Properties

Label 1740.2.b.a.289.8
Level $1740$
Weight $2$
Character 1740.289
Analytic conductor $13.894$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1740,2,Mod(289,1740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1740, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1740.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1740.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8939699517\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} + 11 x^{10} - 30 x^{9} - 49 x^{8} + 176 x^{7} - 245 x^{6} + \cdots + 78125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.8
Root \(0.591682 + 2.15637i\) of defining polynomial
Character \(\chi\) \(=\) 1740.289
Dual form 1740.2.b.a.289.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(0.591682 + 2.15637i) q^{5} -2.69732i q^{7} +1.00000 q^{9} -0.968368i q^{11} +2.99709i q^{13} +(-0.591682 - 2.15637i) q^{15} +1.02889 q^{17} -7.89515i q^{19} +2.69732i q^{21} -0.0832686i q^{23} +(-4.29982 + 2.55177i) q^{25} -1.00000 q^{27} +(4.28803 - 3.25773i) q^{29} -2.02337i q^{31} +0.968368i q^{33} +(5.81641 - 1.59596i) q^{35} +3.06250 q^{37} -2.99709i q^{39} +3.92969i q^{41} -7.15897 q^{43} +(0.591682 + 2.15637i) q^{45} -0.554230 q^{47} -0.275549 q^{49} -1.02889 q^{51} -6.25482i q^{53} +(2.08815 - 0.572966i) q^{55} +7.89515i q^{57} +11.5363 q^{59} -8.77259i q^{61} -2.69732i q^{63} +(-6.46283 + 1.77333i) q^{65} +2.40621i q^{67} +0.0832686i q^{69} +11.1708 q^{71} +7.48700 q^{73} +(4.29982 - 2.55177i) q^{75} -2.61200 q^{77} -6.55123i q^{79} +1.00000 q^{81} -7.10098i q^{83} +(0.608773 + 2.21865i) q^{85} +(-4.28803 + 3.25773i) q^{87} -6.83268i q^{89} +8.08413 q^{91} +2.02337i q^{93} +(17.0248 - 4.67142i) q^{95} +4.18357 q^{97} -0.968368i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{3} + 2 q^{5} + 14 q^{9} - 2 q^{15} - 4 q^{17} - 6 q^{25} - 14 q^{27} + 8 q^{29} - 18 q^{35} - 14 q^{37} + 6 q^{43} + 2 q^{45} + 16 q^{47} - 14 q^{49} + 4 q^{51} - 8 q^{55} + 12 q^{59} + 10 q^{65}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0.591682 + 2.15637i 0.264608 + 0.964356i
\(6\) 0 0
\(7\) 2.69732i 1.01949i −0.860325 0.509746i \(-0.829739\pi\)
0.860325 0.509746i \(-0.170261\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.968368i 0.291974i −0.989287 0.145987i \(-0.953364\pi\)
0.989287 0.145987i \(-0.0466357\pi\)
\(12\) 0 0
\(13\) 2.99709i 0.831244i 0.909537 + 0.415622i \(0.136436\pi\)
−0.909537 + 0.415622i \(0.863564\pi\)
\(14\) 0 0
\(15\) −0.591682 2.15637i −0.152772 0.556771i
\(16\) 0 0
\(17\) 1.02889 0.249541 0.124771 0.992186i \(-0.460180\pi\)
0.124771 + 0.992186i \(0.460180\pi\)
\(18\) 0 0
\(19\) 7.89515i 1.81127i −0.424056 0.905636i \(-0.639394\pi\)
0.424056 0.905636i \(-0.360606\pi\)
\(20\) 0 0
\(21\) 2.69732i 0.588604i
\(22\) 0 0
\(23\) 0.0832686i 0.0173627i −0.999962 0.00868135i \(-0.997237\pi\)
0.999962 0.00868135i \(-0.00276339\pi\)
\(24\) 0 0
\(25\) −4.29982 + 2.55177i −0.859965 + 0.510353i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.28803 3.25773i 0.796267 0.604945i
\(30\) 0 0
\(31\) 2.02337i 0.363408i −0.983353 0.181704i \(-0.941839\pi\)
0.983353 0.181704i \(-0.0581612\pi\)
\(32\) 0 0
\(33\) 0.968368i 0.168571i
\(34\) 0 0
\(35\) 5.81641 1.59596i 0.983153 0.269766i
\(36\) 0 0
\(37\) 3.06250 0.503471 0.251736 0.967796i \(-0.418999\pi\)
0.251736 + 0.967796i \(0.418999\pi\)
\(38\) 0 0
\(39\) 2.99709i 0.479919i
\(40\) 0 0
\(41\) 3.92969i 0.613715i 0.951755 + 0.306857i \(0.0992775\pi\)
−0.951755 + 0.306857i \(0.900723\pi\)
\(42\) 0 0
\(43\) −7.15897 −1.09173 −0.545867 0.837872i \(-0.683799\pi\)
−0.545867 + 0.837872i \(0.683799\pi\)
\(44\) 0 0
\(45\) 0.591682 + 2.15637i 0.0882028 + 0.321452i
\(46\) 0 0
\(47\) −0.554230 −0.0808427 −0.0404213 0.999183i \(-0.512870\pi\)
−0.0404213 + 0.999183i \(0.512870\pi\)
\(48\) 0 0
\(49\) −0.275549 −0.0393641
\(50\) 0 0
\(51\) −1.02889 −0.144073
\(52\) 0 0
\(53\) 6.25482i 0.859166i −0.903027 0.429583i \(-0.858661\pi\)
0.903027 0.429583i \(-0.141339\pi\)
\(54\) 0 0
\(55\) 2.08815 0.572966i 0.281567 0.0772587i
\(56\) 0 0
\(57\) 7.89515i 1.04574i
\(58\) 0 0
\(59\) 11.5363 1.50190 0.750952 0.660356i \(-0.229595\pi\)
0.750952 + 0.660356i \(0.229595\pi\)
\(60\) 0 0
\(61\) 8.77259i 1.12321i −0.827404 0.561607i \(-0.810183\pi\)
0.827404 0.561607i \(-0.189817\pi\)
\(62\) 0 0
\(63\) 2.69732i 0.339831i
\(64\) 0 0
\(65\) −6.46283 + 1.77333i −0.801615 + 0.219954i
\(66\) 0 0
\(67\) 2.40621i 0.293966i 0.989139 + 0.146983i \(0.0469562\pi\)
−0.989139 + 0.146983i \(0.953044\pi\)
\(68\) 0 0
\(69\) 0.0832686i 0.0100244i
\(70\) 0 0
\(71\) 11.1708 1.32573 0.662864 0.748740i \(-0.269341\pi\)
