Properties

Label 5220.2.b.d.289.7
Level $5220$
Weight $2$
Character 5220.289
Analytic conductor $41.682$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5220,2,Mod(289,5220)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5220, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5220.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,-6,0,0,0,-8, 0,0,0,0,0,18,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 5 x^{12} - 8 x^{11} + 11 x^{10} - 30 x^{9} - 49 x^{8} + 176 x^{7} - 245 x^{6} + \cdots + 78125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1740)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.7
Root \(0.591682 + 2.15637i\) of defining polynomial
Character \(\chi\) \(=\) 5220.289
Dual form 5220.2.b.d.289.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.591682 - 2.15637i) q^{5} -2.69732i q^{7} +0.968368i q^{11} +2.99709i q^{13} -1.02889 q^{17} -7.89515i q^{19} +0.0832686i q^{23} +(-4.29982 + 2.55177i) q^{25} +(-4.28803 + 3.25773i) q^{29} -2.02337i q^{31} +(-5.81641 + 1.59596i) q^{35} +3.06250 q^{37} -3.92969i q^{41} -7.15897 q^{43} +0.554230 q^{47} -0.275549 q^{49} +6.25482i q^{53} +(2.08815 - 0.572966i) q^{55} -11.5363 q^{59} -8.77259i q^{61} +(6.46283 - 1.77333i) q^{65} +2.40621i q^{67} -11.1708 q^{71} +7.48700 q^{73} +2.61200 q^{77} -6.55123i q^{79} +7.10098i q^{83} +(0.608773 + 2.21865i) q^{85} +6.83268i q^{89} +8.08413 q^{91} +(-17.0248 + 4.67142i) q^{95} +4.18357 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{5} + 4 q^{17} - 6 q^{25} - 8 q^{29} + 18 q^{35} - 14 q^{37} + 6 q^{43} - 16 q^{47} - 14 q^{49} - 8 q^{55} - 12 q^{59} - 10 q^{65} - 4 q^{71} - 14 q^{73} - 24 q^{77} - 14 q^{85} + 16 q^{91} - 8 q^{95}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5220\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(2611\) \(4061\) \(4177\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.591682 2.15637i −0.264608 0.964356i
\(6\) 0 0
\(7\) 2.69732i 1.01949i −0.860325 0.509746i \(-0.829739\pi\)
0.860325 0.509746i \(-0.170261\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.968368i 0.291974i 0.989287 + 0.145987i \(0.0466357\pi\)
−0.989287 + 0.145987i \(0.953364\pi\)
\(12\) 0 0
\(13\) 2.99709i 0.831244i 0.909537 + 0.415622i \(0.136436\pi\)
−0.909537 + 0.415622i \(0.863564\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.02889 −0.249541 −0.124771 0.992186i \(-0.539820\pi\)
−0.124771 + 0.992186i \(0.539820\pi\)
\(18\) 0 0
\(19\) 7.89515i 1.81127i −0.424056 0.905636i \(-0.639394\pi\)
0.424056 0.905636i \(-0.360606\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0832686i 0.0173627i 0.999962 + 0.00868135i \(0.00276339\pi\)
−0.999962 + 0.00868135i \(0.997237\pi\)
\(24\) 0 0
\(25\) −4.29982 + 2.55177i −0.859965 + 0.510353i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.28803 + 3.25773i −0.796267 + 0.604945i
\(30\) 0 0
\(31\) 2.02337i 0.363408i −0.983353 0.181704i \(-0.941839\pi\)
0.983353 0.181704i \(-0.0581612\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.81641 + 1.59596i −0.983153 + 0.269766i
\(36\) 0 0
\(37\) 3.06250 0.503471 0.251736 0.967796i \(-0.418999\pi\)
0.251736 + 0.967796i \(0.418999\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.92969i 0.613715i −0.951755 0.306857i \(-0.900723\pi\)
0.951755 0.306857i \(-0.0992775\pi\)
