Defining parameters
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(175))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 9 | 17 |
Cusp forms | 15 | 9 | 6 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(175))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 7 | |||||||
175.2.a.a | $1$ | $1.397$ | \(\Q\) | None | \(-2\) | \(-1\) | \(0\) | \(1\) | $-$ | $-$ | \(q-2q^{2}-q^{3}+2q^{4}+2q^{6}+q^{7}-2q^{9}+\cdots\) | |
175.2.a.b | $1$ | $1.397$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $+$ | $+$ | \(q-q^{3}-2q^{4}-q^{7}-2q^{9}-3q^{11}+\cdots\) | |
175.2.a.c | $1$ | $1.397$ | \(\Q\) | None | \(2\) | \(1\) | \(0\) | \(-1\) | $-$ | $+$ | \(q+2q^{2}+q^{3}+2q^{4}+2q^{6}-q^{7}-2q^{9}+\cdots\) | |
175.2.a.d | $2$ | $1.397$ | \(\Q(\sqrt{5}) \) | None | \(-1\) | \(2\) | \(0\) | \(-2\) | $-$ | $+$ | \(q-\beta q^{2}+(2-2\beta )q^{3}+(-1+\beta )q^{4}+\cdots\) | |
175.2.a.e | $2$ | $1.397$ | \(\Q(\sqrt{5}) \) | None | \(1\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | \(q+\beta q^{2}+(-2+2\beta )q^{3}+(-1+\beta )q^{4}+\cdots\) | |
175.2.a.f | $2$ | $1.397$ | \(\Q(\sqrt{17}) \) | None | \(1\) | \(1\) | \(0\) | \(2\) | $+$ | $-$ | \(q+\beta q^{2}+(1-\beta )q^{3}+(2+\beta )q^{4}-4q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(175))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(175)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)