0.662864 + 0.748740i \(0.269341\pi\)
\(72\) 0 0
\(73\) 7.48700 0.876287 0.438143 0.898905i \(-0.355636\pi\)
0.438143 + 0.898905i \(0.355636\pi\)
\(74\) 0 0
\(75\) 4.29982 2.55177i 0.496501 0.294653i
\(76\) 0 0
\(77\) −2.61200 −0.297665
\(78\) 0 0
\(79\) 6.55123i 0.737071i −0.929614 0.368535i \(-0.879859\pi\)
0.929614 0.368535i \(-0.120141\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.10098i 0.779434i −0.920935 0.389717i \(-0.872573\pi\)
0.920935 0.389717i \(-0.127427\pi\)
\(84\) 0 0
\(85\) 0.608773 + 2.21865i 0.0660307 + 0.240647i
\(86\) 0 0
\(87\) −4.28803 + 3.25773i −0.459725 + 0.349265i
\(88\) 0 0
\(89\) 6.83268i 0.724263i −0.932127 0.362132i \(-0.882049\pi\)
0.932127 0.362132i \(-0.117951\pi\)
\(90\) 0 0
\(91\) 8.08413 0.847447
\(92\) 0 0
\(93\) 2.02337i 0.209814i
\(94\) 0 0
\(95\) 17.0248 4.67142i 1.74671 0.479278i
\(96\) 0 0
\(97\) 4.18357 0.424777 0.212388 0.977185i \(-0.431876\pi\)
0.212388 + 0.977185i \(0.431876\pi\)
\(98\) 0 0
\(99\) 0.968368i 0.0973246i
\(100\) 0 0
\(101\) 2.96662i 0.295190i 0.989048 + 0.147595i \(0.0471531\pi\)
−0.989048 + 0.147595i \(0.952847\pi\)
\(102\) 0 0
\(103\) 1.64370i 0.161958i 0.996716 + 0.0809791i \(0.0258047\pi\)
−0.996716 + 0.0809791i \(0.974195\pi\)
\(104\) 0 0
\(105\) −5.81641 + 1.59596i −0.567624 + 0.155750i
\(106\) 0 0
\(107\) 7.01322i 0.677994i 0.940787 + 0.338997i \(0.110088\pi\)
−0.940787 + 0.338997i \(0.889912\pi\)
\(108\) 0 0
\(109\) −15.9709 −1.52973 −0.764866 0.644189i \(-0.777195\pi\)
−0.764866 + 0.644189i \(0.777195\pi\)
\(110\) 0 0
\(111\) −3.06250 −0.290679
\(112\) 0 0
\(113\) 9.86105 0.927650 0.463825 0.885927i \(-0.346477\pi\)
0.463825 + 0.885927i \(0.346477\pi\)
\(114\) 0 0
\(115\) 0.179557 0.0492685i 0.0167438 0.00459432i
\(116\) 0 0
\(117\) 2.99709i 0.277081i
\(118\) 0 0
\(119\) 2.77524i 0.254405i
\(120\) 0 0
\(121\) 10.0623 0.914751
\(122\) 0 0
\(123\) 3.92969i 0.354328i
\(124\) 0 0
\(125\) −8.04667 7.76216i −0.719716 0.694268i
\(126\) 0 0
\(127\) 12.8032 1.13610 0.568052 0.822992i \(-0.307697\pi\)
0.568052 + 0.822992i \(0.307697\pi\)
\(128\) 0 0
\(129\) 7.15897 0.630312
\(130\) 0 0
\(131\) 0.560603i 0.0489801i −0.999700 0.0244901i \(-0.992204\pi\)
0.999700 0.0244901i \(-0.00779621\pi\)
\(132\) 0 0
\(133\) −21.2958 −1.84658
\(134\) 0 0
\(135\) −0.591682 2.15637i −0.0509239 0.185590i
\(136\) 0 0
\(137\) 21.3923 1.82766 0.913832 0.406093i \(-0.133109\pi\)
0.913832 + 0.406093i \(0.133109\pi\)
\(138\) 0 0
\(139\) 11.3948 0.966495 0.483248 0.875484i \(-0.339457\pi\)
0.483248 + 0.875484i \(0.339457\pi\)
\(140\) 0 0
\(141\) 0.554230 0.0466746
\(142\) 0 0
\(143\) 2.90229 0.242701
\(144\) 0 0
\(145\) 9.56201 + 7.31902i 0.794081 + 0.607811i
\(146\) 0 0
\(147\) 0.275549 0.0227269
\(148\) 0 0
\(149\) 8.08745 0.662549 0.331275 0.943534i \(-0.392521\pi\)
0.331275 + 0.943534i \(0.392521\pi\)
\(150\) 0 0
\(151\) 6.69693 0.544988 0.272494 0.962157i \(-0.412151\pi\)
0.272494 + 0.962157i \(0.412151\pi\)
\(152\) 0 0
\(153\) 1.02889 0.0831804
\(154\) 0 0
\(155\) 4.36312 1.19719i 0.350454 0.0961608i
\(156\) 0 0
\(157\) −8.31996 −0.664005 −0.332003 0.943278i \(-0.607724\pi\)
−0.332003 + 0.943278i \(0.607724\pi\)
\(158\) 0 0
\(159\) 6.25482i 0.496040i
\(160\) 0 0
\(161\) −0.224602 −0.0177011
\(162\) 0 0
\(163\) −7.34334 −0.575175 −0.287587 0.957754i \(-0.592853\pi\)
−0.287587 + 0.957754i \(0.592853\pi\)
\(164\) 0 0
\(165\) −2.08815 + 0.572966i −0.162563 + 0.0446054i
\(166\) 0 0
\(167\) 12.7347i 0.985439i −0.870188 0.492720i \(-0.836003\pi\)
0.870188 0.492720i \(-0.163997\pi\)
\(168\) 0 0
\(169\) 4.01744 0.309034
\(170\) 0 0
\(171\) 7.89515i 0.603757i
\(172\) 0 0
\(173\) 23.4796i 1.78512i −0.450927 0.892561i \(-0.648907\pi\)
0.450927 0.892561i \(-0.351093\pi\)
\(174\) 0 0
\(175\) 6.88294 + 11.5980i 0.520301 + 0.876727i
\(176\) 0 0
\(177\) −11.5363 −0.867125
\(178\) 0 0
\(179\) −14.6460 −1.09469 −0.547346 0.836907i \(-0.684362\pi\)
−0.547346 + 0.836907i \(0.684362\pi\)
\(180\) 0 0
\(181\) 0.680025 0.0505458 0.0252729 0.999681i \(-0.491955\pi\)
0.0252729 + 0.999681i \(0.491955\pi\)
\(182\) 0 0
\(183\) 8.77259i 0.648488i
\(184\) 0 0
\(185\) 1.81203 + 6.60386i 0.133223 + 0.485525i
\(186\) 0 0
\(187\) 0.996339i 0.0728595i
\(188\) 0 0
\(189\) 2.69732i 0.196201i
\(190\) 0 0
\(191\) 7.03498i 0.509033i −0.967068 0.254516i \(-0.918084\pi\)
0.967068 0.254516i \(-0.0819163\pi\)
\(192\) 0 0
\(193\) −27.2083 −1.95850 −0.979248 0.202668i \(-0.935039\pi\)
−0.979248 + 0.202668i \(0.935039\pi\)
\(194\) 0 0
\(195\) 6.46283 1.77333i 0.462813 0.126991i
\(196\) 0 0
\(197\) 10.8772i 0.774971i −0.921876 0.387485i \(-0.873344\pi\)
0.921876 0.387485i \(-0.126656\pi\)
\(198\) 0 0