\(42\) 0 0
\(43\) −7.15897 −1.09173 −0.545867 0.837872i \(-0.683799\pi\)
−0.545867 + 0.837872i \(0.683799\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.554230 0.0808427 0.0404213 0.999183i \(-0.487130\pi\)
0.0404213 + 0.999183i \(0.487130\pi\)
\(48\) 0 0
\(49\) −0.275549 −0.0393641
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.25482i 0.859166i 0.903027 + 0.429583i \(0.141339\pi\)
−0.903027 + 0.429583i \(0.858661\pi\)
\(54\) 0 0
\(55\) 2.08815 0.572966i 0.281567 0.0772587i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.5363 −1.50190 −0.750952 0.660356i \(-0.770405\pi\)
−0.750952 + 0.660356i \(0.770405\pi\)
\(60\) 0 0
\(61\) 8.77259i 1.12321i −0.827404 0.561607i \(-0.810183\pi\)
0.827404 0.561607i \(-0.189817\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.46283 1.77333i 0.801615 0.219954i
\(66\) 0 0
\(67\) 2.40621i 0.293966i 0.989139 + 0.146983i \(0.0469562\pi\)
−0.989139 + 0.146983i \(0.953044\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.1708 −1.32573 −0.662864 0.748740i \(-0.730659\pi\)
−0.662864 + 0.748740i \(0.730659\pi\)
\(72\) 0 0
\(73\) 7.48700 0.876287 0.438143 0.898905i \(-0.355636\pi\)
0.438143 + 0.898905i \(0.355636\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.61200 0.297665
\(78\) 0 0
\(79\) 6.55123i 0.737071i −0.929614 0.368535i \(-0.879859\pi\)
0.929614 0.368535i \(-0.120141\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.10098i 0.779434i 0.920935 + 0.389717i \(0.127427\pi\)
−0.920935 + 0.389717i \(0.872573\pi\)
\(84\) 0 0
\(85\) 0.608773 + 2.21865i 0.0660307 + 0.240647i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.83268i 0.724263i 0.932127 + 0.362132i \(0.117951\pi\)
−0.932127 + 0.362132i \(0.882049\pi\)
\(90\) 0 0
\(91\) 8.08413 0.847447
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −17.0248 + 4.67142i −1.74671 + 0.479278i
\(96\) 0 0
\(97\) 4.18357 0.424777 0.212388 0.977185i \(-0.431876\pi\)
0.212388 + 0.977185i \(0.431876\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.96662i 0.295190i −0.989048 0.147595i \(-0.952847\pi\)
0.989048 0.147595i \(-0.0471531\pi\)
\(102\) 0 0
\(103\) 1.64370i 0.161958i 0.996716 + 0.0809791i \(0.0258047\pi\)
−0.996716 + 0.0809791i \(0.974195\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.01322i 0.677994i −0.940787 0.338997i \(-0.889912\pi\)
0.940787 0.338997i \(-0.110088\pi\)
\(108\) 0 0
\(109\) −15.9709 −1.52973 −0.764866 0.644189i \(-0.777195\pi\)
−0.764866 + 0.644189i \(0.777195\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.86105 −0.927650 −0.463825 0.885927i \(-0.653523\pi\)
−0.463825 + 0.885927i \(0.653523\pi\)
\(114\) 0 0
\(115\) 0.179557 0.0492685i 0.0167438 0.00459432i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.77524i 0.254405i
\(120\) 0 0
\(121\) 10.0623 0.914751
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.04667 + 7.76216i 0.719716 + 0.694268i
\(126\) 0 0
\(127\) 12.8032 1.13610 0.568052 0.822992i \(-0.307697\pi\)
0.568052 + 0.822992i \(0.307697\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.560603i 0.0489801i 0.999700 + 0.0244901i \(0.00779621\pi\)
−0.999700 + 0.0244901i \(0.992204\pi\)
\(132\) 0 0
\(133\) −21.2958 −1.84658
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −21.3923 −1.82766 −0.913832 0.406093i \(-0.866891\pi\)
