00656028i
\(687\) 5.15681 + 10.1208i 0.196745 + 0.386133i
\(688\) −18.9478 12.3048i −0.722377 0.469117i
\(689\) −3.54803 0.754158i −0.135169 0.0287311i
\(690\) 0.147423 0.0176920i 0.00561229 0.000673525i
\(691\) 5.16326 + 24.2912i 0.196420 + 0.924081i 0.960353 + 0.278786i \(0.0899322\pi\)
−0.763934 + 0.645295i \(0.776735\pi\)
\(692\) −0.706740 4.46218i −0.0268662 0.169627i
\(693\) −7.17355 21.9460i −0.272501 0.833661i
\(694\) −0.0370737 + 0.0510276i −0.00140730 + 0.00193698i
\(695\) −21.9676 + 34.9424i −0.833278 + 1.32544i
\(696\) −0.262392 + 0.0275786i −0.00994596 + 0.00104536i
\(697\) −24.0795 19.4992i −0.912074 0.738583i
\(698\) −0.00109568 0.0209068i −4.14720e−5 0.000791333i
\(699\) −3.15710 −0.119413
\(700\) −6.30455 25.6914i −0.238289 0.971042i
\(701\) −7.79098 −0.294261 −0.147131 0.989117i \(-0.547004\pi\)
−0.147131 + 0.989117i \(0.547004\pi\)
\(702\) 0.00154133 + 0.0294103i 5.81738e−5 + 0.00111002i
\(703\) −17.1127 13.8576i −0.645417 0.522648i
\(704\) −40.3159 + 4.23737i −1.51946 + 0.159702i
\(705\) −14.7779 + 5.92368i −0.556567 + 0.223099i
\(706\) 0.256420 0.352932i 0.00965050 0.0132828i
\(707\) −30.4753 6.42152i −1.14614 0.241506i
\(708\) 3.38355 + 21.3629i 0.127162 + 0.802866i
\(709\) −9.38432 44.1498i −0.352436 1.65808i −0.695319 0.718701i \(-0.744737\pi\)
0.342884 0.939378i \(-0.388596\pi\)
\(710\) 0.0336957 0.170853i 0.00126458 0.00641198i
\(711\) −13.8098 2.93536i −0.517907 0.110085i
\(712\) −0.0571145 0.0370906i −0.00214046 0.00139003i
\(713\) −1.16539 2.28721i −0.0436443 0.0856568i
\(714\) 0.120611 0.149481i 0.00451375 0.00559418i
\(715\) 2.09717 2.97769i 0.0784296 0.111359i
\(716\) 45.3872 9.64735i 1.69620 0.360539i
\(717\) −4.39848 1.68842i −0.164264 0.0630552i
\(718\) 0.186458 0.0499613i 0.00695856 0.00186454i
\(719\) −3.25147 + 30.9356i −0.121259 + 1.15370i 0.749503 + 0.662001i \(0.230292\pi\)
−0.870762 + 0.491704i \(0.836374\pi\)
\(720\) 6.78135 13.8078i 0.252726 0.514588i
\(721\) −30.2705 + 24.6012i −1.12733 + 0.916195i
\(722\) 0.0688773 0.434874i 0.00256335 0.0161843i
\(723\) 8.01739 0.420174i 0.298170 0.0156264i
\(724\) −1.82812 + 3.16640i −0.0679417 + 0.117678i
\(725\) −15.3005 + 7.35921i −0.568246 + 0.273314i
\(726\) −0.247682 + 0.142999i −0.00919235 + 0.00530721i
\(727\) −9.91394 + 19.4572i −0.367688 + 0.721628i −0.998525 0.0542869i \(-0.982711\pi\)
0.630838 + 0.775915i \(0.282711\pi\)
\(728\) 0.0342246 0.0472814i 0.00126845 0.00175236i
\(729\) −11.5369 15.8791i −0.427291 0.588116i
\(730\) 0.0949015 0.376242i 0.00351246 0.0139253i
\(731\) −8.58899 19.2912i −0.317675 0.713510i
\(732\) −1.60498 5.98986i −0.0593217 0.221392i
\(733\) 0.141811 + 0.175122i 0.00523792 + 0.00646830i 0.779758 0.626081i \(-0.215342\pi\)
−0.774520 + 0.632549i \(0.782009\pi\)
\(734\) 0.0382810 0.117817i 0.00141298 0.00434870i
\(735\) 10.6659 + 14.1307i 0.393418 + 0.521220i
\(736\) −0.217655 0.669875i −0.00802289 0.0246919i
\(737\) 18.0351 27.7716i 0.664331 1.02298i
\(738\) −0.244683 0.0128233i −0.00900691 0.000472032i
\(739\) −8.38752 + 39.4602i −0.308540 + 1.45157i 0.501483 + 0.865167i \(0.332788\pi\)
−0.810023 + 0.586398i \(0.800545\pi\)
\(740\) 14.3688 3.27592i 0.528207 0.120425i
\(741\) 2.30809 + 0.749943i 0.0847897 + 0.0275498i
\(742\) 0.488393 + 0.157736i 0.0179295 + 0.00579066i
\(743\) −1.97911 1.97911i −0.0726064 0.0726064i 0.669871 0.742477i \(-0.266349\pi\)
−0.742477 + 0.669871i \(0.766349\pi\)
\(744\) −0.0580299 0.00609919i −0.00212748 0.000223607i
\(745\) 30.9602 + 11.3646i 1.13429 + 0.416367i
\(746\) −0.00700037 0.0666041i −0.000256302 0.00243855i
\(747\) −0.800886 2.08638i −0.0293029 0.0763366i
\(748\) −33.7701 17.2067i −1.23476 0.629141i
\(749\) 27.4161 1.48535i 1.00176 0.0542734i
\(750\) 0.0244743 0.215806i 0.000893675 0.00788014i
\(751\) 14.9793 + 25.9449i 0.546602 + 0.946743i 0.998504 + 0.0546754i \(0.0174124\pi\)
−0.451902 + 0.892068i \(0.649254\pi\)
\(752\) 13.7078 + 21.1081i 0.499870 + 0.769733i
\(753\) 2.61289 3.22666i 0.0952192 0.117586i
\(754\) −0.0171102 0.00761794i −0.000623116 0.000277429i
\(755\) −12.3650 + 2.14543i −0.450010 + 0.0780803i
\(756\) −1.42867 + 28.2134i −0.0519601 + 1.02611i
\(757\) 29.2442 29.2442i 1.06290 1.06290i 0.0650131 0.997884i \(-0.479291\pi\)
0.997884 0.0650131i \(-0.0207089\pi\)
\(758\) 0.0614863 0.0497906i 0.00223328 0.00180848i
\(759\) 13.1208 + 14.5721i 0.476256 + 0.528936i
\(760\) 0.697835 + 0.752453i 0.0253132 + 0.0272943i
\(761\) 35.3614 + 31.8396i 1.28185 + 1.15418i 0.979601 + 0.200954i \(0.0644043\pi\)
0.302250 + 0.953229i \(0.402262\pi\)
\(762\) 0.279315 0.142318i 0.0101185 0.00515565i
\(763\) 12.0018 20.8726i 0.434493 0.755641i
\(764\) 1.40090 0.455180i 0.0506828 0.0164679i