\(199\) −9.52278 −0.675052 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(200\) 0 0
\(201\) 2.40621i 0.169721i
\(202\) 0 0
\(203\) −8.78715 11.5662i −0.616737 0.811788i
\(204\) 0 0
\(205\) −8.47385 + 2.32513i −0.591840 + 0.162394i
\(206\) 0 0
\(207\) 0.0832686i 0.00578757i
\(208\) 0 0
\(209\) −7.64541 −0.528844
\(210\) 0 0
\(211\) 5.67254i 0.390514i 0.980752 + 0.195257i \(0.0625541\pi\)
−0.980752 + 0.195257i \(0.937446\pi\)
\(212\) 0 0
\(213\) −11.1708 −0.765409
\(214\) 0 0
\(215\) −4.23584 15.4374i −0.288882 1.05282i
\(216\) 0 0
\(217\) −5.45768 −0.370491
\(218\) 0 0
\(219\) −7.48700 −0.505924
\(220\) 0 0
\(221\) 3.08366i 0.207430i
\(222\) 0 0
\(223\) 3.05206i 0.204381i −0.994765 0.102191i \(-0.967415\pi\)
0.994765 0.102191i \(-0.0325851\pi\)
\(224\) 0 0
\(225\) −4.29982 + 2.55177i −0.286655 + 0.170118i
\(226\) 0 0
\(227\) 3.05026i 0.202453i −0.994863 0.101227i \(-0.967723\pi\)
0.994863 0.101227i \(-0.0322767\pi\)
\(228\) 0 0
\(229\) 16.3929i 1.08327i 0.840613 + 0.541637i \(0.182195\pi\)
−0.840613 + 0.541637i \(0.817805\pi\)
\(230\) 0 0
\(231\) 2.61200 0.171857
\(232\) 0 0
\(233\) 7.87789i 0.516098i −0.966132 0.258049i \(-0.916920\pi\)
0.966132 0.258049i \(-0.0830796\pi\)
\(234\) 0 0
\(235\) −0.327928 1.19512i −0.0213917 0.0779611i
\(236\) 0 0
\(237\) 6.55123i 0.425548i
\(238\) 0 0
\(239\) −0.0566089 −0.00366173 −0.00183086 0.999998i \(-0.500583\pi\)
−0.00183086 + 0.999998i \(0.500583\pi\)
\(240\) 0 0
\(241\) −6.32053 −0.407141 −0.203571 0.979060i \(-0.565255\pi\)
−0.203571 + 0.979060i \(0.565255\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.163037 0.594184i −0.0104161 0.0379610i
\(246\) 0 0
\(247\) 23.6625 1.50561
\(248\) 0 0
\(249\) 7.10098i 0.450007i
\(250\) 0 0
\(251\) 12.2141i 0.770948i −0.922719 0.385474i \(-0.874038\pi\)
0.922719 0.385474i \(-0.125962\pi\)
\(252\) 0 0
\(253\) −0.0806346 −0.00506945
\(254\) 0 0
\(255\) −0.608773 2.21865i −0.0381229 0.138937i
\(256\) 0 0
\(257\) 4.65163i 0.290161i −0.989420 0.145080i \(-0.953656\pi\)
0.989420 0.145080i \(-0.0463441\pi\)
\(258\) 0 0
\(259\) 8.26054i 0.513285i
\(260\) 0 0
\(261\) 4.28803 3.25773i 0.265422 0.201648i
\(262\) 0 0
\(263\) −4.47603 −0.276004 −0.138002 0.990432i \(-0.544068\pi\)
−0.138002 + 0.990432i \(0.544068\pi\)
\(264\) 0 0
\(265\) 13.4877 3.70087i 0.828542 0.227343i
\(266\) 0 0
\(267\) 6.83268i 0.418154i
\(268\) 0 0
\(269\) 26.0495i 1.58827i 0.607743 + 0.794134i \(0.292075\pi\)
−0.607743 + 0.794134i \(0.707925\pi\)
\(270\) 0 0
\(271\) 21.0732i 1.28011i 0.768331 + 0.640053i \(0.221088\pi\)
−0.768331 + 0.640053i \(0.778912\pi\)
\(272\) 0 0
\(273\) −8.08413 −0.489274
\(274\) 0 0
\(275\) 2.47105 + 4.16381i 0.149010 + 0.251087i
\(276\) 0 0
\(277\) 13.8437i 0.831786i 0.909414 + 0.415893i \(0.136531\pi\)
−0.909414 + 0.415893i \(0.863469\pi\)
\(278\) 0 0
\(279\) 2.02337i 0.121136i
\(280\) 0 0
\(281\) 0.777928 0.0464073 0.0232037 0.999731i \(-0.492613\pi\)
0.0232037 + 0.999731i \(0.492613\pi\)
\(282\) 0 0
\(283\) 19.5373i 1.16137i 0.814128 + 0.580685i \(0.197215\pi\)
−0.814128 + 0.580685i \(0.802785\pi\)
\(284\) 0 0
\(285\) −17.0248 + 4.67142i −1.00846 + 0.276711i
\(286\) 0 0
\(287\) 10.5996 0.625677
\(288\) 0 0
\(289\) −15.9414 −0.937729
\(290\) 0 0
\(291\) −4.18357 −0.245245
\(292\) 0 0
\(293\) −29.7470 −1.73784 −0.868920 0.494953i \(-0.835185\pi\)
−0.868920 + 0.494953i \(0.835185\pi\)
\(294\) 0 0
\(295\) 6.82585 + 24.8766i 0.397417 + 1.44837i
\(296\) 0 0
\(297\) 0.968368i 0.0561904i
\(298\) 0 0
\(299\) 0.249564 0.0144326
\(300\) 0 0
\(301\) 19.3101i 1.11301i
\(302\) 0 0
\(303\) 2.96662i 0.170428i
\(304\) 0 0
\(305\) 18.9169 5.19059i 1.08318 0.297212i
\(306\) 0 0
\(307\) −13.5448 −0.773041 −0.386520 0.922281i \(-0.626323\pi\)
−0.386520 + 0.922281i \(0.626323\pi\)
\(308\) 0 0
\(309\) 1.64370i 0.0935066i
\(310\) 0 0
\(311\) 24.5544i 1.39235i 0.717870 + 0.696177i \(0.245117\pi\)
−0.717870 + 0.696177i \(0.754883\pi\)
\(312\) 0 0
\(313\) 13.0879i 0.739770i 0.929078 + 0.369885i \(0.120603\pi\)
−0.929078 + 0.369885i \(0.879397\pi\)
\(314\) 0 0
\(315\) 5.81641 1.59596i 0.327718 0.0899221i
\(316\) 0 0
\(317\) 12.7472 0.715953 0.357977 0.933731i \(-0.383467\pi\)
0.357977 + 0.933731i \(0.383467\pi\)
\(318\) 0 0
\(319\) −3.15468 4.15239i −0.176628 0.232489i
\(320\) 0 0
\(321\) 7.01322i 0.391440i
\(322\) 0 0
\(323\) 8.12321i 0.451987i
\(324\) 0 0
\(325\) −7.64788 12.8870i −0.424228 0.714840i
\(326\) 0 0
\(327\) 15.9709 0.883191
\(328\) 0 0
\(329\) 1.49494i 0.0824185i
\(330\) 0 0
\(331\) 17.7465i 0.975437i 0.873001 + 0.487718i \(0.162171\pi\)
−0.873001 + 0.487718i \(0.837829\pi\)
\(332\) 0 0
\(333\) 3.06250 0.167824
\(334\) 0 0