−0.913832 + 0.406093i \(0.866891\pi\)
\(138\) 0 0
\(139\) 11.3948 0.966495 0.483248 0.875484i \(-0.339457\pi\)
0.483248 + 0.875484i \(0.339457\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.90229 −0.242701
\(144\) 0 0
\(145\) 9.56201 + 7.31902i 0.794081 + 0.607811i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.08745 −0.662549 −0.331275 0.943534i \(-0.607479\pi\)
−0.331275 + 0.943534i \(0.607479\pi\)
\(150\) 0 0
\(151\) 6.69693 0.544988 0.272494 0.962157i \(-0.412151\pi\)
0.272494 + 0.962157i \(0.412151\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.36312 + 1.19719i −0.350454 + 0.0961608i
\(156\) 0 0
\(157\) −8.31996 −0.664005 −0.332003 0.943278i \(-0.607724\pi\)
−0.332003 + 0.943278i \(0.607724\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.224602 0.0177011
\(162\) 0 0
\(163\) −7.34334 −0.575175 −0.287587 0.957754i \(-0.592853\pi\)
−0.287587 + 0.957754i \(0.592853\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.7347i 0.985439i 0.870188 + 0.492720i \(0.163997\pi\)
−0.870188 + 0.492720i \(0.836003\pi\)
\(168\) 0 0
\(169\) 4.01744 0.309034
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 23.4796i 1.78512i 0.450927 + 0.892561i \(0.351093\pi\)
−0.450927 + 0.892561i \(0.648907\pi\)
\(174\) 0 0
\(175\) 6.88294 + 11.5980i 0.520301 + 0.876727i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.6460 1.09469 0.547346 0.836907i \(-0.315638\pi\)
0.547346 + 0.836907i \(0.315638\pi\)
\(180\) 0 0
\(181\) 0.680025 0.0505458 0.0252729 0.999681i \(-0.491955\pi\)
0.0252729 + 0.999681i \(0.491955\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.81203 6.60386i −0.133223 0.485525i
\(186\) 0 0
\(187\) 0.996339i 0.0728595i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.03498i 0.509033i 0.967068 + 0.254516i \(0.0819163\pi\)
−0.967068 + 0.254516i \(0.918084\pi\)
\(192\) 0 0
\(193\) −27.2083 −1.95850 −0.979248 0.202668i \(-0.935039\pi\)
−0.979248 + 0.202668i \(0.935039\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.8772i 0.774971i 0.921876 + 0.387485i \(0.126656\pi\)
−0.921876 + 0.387485i \(0.873344\pi\)
\(198\) 0 0
\(199\) −9.52278 −0.675052 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.78715 + 11.5662i 0.616737 + 0.811788i
\(204\) 0 0
\(205\) −8.47385 + 2.32513i −0.591840 + 0.162394i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.64541 0.528844
\(210\) 0 0
\(211\) 5.67254i 0.390514i 0.980752 + 0.195257i \(0.0625541\pi\)
−0.980752 + 0.195257i \(0.937446\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.23584 + 15.4374i 0.288882 + 1.05282i
\(216\) 0 0
\(217\) −5.45768 −0.370491
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.08366i 0.207430i
\(222\) 0 0
\(223\) 3.05206i 0.204381i −0.994765 0.102191i \(-0.967415\pi\)
0.994765 0.102191i \(-0.0325851\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.05026i 0.202453i 0.994863 + 0.101227i \(0.0322767\pi\)
−0.994863 + 0.101227i \(0.967723\pi\)
\(228\) 0 0
\(229\) 16.3929i 1.08327i 0.840613 + 0.541637i \(0.182195\pi\)
−0.840613 + 0.541637i \(0.817805\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.87789i 0.516098i 0.966132 + 0.258049i \(0.0830796\pi\)
−0.966132 + 0.258049i \(0.916920\pi\)
\(234\) 0 0
\(235\) −0.327928 1.19512i −0.0213917 0.0779611i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.0566089 0.00366173 0.00183086 0.999998i \(-0.499417\pi\)
