# Properties

 Label 175.2.a.b Level $175$ Weight $2$ Character orbit 175.a Self dual yes Analytic conductor $1.397$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [175,2,Mod(1,175)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(175, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("175.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$175 = 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 175.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.39738203537$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 35) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} - 2 q^{4} - q^{7} - 2 q^{9}+O(q^{10})$$ q - q^3 - 2 * q^4 - q^7 - 2 * q^9 $$q - q^{3} - 2 q^{4} - q^{7} - 2 q^{9} - 3 q^{11} + 2 q^{12} - 5 q^{13} + 4 q^{16} - 3 q^{17} + 2 q^{19} + q^{21} + 6 q^{23} + 5 q^{27} + 2 q^{28} + 3 q^{29} - 4 q^{31} + 3 q^{33} + 4 q^{36} - 2 q^{37} + 5 q^{39} - 12 q^{41} + 10 q^{43} + 6 q^{44} - 9 q^{47} - 4 q^{48} + q^{49} + 3 q^{51} + 10 q^{52} - 12 q^{53} - 2 q^{57} + 8 q^{61} + 2 q^{63} - 8 q^{64} + 4 q^{67} + 6 q^{68} - 6 q^{69} - 2 q^{73} - 4 q^{76} + 3 q^{77} - q^{79} + q^{81} - 12 q^{83} - 2 q^{84} - 3 q^{87} - 12 q^{89} + 5 q^{91} - 12 q^{92} + 4 q^{93} + q^{97} + 6 q^{99}+O(q^{100})$$ q - q^3 - 2 * q^4 - q^7 - 2 * q^9 - 3 * q^11 + 2 * q^12 - 5 * q^13 + 4 * q^16 - 3 * q^17 + 2 * q^19 + q^21 + 6 * q^23 + 5 * q^27 + 2 * q^28 + 3 * q^29 - 4 * q^31 + 3 * q^33 + 4 * q^36 - 2 * q^37 + 5 * q^39 - 12 * q^41 + 10 * q^43 + 6 * q^44 - 9 * q^47 - 4 * q^48 + q^49 + 3 * q^51 + 10 * q^52 - 12 * q^53 - 2 * q^57 + 8 * q^61 + 2 * q^63 - 8 * q^64 + 4 * q^67 + 6 * q^68 - 6 * q^69 - 2 * q^73 - 4 * q^76 + 3 * q^77 - q^79 + q^81 - 12 * q^83 - 2 * q^84 - 3 * q^87 - 12 * q^89 + 5 * q^91 - 12 * q^92 + 4 * q^93 + q^97 + 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 −2.00000 0 0 −1.00000 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$+1$$
$$7$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.a.b 1
3.b odd 2 1 1575.2.a.f 1
4.b odd 2 1 2800.2.a.z 1
5.b even 2 1 35.2.a.a 1
5.c odd 4 2 175.2.b.a 2
7.b odd 2 1 1225.2.a.e 1
15.d odd 2 1 315.2.a.b 1
15.e even 4 2 1575.2.d.c 2
20.d odd 2 1 560.2.a.b 1
20.e even 4 2 2800.2.g.l 2
35.c odd 2 1 245.2.a.c 1
35.f even 4 2 1225.2.b.d 2
35.i odd 6 2 245.2.e.b 2
35.j even 6 2 245.2.e.a 2
40.e odd 2 1 2240.2.a.u 1
40.f even 2 1 2240.2.a.k 1
55.d odd 2 1 4235.2.a.c 1
60.h even 2 1 5040.2.a.v 1
65.d even 2 1 5915.2.a.f 1
105.g even 2 1 2205.2.a.e 1
140.c even 2 1 3920.2.a.ba 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.a.a 1 5.b even 2 1
175.2.a.b 1 1.a even 1 1 trivial
175.2.b.a 2 5.c odd 4 2
245.2.a.c 1 35.c odd 2 1
245.2.e.a 2 35.j even 6 2
245.2.e.b 2 35.i odd 6 2
315.2.a.b 1 15.d odd 2 1
560.2.a.b 1 20.d odd 2 1
1225.2.a.e 1 7.b odd 2 1
1225.2.b.d 2 35.f even 4 2
1575.2.a.f 1 3.b odd 2 1
1575.2.d.c 2 15.e even 4 2
2205.2.a.e 1 105.g even 2 1
2240.2.a.k 1 40.f even 2 1
2240.2.a.u 1 40.e odd 2 1
2800.2.a.z 1 4.b odd 2 1
2800.2.g.l 2 20.e even 4 2
3920.2.a.ba 1 140.c even 2 1
4235.2.a.c 1 55.d odd 2 1
5040.2.a.v 1 60.h even 2 1
5915.2.a.f 1 65.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(175))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T + 1$$
$11$ $$T + 3$$
$13$ $$T + 5$$
$17$ $$T + 3$$
$19$ $$T - 2$$
$23$ $$T - 6$$
$29$ $$T - 3$$
$31$ $$T + 4$$
$37$ $$T + 2$$
$41$ $$T + 12$$
$43$ $$T - 10$$
$47$ $$T + 9$$
$53$ $$T + 12$$
$59$ $$T$$
$61$ $$T - 8$$
$67$ $$T - 4$$
$71$ $$T$$
$73$ $$T + 2$$
$79$ $$T + 1$$
$83$ $$T + 12$$
$89$ $$T + 12$$
$97$ $$T - 1$$