\(335\) −5.18867 + 1.42371i −0.283487 + 0.0777858i
\(336\) 0 0
\(337\) 15.3425 0.835761 0.417881 0.908502i \(-0.362773\pi\)
0.417881 + 0.908502i \(0.362773\pi\)
\(338\) 0 0
\(339\) −9.86105 −0.535579
\(340\) 0 0
\(341\) −1.95936 −0.106106
\(342\) 0 0
\(343\) 18.1380i 0.979361i
\(344\) 0 0
\(345\) −0.179557 + 0.0492685i −0.00966705 + 0.00265253i
\(346\) 0 0
\(347\) 24.5489i 1.31785i 0.752207 + 0.658926i \(0.228989\pi\)
−0.752207 + 0.658926i \(0.771011\pi\)
\(348\) 0 0
\(349\) −32.5782 −1.74387 −0.871936 0.489621i \(-0.837135\pi\)
−0.871936 + 0.489621i \(0.837135\pi\)
\(350\) 0 0
\(351\) 2.99709i 0.159973i
\(352\) 0 0
\(353\) 14.5351i 0.773627i −0.922158 0.386813i \(-0.873576\pi\)
0.922158 0.386813i \(-0.126424\pi\)
\(354\) 0 0
\(355\) 6.60955 + 24.0883i 0.350799 + 1.27847i
\(356\) 0 0
\(357\) 2.77524i 0.146881i
\(358\) 0 0
\(359\) 30.7334i 1.62204i 0.585015 + 0.811022i \(0.301089\pi\)
−0.585015 + 0.811022i \(0.698911\pi\)
\(360\) 0 0
\(361\) −43.3334 −2.28071
\(362\) 0 0
\(363\) −10.0623 −0.528132
\(364\) 0 0
\(365\) 4.42992 + 16.1447i 0.231873 + 0.845052i
\(366\) 0 0
\(367\) −23.7620 −1.24037 −0.620183 0.784457i \(-0.712942\pi\)
−0.620183 + 0.784457i \(0.712942\pi\)
\(368\) 0 0
\(369\) 3.92969i 0.204572i
\(370\) 0 0
\(371\) −16.8713 −0.875913
\(372\) 0 0
\(373\) 27.9373i 1.44654i −0.690566 0.723269i \(-0.742639\pi\)
0.690566 0.723269i \(-0.257361\pi\)
\(374\) 0 0
\(375\) 8.04667 + 7.76216i 0.415528 + 0.400836i
\(376\) 0 0
\(377\) 9.76372 + 12.8516i 0.502857 + 0.661892i
\(378\) 0 0
\(379\) 30.8404i 1.58416i −0.610415 0.792082i \(-0.708997\pi\)
0.610415 0.792082i \(-0.291003\pi\)
\(380\) 0 0
\(381\) −12.8032 −0.655930
\(382\) 0 0
\(383\) 16.1205i 0.823722i 0.911247 + 0.411861i \(0.135121\pi\)
−0.911247 + 0.411861i \(0.864879\pi\)
\(384\) 0 0
\(385\) −1.54547 5.63243i −0.0787647 0.287055i
\(386\) 0 0
\(387\) −7.15897 −0.363911
\(388\) 0 0
\(389\) 27.2842i 1.38337i 0.722201 + 0.691683i \(0.243130\pi\)
−0.722201 + 0.691683i \(0.756870\pi\)
\(390\) 0 0
\(391\) 0.0856738i 0.00433271i
\(392\) 0 0
\(393\) 0.560603i 0.0282787i
\(394\) 0 0
\(395\) 14.1268 3.87625i 0.710798 0.195035i
\(396\) 0 0
\(397\) 6.33045i 0.317716i 0.987301 + 0.158858i \(0.0507813\pi\)
−0.987301 + 0.158858i \(0.949219\pi\)
\(398\) 0 0
\(399\) 21.2958 1.06612
\(400\) 0 0
\(401\) 9.40233 0.469530 0.234765 0.972052i \(-0.424568\pi\)
0.234765 + 0.972052i \(0.424568\pi\)
\(402\) 0 0
\(403\) 6.06422 0.302080
\(404\) 0 0
\(405\) 0.591682 + 2.15637i 0.0294009 + 0.107151i
\(406\) 0 0
\(407\) 2.96562i 0.147000i
\(408\) 0 0
\(409\) 11.6998i 0.578519i 0.957251 + 0.289260i \(0.0934091\pi\)
−0.957251 + 0.289260i \(0.906591\pi\)
\(410\) 0 0
\(411\) −21.3923 −1.05520
\(412\) 0 0
\(413\) 31.1173i 1.53118i
\(414\) 0 0
\(415\) 15.3123 4.20153i 0.751652 0.206245i
\(416\) 0 0
\(417\) −11.3948 −0.558006
\(418\) 0 0
\(419\) 19.8844 0.971417 0.485709 0.874121i \(-0.338562\pi\)
0.485709 + 0.874121i \(0.338562\pi\)
\(420\) 0 0
\(421\) 2.46576i 0.120174i −0.998193 0.0600869i \(-0.980862\pi\)
0.998193 0.0600869i \(-0.0191378\pi\)
\(422\) 0 0
\(423\) −0.554230 −0.0269476
\(424\) 0 0
\(425\) −4.42402 + 2.62548i −0.214597 + 0.127354i
\(426\) 0 0
\(427\) −23.6625 −1.14511
\(428\) 0 0
\(429\) −2.90229 −0.140124
\(430\) 0 0
\(431\) 10.4340 0.502586 0.251293 0.967911i \(-0.419144\pi\)
0.251293 + 0.967911i \(0.419144\pi\)
\(432\) 0 0
\(433\) −18.9489 −0.910626 −0.455313 0.890331i \(-0.650473\pi\)
−0.455313 + 0.890331i \(0.650473\pi\)
\(434\) 0 0
\(435\) −9.56201 7.31902i −0.458463 0.350920i
\(436\) 0 0
\(437\) −0.657418 −0.0314486
\(438\) 0 0
\(439\) −26.0344 −1.24255 −0.621276 0.783592i \(-0.713386\pi\)
−0.621276 + 0.783592i \(0.713386\pi\)
\(440\) 0 0
\(441\) −0.275549 −0.0131214
\(442\) 0 0
\(443\) 26.3026 1.24968 0.624838 0.780755i \(-0.285165\pi\)
0.624838 + 0.780755i \(0.285165\pi\)
\(444\) 0 0
\(445\) 14.7338 4.04278i 0.698447 0.191646i
\(446\) 0 0
\(447\) −8.08745 −0.382523
\(448\) 0 0
\(449\) 20.7531i 0.979398i 0.871892 + 0.489699i \(0.162893\pi\)
−0.871892 + 0.489699i \(0.837107\pi\)
\(450\) 0 0
\(451\) 3.80539 0.179189
\(452\) 0 0
\(453\) −6.69693 −0.314649
\(454\) 0 0
\(455\) 4.78323 + 17.4323i 0.224241 + 0.817240i
\(456\) 0 0
\(457\) 14.7395i 0.689485i 0.938697 + 0.344743i \(0.112034\pi\)
−0.938697 + 0.344743i \(0.887966\pi\)
\(458\) 0 0
\(459\) −1.02889 −0.0480242
\(460\) 0 0
\(461\) 20.7265i 0.965329i 0.875805 + 0.482665i \(0.160331\pi\)
−0.875805 + 0.482665i \(0.839669\pi\)
\(462\) 0 0
\(463\) 39.3103i 1.82691i −0.406945 0.913453i \(-0.633406\pi\)
0.406945 0.913453i \(-0.366594\pi\)
\(464\) 0 0
\(465\) −4.36312 + 1.19719i −0.202335 + 0.0555184i