0.00183086 + 0.999998i \(0.499417\pi\)
\(240\) 0 0
\(241\) −6.32053 −0.407141 −0.203571 0.979060i \(-0.565255\pi\)
−0.203571 + 0.979060i \(0.565255\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.163037 + 0.594184i 0.0104161 + 0.0379610i
\(246\) 0 0
\(247\) 23.6625 1.50561
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.2141i 0.770948i 0.922719 + 0.385474i \(0.125962\pi\)
−0.922719 + 0.385474i \(0.874038\pi\)
\(252\) 0 0
\(253\) −0.0806346 −0.00506945
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.65163i 0.290161i 0.989420 + 0.145080i \(0.0463441\pi\)
−0.989420 + 0.145080i \(0.953656\pi\)
\(258\) 0 0
\(259\) 8.26054i 0.513285i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.47603 0.276004 0.138002 0.990432i \(-0.455932\pi\)
0.138002 + 0.990432i \(0.455932\pi\)
\(264\) 0 0
\(265\) 13.4877 3.70087i 0.828542 0.227343i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.0495i 1.58827i −0.607743 0.794134i \(-0.707925\pi\)
0.607743 0.794134i \(-0.292075\pi\)
\(270\) 0 0
\(271\) 21.0732i 1.28011i 0.768331 + 0.640053i \(0.221088\pi\)
−0.768331 + 0.640053i \(0.778912\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.47105 4.16381i −0.149010 0.251087i
\(276\) 0 0
\(277\) 13.8437i 0.831786i 0.909414 + 0.415893i \(0.136531\pi\)
−0.909414 + 0.415893i \(0.863469\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.777928 −0.0464073 −0.0232037 0.999731i \(-0.507387\pi\)
−0.0232037 + 0.999731i \(0.507387\pi\)
\(282\) 0 0
\(283\) 19.5373i 1.16137i 0.814128 + 0.580685i \(0.197215\pi\)
−0.814128 + 0.580685i \(0.802785\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.5996 −0.625677
\(288\) 0 0
\(289\) −15.9414 −0.937729
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.7470 1.73784 0.868920 0.494953i \(-0.164815\pi\)
0.868920 + 0.494953i \(0.164815\pi\)
\(294\) 0 0
\(295\) 6.82585 + 24.8766i 0.397417 + 1.44837i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.249564 −0.0144326
\(300\) 0 0
\(301\) 19.3101i 1.11301i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.9169 + 5.19059i −1.08318 + 0.297212i
\(306\) 0 0
\(307\) −13.5448 −0.773041 −0.386520 0.922281i \(-0.626323\pi\)
−0.386520 + 0.922281i \(0.626323\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.5544i 1.39235i −0.717870 0.696177i \(-0.754883\pi\)
0.717870 0.696177i \(-0.245117\pi\)
\(312\) 0 0
\(313\) 13.0879i 0.739770i 0.929078 + 0.369885i \(0.120603\pi\)
−0.929078 + 0.369885i \(0.879397\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.7472 −0.715953 −0.357977 0.933731i \(-0.616533\pi\)
−0.357977 + 0.933731i \(0.616533\pi\)
\(318\) 0 0
\(319\) −3.15468 4.15239i −0.176628 0.232489i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.12321i 0.451987i
\(324\) 0 0
\(325\) −7.64788 12.8870i −0.424228 0.714840i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.49494i 0.0824185i
\(330\) 0 0
\(331\) 17.7465i 0.975437i 0.873001 + 0.487718i \(0.162171\pi\)
−0.873001 + 0.487718i \(0.837829\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.18867 1.42371i 0.283487 0.0777858i
\(336\) 0 0
\(337\) 15.3425 0.835761 0.417881 0.908502i \(-0.362773\pi\)
0.417881 + 0.908502i \(0.362773\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.95936 0.106106
