Properties

Label 175.2.a
Level $175$
Weight $2$
Character orbit 175.a
Rep. character $\chi_{175}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $6$
Sturm bound $40$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(40\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(175))\).

Total New Old
Modular forms 26 9 17
Cusp forms 15 9 6
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(7\)

Trace form

\( 9 q + q^{2} + 5 q^{4} + 4 q^{6} + q^{7} + 9 q^{8} + 9 q^{9} + O(q^{10}) \) \( 9 q + q^{2} + 5 q^{4} + 4 q^{6} + q^{7} + 9 q^{8} + 9 q^{9} - 4 q^{12} - 10 q^{13} - q^{14} - 7 q^{16} + 2 q^{17} - 7 q^{18} - 4 q^{19} - 4 q^{21} - 8 q^{22} + 8 q^{23} - 24 q^{24} - 2 q^{26} + 12 q^{27} + 7 q^{28} + 14 q^{29} - 12 q^{31} + 9 q^{32} + 12 q^{33} - 2 q^{34} - 31 q^{36} - 14 q^{37} - 20 q^{38} - 20 q^{39} + 22 q^{41} - 8 q^{42} - 6 q^{44} + 6 q^{46} - 4 q^{47} - 28 q^{48} + 9 q^{49} - 4 q^{51} + 6 q^{52} - 10 q^{53} - 8 q^{54} + 9 q^{56} + 12 q^{57} + 26 q^{58} + 32 q^{59} - 14 q^{61} + 5 q^{63} - 9 q^{64} + 10 q^{68} - 12 q^{69} + 8 q^{71} + 5 q^{72} + 6 q^{73} + 8 q^{74} - 16 q^{76} + 4 q^{77} + 20 q^{78} - 20 q^{79} + 33 q^{81} + 18 q^{82} - 20 q^{83} + 14 q^{86} - 28 q^{87} - 4 q^{88} + 54 q^{89} - 6 q^{91} - 24 q^{92} + 4 q^{93} + 12 q^{94} + 8 q^{96} + 10 q^{97} + q^{98} + 12 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(175))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
175.2.a.a 175.a 1.a $1$ $1.397$ \(\Q\) None 35.2.b.a \(-2\) \(-1\) \(0\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}+2q^{6}+q^{7}-2q^{9}+\cdots\)
175.2.a.b 175.a 1.a $1$ $1.397$ \(\Q\) None 35.2.a.a \(0\) \(-1\) \(0\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}-q^{7}-2q^{9}-3q^{11}+\cdots\)
175.2.a.c 175.a 1.a $1$ $1.397$ \(\Q\) None 35.2.b.a \(2\) \(1\) \(0\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}+2q^{6}-q^{7}-2q^{9}+\cdots\)
175.2.a.d 175.a 1.a $2$ $1.397$ \(\Q(\sqrt{5}) \) None 175.2.a.d \(-1\) \(2\) \(0\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(2-2\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)
175.2.a.e 175.a 1.a $2$ $1.397$ \(\Q(\sqrt{5}) \) None 175.2.a.d \(1\) \(-2\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-2+2\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)
175.2.a.f 175.a 1.a $2$ $1.397$ \(\Q(\sqrt{17}) \) None 35.2.a.b \(1\) \(1\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1-\beta )q^{3}+(2+\beta )q^{4}-4q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(175))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(175)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)