\(466\) 0 0
\(467\) −19.8091 −0.916657 −0.458329 0.888783i \(-0.651552\pi\)
−0.458329 + 0.888783i \(0.651552\pi\)
\(468\) 0 0
\(469\) 6.49033 0.299696
\(470\) 0 0
\(471\) 8.31996 0.383364
\(472\) 0 0
\(473\) 6.93252i 0.318758i
\(474\) 0 0
\(475\) 20.1466 + 33.9478i 0.924389 + 1.55763i
\(476\) 0 0
\(477\) 6.25482i 0.286389i
\(478\) 0 0
\(479\) 19.6122i 0.896104i −0.894008 0.448052i \(-0.852118\pi\)
0.894008 0.448052i \(-0.147882\pi\)
\(480\) 0 0
\(481\) 9.17858i 0.418507i
\(482\) 0 0
\(483\) 0.224602 0.0102198
\(484\) 0 0
\(485\) 2.47534 + 9.02130i 0.112399 + 0.409636i
\(486\) 0 0
\(487\) 24.6810i 1.11840i −0.829032 0.559202i \(-0.811108\pi\)
0.829032 0.559202i \(-0.188892\pi\)
\(488\) 0 0
\(489\) 7.34334 0.332077
\(490\) 0 0
\(491\) 8.69557i 0.392426i −0.980561 0.196213i \(-0.937136\pi\)
0.980561 0.196213i \(-0.0628644\pi\)
\(492\) 0 0
\(493\) 4.41189 3.35183i 0.198702 0.150959i
\(494\) 0 0
\(495\) 2.08815 0.572966i 0.0938556 0.0257529i
\(496\) 0 0
\(497\) 30.1312i 1.35157i
\(498\) 0 0
\(499\) −12.1525 −0.544020 −0.272010 0.962294i \(-0.587688\pi\)
−0.272010 + 0.962294i \(0.587688\pi\)
\(500\) 0 0
\(501\) 12.7347i 0.568944i
\(502\) 0 0
\(503\) −21.9465 −0.978545 −0.489273 0.872131i \(-0.662738\pi\)
−0.489273 + 0.872131i \(0.662738\pi\)
\(504\) 0 0
\(505\) −6.39711 + 1.75530i −0.284668 + 0.0781096i
\(506\) 0 0
\(507\) −4.01744 −0.178421
\(508\) 0 0
\(509\) 22.3545 0.990848 0.495424 0.868651i \(-0.335013\pi\)
0.495424 + 0.868651i \(0.335013\pi\)
\(510\) 0 0
\(511\) 20.1948i 0.893367i
\(512\) 0 0
\(513\) 7.89515i 0.348579i
\(514\) 0 0
\(515\) −3.54441 + 0.972546i −0.156185 + 0.0428555i
\(516\) 0 0
\(517\) 0.536698i 0.0236040i
\(518\) 0 0
\(519\) 23.4796i 1.03064i
\(520\) 0 0
\(521\) 3.33761 0.146223 0.0731117 0.997324i \(-0.476707\pi\)
0.0731117 + 0.997324i \(0.476707\pi\)
\(522\) 0 0
\(523\) 35.3198i 1.54443i −0.635363 0.772213i \(-0.719150\pi\)
0.635363 0.772213i \(-0.280850\pi\)
\(524\) 0 0
\(525\) −6.88294 11.5980i −0.300396 0.506179i
\(526\) 0 0
\(527\) 2.08181i 0.0906853i
\(528\) 0 0
\(529\) 22.9931 0.999699
\(530\) 0 0
\(531\) 11.5363 0.500635
\(532\) 0 0
\(533\) −11.7777 −0.510147
\(534\) 0 0
\(535\) −15.1231 + 4.14960i −0.653827 + 0.179403i
\(536\) 0 0
\(537\) 14.6460 0.632020
\(538\) 0 0
\(539\) 0.266833i 0.0114933i
\(540\) 0 0
\(541\) 36.1020i 1.55214i −0.630644 0.776072i \(-0.717209\pi\)
0.630644 0.776072i \(-0.282791\pi\)
\(542\) 0 0
\(543\) −0.680025 −0.0291826
\(544\) 0 0
\(545\) −9.44968 34.4390i −0.404780 1.47521i
\(546\) 0 0
\(547\) 24.7415i 1.05787i 0.848662 + 0.528936i \(0.177409\pi\)
−0.848662 + 0.528936i \(0.822591\pi\)
\(548\) 0 0
\(549\) 8.77259i 0.374405i
\(550\) 0 0
\(551\) −25.7203 33.8546i −1.09572 1.44226i
\(552\) 0 0
\(553\) −17.6708 −0.751438
\(554\) 0 0
\(555\) −1.81203 6.60386i −0.0769162 0.280318i
\(556\) 0 0
\(557\) 2.37690i 0.100712i 0.998731 + 0.0503562i \(0.0160357\pi\)
−0.998731 + 0.0503562i \(0.983964\pi\)
\(558\) 0 0
\(559\) 21.4561i 0.907497i
\(560\) 0 0
\(561\) 0.996339i 0.0420655i
\(562\) 0 0
\(563\) −37.0866 −1.56302 −0.781508 0.623896i \(-0.785549\pi\)
−0.781508 + 0.623896i \(0.785549\pi\)
\(564\) 0 0
\(565\) 5.83461 + 21.2640i 0.245464 + 0.894584i
\(566\) 0 0
\(567\) 2.69732i 0.113277i
\(568\) 0 0
\(569\) 5.73356i 0.240363i −0.992752 0.120182i \(-0.961652\pi\)
0.992752 0.120182i \(-0.0383477\pi\)
\(570\) 0 0
\(571\) −12.4614 −0.521495 −0.260747 0.965407i \(-0.583969\pi\)
−0.260747 + 0.965407i \(0.583969\pi\)
\(572\) 0 0
\(573\) 7.03498i 0.293890i
\(574\) 0 0
\(575\) 0.212482 + 0.358040i 0.00886111 + 0.0149313i
\(576\) 0 0
\(577\) 32.0421 1.33393 0.666964 0.745090i \(-0.267593\pi\)
0.666964 + 0.745090i \(0.267593\pi\)
\(578\) 0 0
\(579\) 27.2083 1.13074
\(580\) 0 0
\(581\) −19.1536 −0.794627
\(582\) 0 0
\(583\) −6.05697 −0.250854
\(584\) 0 0
\(585\) −6.46283 + 1.77333i −0.267205 + 0.0733180i
\(586\) 0 0
\(587\) 23.8050i 0.982538i −0.871008 0.491269i \(-0.836533\pi\)
0.871008 0.491269i \(-0.163467\pi\)
\(588\) 0 0
\(589\) −15.9748 −0.658230
\(590\) 0 0
\(591\) 10.8772i 0.447430i
\(592\) 0 0
\(593\) 9.48683i 0.389577i −0.980845 0.194789i \(-0.937598\pi\)
0.980845 0.194789i \(-0.0624021\pi\)
\(594\) 0 0
\(595\) 5.98442 1.64206i 0.245337 0.0673178i
\(596\) 0 0
\(597\) 9.52278 0.389742
\(598\) 0 0
\(599\) 3.68070i 0.150389i −0.997169 0.0751947i \(-0.976042\pi\)
0.997169 0.0751947i \(-0.0239578\pi\)
\(600\) 0 0
\(601\) 20.0281i 0.816962i 0.912767 + 0.408481i \(0.133941\pi\)
−0.912767 + 0.408481i \(0.866059\pi\)
\(602\) 0 0
\(603\) 2.40621i 0.0979885i
\(604\) 0 0
\(605\) 5.95366 + 21.6979i 0.242051 + 0.882146i
\(606\) 0 0
\(607\) 6.19497 0.251446 0.125723 0.992065i \(-0.459875\pi\)