\(342\) 0 0
\(343\) 18.1380i 0.979361i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.5489i 1.31785i −0.752207 0.658926i \(-0.771011\pi\)
0.752207 0.658926i \(-0.228989\pi\)
\(348\) 0 0
\(349\) −32.5782 −1.74387 −0.871936 0.489621i \(-0.837135\pi\)
−0.871936 + 0.489621i \(0.837135\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.5351i 0.773627i 0.922158 + 0.386813i \(0.126424\pi\)
−0.922158 + 0.386813i \(0.873576\pi\)
\(354\) 0 0
\(355\) 6.60955 + 24.0883i 0.350799 + 1.27847i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.7334i 1.62204i −0.585015 0.811022i \(-0.698911\pi\)
0.585015 0.811022i \(-0.301089\pi\)
\(360\) 0 0
\(361\) −43.3334 −2.28071
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.42992 16.1447i −0.231873 0.845052i
\(366\) 0 0
\(367\) −23.7620 −1.24037 −0.620183 0.784457i \(-0.712942\pi\)
−0.620183 + 0.784457i \(0.712942\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.8713 0.875913
\(372\) 0 0
\(373\) 27.9373i 1.44654i −0.690566 0.723269i \(-0.742639\pi\)
0.690566 0.723269i \(-0.257361\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.76372 12.8516i −0.502857 0.661892i
\(378\) 0 0
\(379\) 30.8404i 1.58416i −0.610415 0.792082i \(-0.708997\pi\)
0.610415 0.792082i \(-0.291003\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.1205i 0.823722i −0.911247 0.411861i \(-0.864879\pi\)
0.911247 0.411861i \(-0.135121\pi\)
\(384\) 0 0
\(385\) −1.54547 5.63243i −0.0787647 0.287055i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.2842i 1.38337i −0.722201 0.691683i \(-0.756870\pi\)
0.722201 0.691683i \(-0.243130\pi\)
\(390\) 0 0
\(391\) 0.0856738i 0.00433271i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.1268 + 3.87625i −0.710798 + 0.195035i
\(396\) 0 0
\(397\) 6.33045i 0.317716i 0.987301 + 0.158858i \(0.0507813\pi\)
−0.987301 + 0.158858i \(0.949219\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.40233 −0.469530 −0.234765 0.972052i \(-0.575432\pi\)
−0.234765 + 0.972052i \(0.575432\pi\)
\(402\) 0 0
\(403\) 6.06422 0.302080
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.96562i 0.147000i
\(408\) 0 0
\(409\) 11.6998i 0.578519i 0.957251 + 0.289260i \(0.0934091\pi\)
−0.957251 + 0.289260i \(0.906591\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 31.1173i 1.53118i
\(414\) 0 0
\(415\) 15.3123 4.20153i 0.751652 0.206245i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −19.8844 −0.971417 −0.485709 0.874121i \(-0.661438\pi\)
−0.485709 + 0.874121i \(0.661438\pi\)
\(420\) 0 0
\(421\) 2.46576i 0.120174i −0.998193 0.0600869i \(-0.980862\pi\)
0.998193 0.0600869i \(-0.0191378\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.42402 2.62548i 0.214597 0.127354i
\(426\) 0 0
\(427\) −23.6625 −1.14511
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.4340 −0.502586 −0.251293 0.967911i \(-0.580856\pi\)
−0.251293 + 0.967911i \(0.580856\pi\)
\(432\) 0 0
\(433\) −18.9489 −0.910626 −0.455313 0.890331i \(-0.650473\pi\)
−0.455313 + 0.890331i \(0.650473\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.657418 0.0314486
\(438\) 0 0
\(439\) −26.0344 −1.24255 −0.621276 0.783592i \(-0.713386\pi\)
−0.621276 + 0.783592i \(0.713386\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −26.3026 −1.24968 −0.624838 0.780755i \(-0.714835\pi\)
