Properties

Label 175.2.a.e
Level $175$
Weight $2$
Character orbit 175.a
Self dual yes
Analytic conductor $1.397$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,2,Mod(1,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (2 \beta - 2) q^{3} + (\beta - 1) q^{4} + 2 q^{6} + q^{7} + ( - 2 \beta + 1) q^{8} + ( - 4 \beta + 5) q^{9} + (2 \beta + 1) q^{11} + ( - 2 \beta + 4) q^{12} - 2 \beta q^{13} + \beta q^{14} + \cdots + ( - 2 \beta - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} - q^{4} + 4 q^{6} + 2 q^{7} + 6 q^{9} + 4 q^{11} + 6 q^{12} - 2 q^{13} + q^{14} - 3 q^{16} - 4 q^{17} - 7 q^{18} - 2 q^{21} + 7 q^{22} + 8 q^{23} - 10 q^{24} - 6 q^{26} - 20 q^{27}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 −3.23607 −1.61803 0 2.00000 1.00000 2.23607 7.47214 0
1.2 1.61803 1.23607 0.618034 0 2.00000 1.00000 −2.23607 −1.47214 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.a.e yes 2
3.b odd 2 1 1575.2.a.n 2
4.b odd 2 1 2800.2.a.bp 2
5.b even 2 1 175.2.a.d 2
5.c odd 4 2 175.2.b.c 4
7.b odd 2 1 1225.2.a.u 2
15.d odd 2 1 1575.2.a.s 2
15.e even 4 2 1575.2.d.k 4
20.d odd 2 1 2800.2.a.bh 2
20.e even 4 2 2800.2.g.s 4
35.c odd 2 1 1225.2.a.n 2
35.f even 4 2 1225.2.b.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.2.a.d 2 5.b even 2 1
175.2.a.e yes 2 1.a even 1 1 trivial
175.2.b.c 4 5.c odd 4 2
1225.2.a.n 2 35.c odd 2 1
1225.2.a.u 2 7.b odd 2 1
1225.2.b.k 4 35.f even 4 2
1575.2.a.n 2 3.b odd 2 1
1575.2.a.s 2 15.d odd 2 1
1575.2.d.k 4 15.e even 4 2
2800.2.a.bh 2 20.d odd 2 1
2800.2.a.bp 2 4.b odd 2 1
2800.2.g.s 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(175))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 1 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$19$ \( T^{2} - 20 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T + 11 \) Copy content Toggle raw display
$29$ \( (T - 5)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 6T - 36 \) Copy content Toggle raw display
$37$ \( (T - 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 14T + 44 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 11 \) Copy content Toggle raw display
$47$ \( (T + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T - 20 \) Copy content Toggle raw display
$61$ \( T^{2} + 6T - 36 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$73$ \( T^{2} + 22T + 116 \) Copy content Toggle raw display
$79$ \( T^{2} - 125 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$89$ \( T^{2} - 30T + 220 \) Copy content Toggle raw display
$97$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
show more
show less