0.125723 + 0.992065i \(0.459875\pi\)
\(608\) 0 0
\(609\) 8.78715 + 11.5662i 0.356073 + 0.468686i
\(610\) 0 0
\(611\) 1.66108i 0.0672000i
\(612\) 0 0
\(613\) 15.8284i 0.639302i 0.947535 + 0.319651i \(0.103566\pi\)
−0.947535 + 0.319651i \(0.896434\pi\)
\(614\) 0 0
\(615\) 8.47385 2.32513i 0.341699 0.0937583i
\(616\) 0 0
\(617\) 8.09084 0.325725 0.162862 0.986649i \(-0.447927\pi\)
0.162862 + 0.986649i \(0.447927\pi\)
\(618\) 0 0
\(619\) 25.5105i 1.02535i −0.858582 0.512677i \(-0.828654\pi\)
0.858582 0.512677i \(-0.171346\pi\)
\(620\) 0 0
\(621\) 0.0832686i 0.00334145i
\(622\) 0 0
\(623\) −18.4300 −0.738381
\(624\) 0 0
\(625\) 11.9770 21.9443i 0.479079 0.877772i
\(626\) 0 0
\(627\) 7.64541 0.305328
\(628\) 0 0
\(629\) 3.15096 0.125637
\(630\) 0 0
\(631\) 26.7233 1.06384 0.531918 0.846796i \(-0.321471\pi\)
0.531918 + 0.846796i \(0.321471\pi\)
\(632\) 0 0
\(633\) 5.67254i 0.225463i
\(634\) 0 0
\(635\) 7.57546 + 27.6085i 0.300623 + 1.09561i
\(636\) 0 0
\(637\) 0.825845i 0.0327212i
\(638\) 0 0
\(639\) 11.1708 0.441909
\(640\) 0 0
\(641\) 7.84397i 0.309818i −0.987929 0.154909i \(-0.950492\pi\)
0.987929 0.154909i \(-0.0495085\pi\)
\(642\) 0 0
\(643\) 0.673789i 0.0265716i −0.999912 0.0132858i \(-0.995771\pi\)
0.999912 0.0132858i \(-0.00422913\pi\)
\(644\) 0 0
\(645\) 4.23584 + 15.4374i 0.166786 + 0.607846i
\(646\) 0 0
\(647\) 5.32492i 0.209344i 0.994507 + 0.104672i \(0.0333793\pi\)
−0.994507 + 0.104672i \(0.966621\pi\)
\(648\) 0 0
\(649\) 11.1714i 0.438517i
\(650\) 0 0
\(651\) 5.45768 0.213903
\(652\) 0 0
\(653\) 10.7861 0.422092 0.211046 0.977476i \(-0.432313\pi\)
0.211046 + 0.977476i \(0.432313\pi\)
\(654\) 0 0
\(655\) 1.20887 0.331699i 0.0472343 0.0129606i
\(656\) 0 0
\(657\) 7.48700 0.292096
\(658\) 0 0
\(659\) 35.9464i 1.40027i −0.714009 0.700137i \(-0.753122\pi\)
0.714009 0.700137i \(-0.246878\pi\)
\(660\) 0 0
\(661\) 20.6119 0.801711 0.400855 0.916141i \(-0.368713\pi\)
0.400855 + 0.916141i \(0.368713\pi\)
\(662\) 0 0
\(663\) 3.08366i 0.119760i
\(664\) 0 0
\(665\) −12.6003 45.9215i −0.488620 1.78076i
\(666\) 0 0
\(667\) −0.271266 0.357058i −0.0105035 0.0138253i
\(668\) 0 0
\(669\) 3.05206i 0.117999i
\(670\) 0 0
\(671\) −8.49509 −0.327949
\(672\) 0 0
\(673\) 6.76765i 0.260874i 0.991457 + 0.130437i \(0.0416380\pi\)
−0.991457 + 0.130437i \(0.958362\pi\)
\(674\) 0 0
\(675\) 4.29982 2.55177i 0.165500 0.0982176i
\(676\) 0 0
\(677\) 4.43219 0.170343 0.0851715 0.996366i \(-0.472856\pi\)
0.0851715 + 0.996366i \(0.472856\pi\)
\(678\) 0 0
\(679\) 11.2844i 0.433056i
\(680\) 0 0
\(681\) 3.05026i 0.116886i
\(682\) 0 0
\(683\) 37.8482i 1.44822i 0.689684 + 0.724110i \(0.257749\pi\)
−0.689684 + 0.724110i \(0.742251\pi\)
\(684\) 0 0
\(685\) 12.6574 + 46.1295i 0.483615 + 1.76252i
\(686\) 0 0
\(687\) 16.3929i 0.625428i
\(688\) 0 0
\(689\) 18.7463 0.714176
\(690\) 0 0
\(691\) 29.2078 1.11112 0.555559 0.831477i \(-0.312504\pi\)
0.555559 + 0.831477i \(0.312504\pi\)
\(692\) 0 0
\(693\) −2.61200 −0.0992217
\(694\) 0 0
\(695\) 6.74211 + 24.5714i 0.255743 + 0.932046i
\(696\) 0 0
\(697\) 4.04320i 0.153147i
\(698\) 0 0
\(699\) 7.87789i 0.297969i
\(700\) 0 0
\(701\) −18.7710 −0.708969 −0.354485 0.935062i \(-0.615344\pi\)
−0.354485 + 0.935062i \(0.615344\pi\)
\(702\) 0 0
\(703\) 24.1789i 0.911923i
\(704\) 0 0
\(705\) 0.327928 + 1.19512i 0.0123505 + 0.0450109i
\(706\) 0 0
\(707\) 8.00193 0.300943
\(708\) 0 0
\(709\) −36.7978 −1.38197 −0.690986 0.722868i \(-0.742823\pi\)
−0.690986 + 0.722868i \(0.742823\pi\)
\(710\) 0 0
\(711\) 6.55123i 0.245690i
\(712\) 0 0
\(713\) −0.168483 −0.00630974
\(714\) 0 0
\(715\) 1.71723 + 6.25839i 0.0642209 + 0.234051i
\(716\) 0 0
\(717\) 0.0566089 0.00211410
\(718\) 0 0
\(719\) −22.7934 −0.850051 −0.425025 0.905181i \(-0.639735\pi\)
−0.425025 + 0.905181i \(0.639735\pi\)
\(720\) 0 0
\(721\) 4.43358 0.165115
\(722\) 0 0
\(723\) 6.32053 0.235063
\(724\) 0 0
\(725\) −10.1248 + 24.9497i −0.376026 + 0.926609i
\(726\) 0 0
\(727\) 12.4337 0.461142 0.230571 0.973056i \(-0.425941\pi\)
0.230571 + 0.973056i \(0.425941\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −7.36576 −0.272433
\(732\) 0 0
\(733\) 1.40998 0.0520789 0.0260395 0.999661i \(-0.491710\pi\)
0.0260395 + 0.999661i \(0.491710\pi\)
\(734\) 0 0
\(735\) 0.163037 + 0.594184i 0.00601372 + 0.0219168i
\(736\) 0 0
\(737\) 2.33010 0.0858302
\(738\) 0 0
\(739\) 44.1174i 1.62289i 0.584432 + 0.811443i \(0.301317\pi\)
−0.584432 + 0.811443i \(0.698683\pi\)
\(740\) 0 0
\(741\) −23.6625 −0.869264
\(742\) 0 0
\(743\) −5.86033 −0.214995 −0.107497 0.994205i \(-0.534284\pi\)
−0.107497 + 0.994205i \(0.534284\pi\)
\(744\) 0 0