−0.624838 + 0.780755i \(0.714835\pi\)
\(444\) 0 0
\(445\) 14.7338 4.04278i 0.698447 0.191646i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.7531i 0.979398i −0.871892 0.489699i \(-0.837107\pi\)
0.871892 0.489699i \(-0.162893\pi\)
\(450\) 0 0
\(451\) 3.80539 0.179189
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.78323 17.4323i −0.224241 0.817240i
\(456\) 0 0
\(457\) 14.7395i 0.689485i 0.938697 + 0.344743i \(0.112034\pi\)
−0.938697 + 0.344743i \(0.887966\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.7265i 0.965329i −0.875805 0.482665i \(-0.839669\pi\)
0.875805 0.482665i \(-0.160331\pi\)
\(462\) 0 0
\(463\) 39.3103i 1.82691i −0.406945 0.913453i \(-0.633406\pi\)
0.406945 0.913453i \(-0.366594\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.8091 0.916657 0.458329 0.888783i \(-0.348448\pi\)
0.458329 + 0.888783i \(0.348448\pi\)
\(468\) 0 0
\(469\) 6.49033 0.299696
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.93252i 0.318758i
\(474\) 0 0
\(475\) 20.1466 + 33.9478i 0.924389 + 1.55763i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.6122i 0.896104i 0.894008 + 0.448052i \(0.147882\pi\)
−0.894008 + 0.448052i \(0.852118\pi\)
\(480\) 0 0
\(481\) 9.17858i 0.418507i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.47534 9.02130i −0.112399 0.409636i
\(486\) 0 0
\(487\) 24.6810i 1.11840i −0.829032 0.559202i \(-0.811108\pi\)
0.829032 0.559202i \(-0.188892\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.69557i 0.392426i 0.980561 + 0.196213i \(0.0628644\pi\)
−0.980561 + 0.196213i \(0.937136\pi\)
\(492\) 0 0
\(493\) 4.41189 3.35183i 0.198702 0.150959i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 30.1312i 1.35157i
\(498\) 0 0
\(499\) −12.1525 −0.544020 −0.272010 0.962294i \(-0.587688\pi\)
−0.272010 + 0.962294i \(0.587688\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.9465 0.978545 0.489273 0.872131i \(-0.337262\pi\)
0.489273 + 0.872131i \(0.337262\pi\)
\(504\) 0 0
\(505\) −6.39711 + 1.75530i −0.284668 + 0.0781096i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.3545 −0.990848 −0.495424 0.868651i \(-0.664987\pi\)
−0.495424 + 0.868651i \(0.664987\pi\)
\(510\) 0 0
\(511\) 20.1948i 0.893367i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.54441 0.972546i 0.156185 0.0428555i
\(516\) 0 0
\(517\) 0.536698i 0.0236040i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.33761 −0.146223 −0.0731117 0.997324i \(-0.523293\pi\)
−0.0731117 + 0.997324i \(0.523293\pi\)
\(522\) 0 0
\(523\) 35.3198i 1.54443i −0.635363 0.772213i \(-0.719150\pi\)
0.635363 0.772213i \(-0.280850\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.08181i 0.0906853i
\(528\) 0 0
\(529\) 22.9931 0.999699
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.7777 0.510147
\(534\) 0 0
\(535\) −15.1231 + 4.14960i −0.653827 + 0.179403i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.266833i 0.0114933i
\(540\) 0 0
\(541\) 36.1020i 1.55214i −0.630644 0.776072i \(-0.717209\pi\)
0.630644 0.776072i \(-0.282791\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.44968 + 34.4390i 0.404780 + 1.47521i
\(546\) 0 0
\(547\) 24.7415i 1.05787i 0.848662 + 0.528936i \(0.177409\pi\)
−0.848662 + 0.528936i \(0.822591\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.7203 + 33.8546i 1.09572 + 1.44226i
\(552\) 0 0