\(745\) 4.78520 + 17.4395i 0.175316 + 0.638933i
\(746\) 0 0
\(747\) 7.10098i 0.259811i
\(748\) 0 0
\(749\) 18.9169 0.691209
\(750\) 0 0
\(751\) 11.7992i 0.430559i −0.976552 0.215280i \(-0.930934\pi\)
0.976552 0.215280i \(-0.0690663\pi\)
\(752\) 0 0
\(753\) 12.2141i 0.445107i
\(754\) 0 0
\(755\) 3.96245 + 14.4410i 0.144208 + 0.525563i
\(756\) 0 0
\(757\) 0.997808 0.0362660 0.0181330 0.999836i \(-0.494228\pi\)
0.0181330 + 0.999836i \(0.494228\pi\)
\(758\) 0 0
\(759\) 0.0806346 0.00292685
\(760\) 0 0
\(761\) −6.47998 −0.234899 −0.117450 0.993079i \(-0.537472\pi\)
−0.117450 + 0.993079i \(0.537472\pi\)
\(762\) 0 0
\(763\) 43.0786i 1.55955i
\(764\) 0 0
\(765\) 0.608773 + 2.21865i 0.0220102 + 0.0802155i
\(766\) 0 0
\(767\) 34.5755i 1.24845i
\(768\) 0 0
\(769\) 31.5502i 1.13773i −0.822431 0.568864i \(-0.807383\pi\)
0.822431 0.568864i \(-0.192617\pi\)
\(770\) 0 0
\(771\) 4.65163i 0.167524i
\(772\) 0 0
\(773\) 31.7747 1.14286 0.571428 0.820652i \(-0.306390\pi\)
0.571428 + 0.820652i \(0.306390\pi\)
\(774\) 0 0
\(775\) 5.16317 + 8.70013i 0.185466 + 0.312518i
\(776\) 0 0
\(777\) 8.26054i 0.296345i
\(778\) 0 0
\(779\) 31.0255 1.11160
\(780\) 0 0
\(781\) 10.8174i 0.387078i
\(782\) 0 0
\(783\) −4.28803 + 3.25773i −0.153242 + 0.116422i
\(784\) 0 0
\(785\) −4.92278 17.9409i −0.175701 0.640338i
\(786\) 0 0
\(787\) 15.6567i 0.558100i −0.960277 0.279050i \(-0.909980\pi\)
0.960277 0.279050i \(-0.0900196\pi\)
\(788\) 0 0
\(789\) 4.47603 0.159351
\(790\) 0 0
\(791\) 26.5984i 0.945731i
\(792\) 0 0
\(793\) 26.2923 0.933666
\(794\) 0 0
\(795\) −13.4877 + 3.70087i −0.478359 + 0.131256i
\(796\) 0 0
\(797\) 55.4594 1.96447 0.982237 0.187647i \(-0.0600861\pi\)
0.982237 + 0.187647i \(0.0600861\pi\)
\(798\) 0 0
\(799\) −0.570239 −0.0201736
\(800\) 0 0
\(801\) 6.83268i 0.241421i
\(802\) 0 0
\(803\) 7.25016i 0.255853i
\(804\) 0 0
\(805\) −0.132893 0.484324i −0.00468387 0.0170702i
\(806\) 0 0
\(807\) 26.0495i 0.916987i
\(808\) 0 0
\(809\) 5.45022i 0.191619i −0.995400 0.0958097i \(-0.969456\pi\)
0.995400 0.0958097i \(-0.0305440\pi\)
\(810\) 0 0
\(811\) 2.51950 0.0884717 0.0442359 0.999021i \(-0.485915\pi\)
0.0442359 + 0.999021i \(0.485915\pi\)
\(812\) 0 0
\(813\) 21.0732i 0.739069i
\(814\) 0 0
\(815\) −4.34493 15.8349i −0.152196 0.554673i
\(816\) 0 0
\(817\) 56.5212i 1.97743i
\(818\) 0 0
\(819\) 8.08413 0.282482
\(820\) 0 0
\(821\) −8.04758 −0.280862 −0.140431 0.990090i \(-0.544849\pi\)
−0.140431 + 0.990090i \(0.544849\pi\)
\(822\) 0 0
\(823\) 41.5365 1.44787 0.723936 0.689867i \(-0.242331\pi\)
0.723936 + 0.689867i \(0.242331\pi\)
\(824\) 0 0
\(825\) −2.47105 4.16381i −0.0860309 0.144965i
\(826\) 0 0
\(827\) −16.3771 −0.569487 −0.284744 0.958604i \(-0.591908\pi\)
−0.284744 + 0.958604i \(0.591908\pi\)
\(828\) 0 0
\(829\) 7.41324i 0.257472i −0.991679 0.128736i \(-0.958908\pi\)
0.991679 0.128736i \(-0.0410920\pi\)
\(830\) 0 0
\(831\) 13.8437i 0.480232i
\(832\) 0 0
\(833\) −0.283508 −0.00982297
\(834\) 0 0
\(835\) 27.4606 7.53489i 0.950314 0.260756i
\(836\) 0 0
\(837\) 2.02337i 0.0699379i
\(838\) 0 0
\(839\) 34.0179i 1.17443i 0.809431 + 0.587214i \(0.199775\pi\)
−0.809431 + 0.587214i \(0.800225\pi\)
\(840\) 0 0
\(841\) 7.77439 27.9385i 0.268083 0.963396i
\(842\) 0 0
\(843\) −0.777928 −0.0267933
\(844\) 0 0
\(845\) 2.37705 + 8.66306i 0.0817729 + 0.298018i
\(846\) 0 0
\(847\) 27.1412i 0.932582i
\(848\) 0 0
\(849\) 19.5373i 0.670517i
\(850\) 0 0
\(851\) 0.255010i 0.00874162i
\(852\) 0 0
\(853\) −52.1341 −1.78504 −0.892519 0.451011i \(-0.851064\pi\)
−0.892519 + 0.451011i \(0.851064\pi\)
\(854\) 0 0
\(855\) 17.0248 4.67142i 0.582237 0.159759i
\(856\) 0 0
\(857\) 37.8222i 1.29198i 0.763346 + 0.645990i \(0.223555\pi\)
−0.763346 + 0.645990i \(0.776445\pi\)
\(858\) 0 0
\(859\) 26.6791i 0.910281i −0.890420 0.455140i \(-0.849589\pi\)
0.890420 0.455140i \(-0.150411\pi\)
\(860\) 0 0
\(861\) −10.5996 −0.361235
\(862\) 0 0
\(863\) 34.0283i 1.15834i 0.815208 + 0.579168i \(0.196622\pi\)
−0.815208 + 0.579168i \(0.803378\pi\)
\(864\) 0 0
\(865\) 50.6306 13.8925i 1.72149 0.472358i
\(866\) 0 0
\(867\) 15.9414 0.541398
\(868\) 0 0
\(869\) −6.34400 −0.215205
\(870\) 0 0
\(871\) −7.21164 −0.244357
\(872\) 0 0
\(873\) 4.18357 0.141592
\(874\) 0 0
\(875\) −20.9370 + 21.7045i −0.707801 + 0.733745i
\(876\) 0 0
\(877\) 40.7864i 1.37726i 0.725114 + 0.688629i \(0.241787\pi\)
−0.725114 + 0.688629i \(0.758213\pi\)
\(878\) 0 0
\(879\) 29.7470 1.00334
\(880\) 0 0
\(881\) 4.93942i 0.166413i −0.996532 0.0832066i \(-0.973484\pi\)
0.996532 0.0832066i \(-0.0265161\pi\)
\(882\) 0 0
\(883\) 1.88143i 0.0633151i 0.999499 + 0.0316575i \(0.0100786\pi\)
−0.999499 + 0.0316575i \(0.989921\pi\)
\(884\) 0 0
\(885\) −6.82585 24.8766i −0.229449 0.836217i
\(886\) 0 0
\(887\) −54.3735 −1.82568 −0.912842 0.408312i \(-0.866117\pi\)
−0.912842 + 0.408312i \(0.866117\pi\)
\(888\) 0 0
\(889\) 34.5345i 1.15825i
\(890\) 0 0
\(891\) 0.968368i 0.0324415i
\(892\) 0 0
\(893\) 4.37573i 0.146428i
\(894\) 0 0
\(895\) −8.66576 31.5821i −0.289664 1.05567i
\(896\) 0 0
\(897\) −0.249564 −0.00833269
\(898\) 0 0
\(899\) −6.59159 8.67627i −0.219842 0.289370i
\(900\) 0 0
\(901\) 6.43549i 0.214397i
\(902\) 0 0
\(903\) 19.3101i 0.642599i
\(904\) 0 0
\(905\) 0.402359 + 1.46638i 0.0133749 + 0.0487442i
\(906\) 0 0
\(907\) −0.482567 −0.0160234 −0.00801169 0.999968i \(-0.502550\pi\)
−0.00801169 + 0.999968i \(0.502550\pi\)
\(908\) 0 0
\(909\) 2.96662i 0.0983965i
\(910\) 0 0
\(911\) 26.5859i 0.880831i 0.897794 + 0.440416i \(0.145169\pi\)
−0.897794 + 0.440416i \(0.854831\pi\)
\(912\) 0 0
\(913\) −6.87636 −0.227574
\(914\) 0 0
\(915\) −18.9169 + 5.19059i −0.625374 + 0.171596i
\(916\) 0 0
\(917\) −1.51213 −0.0499348
\(918\) 0 0
\(919\) −7.53009 −0.248395 −0.124197 0.992258i \(-0.539636\pi\)
−0.124197 + 0.992258i \(0.539636\pi\)
\(920\) 0 0
\(921\) 13.5448 0.446315
\(922\) 0 0
\(923\) 33.4799i 1.10200i
\(924\) 0 0
\(925\) −13.1682 + 7.81478i −0.432968 + 0.256948i
\(926\) 0 0
\(927\) 1.64370i 0.0539860i
\(928\) 0 0
\(929\) 40.7004 1.33534 0.667669 0.744458i \(-0.267292\pi\)
0.667669 + 0.744458i \(0.267292\pi\)
\(930\) 0 0
\(931\) 2.17550i 0.0712991i
\(932\) 0 0
\(933\) 24.5544i 0.803876i
\(934\) 0 0
\(935\) 2.14847 0.589516i 0.0702625 0.0192792i
\(936\) 0 0
\(937\) 16.7717i 0.547908i −0.961743 0.273954i \(-0.911668\pi\)
0.961743 0.273954i \(-0.0883316\pi\)
\(938\) 0 0
\(939\) 13.0879i 0.427106i
\(940\) 0 0
\(941\) 44.2670 1.44306 0.721531 0.692382i \(-0.243439\pi\)
0.721531 + 0.692382i \(0.243439\pi\)
\(942\) 0 0
\(943\) 0.327220 0.0106557
\(944\) 0 0
\(945\) −5.81641 + 1.59596i −0.189208 + 0.0519165i
\(946\) 0 0
\(947\) −7.91810 −0.257304 −0.128652 0.991690i \(-0.541065\pi\)
−0.128652 + 0.991690i \(0.541065\pi\)
\(948\) 0 0
\(949\) 22.4392i 0.728408i
\(950\) 0 0
\(951\) −12.7472 −0.413356
\(952\) 0 0
\(953\) 32.1276i 1.04072i −0.853948 0.520358i \(-0.825799\pi\)
0.853948 0.520358i \(-0.174201\pi\)
\(954\) 0 0
\(955\) 15.1700 4.16247i 0.490889 0.134694i
\(956\) 0 0
\(957\) 3.15468 + 4.15239i 0.101976 + 0.134228i
\(958\) 0 0
\(959\) 57.7018i 1.86329i
\(960\) 0 0
\(961\) 26.9060 0.867935
\(962\) 0 0
\(963\) 7.01322i 0.225998i
\(964\) 0 0
\(965\) −16.0987 58.6710i −0.518234 1.88869i
\(966\) 0 0
\(967\) −32.7437 −1.05296 −0.526482 0.850186i \(-0.676489\pi\)
−0.526482 + 0.850186i \(0.676489\pi\)
\(968\) 0 0
\(969\) 8.12321i 0.260955i
\(970\) 0 0
\(971\) 8.19697i 0.263053i 0.991313 + 0.131527i \(0.0419879\pi\)
−0.991313 + 0.131527i \(0.958012\pi\)
\(972\) 0 0
\(973\) 30.7355i 0.985334i
\(974\) 0 0
\(975\) 7.64788 + 12.8870i 0.244928 + 0.412713i
\(976\) 0 0
\(977\) 7.55744i 0.241784i 0.992666 + 0.120892i \(0.0385755\pi\)
−0.992666 + 0.120892i \(0.961425\pi\)
\(978\) 0 0
\(979\) −6.61655 −0.211466
\(980\) 0 0
\(981\) −15.9709 −0.509911
\(982\) 0 0
\(983\) −32.0276 −1.02152 −0.510761 0.859723i \(-0.670636\pi\)
−0.510761 + 0.859723i \(0.670636\pi\)
\(984\) 0 0
\(985\) 23.4553 6.43587i 0.747348 0.205064i
\(986\) 0 0
\(987\) 1.49494i 0.0475843i
\(988\) 0 0
\(989\) 0.596117i 0.0189554i
\(990\) 0 0
\(991\) 52.0196 1.65246 0.826229 0.563335i \(-0.190482\pi\)
0.826229 + 0.563335i \(0.190482\pi\)
\(992\) 0 0
\(993\) 17.7465i 0.563169i
\(994\) 0 0
\(995\) −5.63446 20.5346i −0.178624 0.650991i
\(996\) 0 0
\(997\) −54.1997 −1.71652 −0.858261 0.513213i \(-0.828455\pi\)
−0.858261 + 0.513213i \(0.828455\pi\)
\(998\) 0 0
\(999\) −3.06250 −0.0968931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.2.b.a.289.8 yes 14
3.2 odd 2 5220.2.b.d.289.7 14
5.2 odd 4 8700.2.l.j.6901.20 28
5.3 odd 4 8700.2.l.j.6901.17 28
5.4 even 2 1740.2.b.b.289.7 yes 14
15.14 odd 2 5220.2.b.c.289.8 14
29.28 even 2 1740.2.b.b.289.8 yes 14
87.86 odd 2 5220.2.b.c.289.7 14
145.28 odd 4 8700.2.l.j.6901.19 28
145.57 odd 4 8700.2.l.j.6901.18 28
145.144 even 2 inner 1740.2.b.a.289.7 14
435.434 odd 2 5220.2.b.d.289.8 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.b.a.289.7 14 145.144 even 2 inner
1740.2.b.a.289.8 yes 14 1.1 even 1 trivial
1740.2.b.b.289.7 yes 14 5.4 even 2
1740.2.b.b.289.8 yes 14 29.28 even 2
5220.2.b.c.289.7 14 87.86 odd 2
5220.2.b.c.289.8 14 15.14 odd 2
5220.2.b.d.289.7 14 3.2 odd 2
5220.2.b.d.289.8 14 435.434 odd 2
8700.2.l.j.6901.17 28 5.3 odd 4
8700.2.l.j.6901.18 28 145.57 odd 4
8700.2.l.j.6901.19 28 145.28 odd 4
8700.2.l.j.6901.20 28 5.2 odd 4