\(553\) −17.6708 −0.751438
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.37690i 0.100712i −0.998731 0.0503562i \(-0.983964\pi\)
0.998731 0.0503562i \(-0.0160357\pi\)
\(558\) 0 0
\(559\) 21.4561i 0.907497i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.0866 1.56302 0.781508 0.623896i \(-0.214451\pi\)
0.781508 + 0.623896i \(0.214451\pi\)
\(564\) 0 0
\(565\) 5.83461 + 21.2640i 0.245464 + 0.894584i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.73356i 0.240363i 0.992752 + 0.120182i \(0.0383477\pi\)
−0.992752 + 0.120182i \(0.961652\pi\)
\(570\) 0 0
\(571\) −12.4614 −0.521495 −0.260747 0.965407i \(-0.583969\pi\)
−0.260747 + 0.965407i \(0.583969\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.212482 0.358040i −0.00886111 0.0149313i
\(576\) 0 0
\(577\) 32.0421 1.33393 0.666964 0.745090i \(-0.267593\pi\)
0.666964 + 0.745090i \(0.267593\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 19.1536 0.794627
\(582\) 0 0
\(583\) −6.05697 −0.250854
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.8050i 0.982538i 0.871008 + 0.491269i \(0.163467\pi\)
−0.871008 + 0.491269i \(0.836533\pi\)
\(588\) 0 0
\(589\) −15.9748 −0.658230
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.48683i 0.389577i 0.980845 + 0.194789i \(0.0624021\pi\)
−0.980845 + 0.194789i \(0.937598\pi\)
\(594\) 0 0
\(595\) 5.98442 1.64206i 0.245337 0.0673178i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.68070i 0.150389i 0.997169 + 0.0751947i \(0.0239578\pi\)
−0.997169 + 0.0751947i \(0.976042\pi\)
\(600\) 0 0
\(601\) 20.0281i 0.816962i 0.912767 + 0.408481i \(0.133941\pi\)
−0.912767 + 0.408481i \(0.866059\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.95366 21.6979i −0.242051 0.882146i
\(606\) 0 0
\(607\) 6.19497 0.251446 0.125723 0.992065i \(-0.459875\pi\)
0.125723 + 0.992065i \(0.459875\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.66108i 0.0672000i
\(612\) 0 0
\(613\) 15.8284i 0.639302i 0.947535 + 0.319651i \(0.103566\pi\)
−0.947535 + 0.319651i \(0.896434\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.09084 −0.325725 −0.162862 0.986649i \(-0.552073\pi\)
−0.162862 + 0.986649i \(0.552073\pi\)
\(618\) 0 0
\(619\) 25.5105i 1.02535i −0.858582 0.512677i \(-0.828654\pi\)
0.858582 0.512677i \(-0.171346\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.4300 0.738381
\(624\) 0 0
\(625\) 11.9770 21.9443i 0.479079 0.877772i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.15096 −0.125637
\(630\) 0 0
\(631\) 26.7233 1.06384 0.531918 0.846796i \(-0.321471\pi\)
0.531918 + 0.846796i \(0.321471\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.57546 27.6085i −0.300623 1.09561i
\(636\) 0 0
\(637\) 0.825845i 0.0327212i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.84397i 0.309818i 0.987929 + 0.154909i \(0.0495085\pi\)
−0.987929 + 0.154909i \(0.950492\pi\)
\(642\) 0 0
\(643\) 0.673789i 0.0265716i −0.999912 0.0132858i \(-0.995771\pi\)
0.999912 0.0132858i \(-0.00422913\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.32492i 0.209344i −0.994507 0.104672i \(-0.966621\pi\)
0.994507 0.104672i \(-0.0333793\pi\)
\(648\) 0 0
\(649\) 11.1714i 0.438517i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.7861 −0.422092 −0.211046 0.977476i \(-0.567687\pi\)
−0.211046 + 0.977476i \(0.567687\pi\)
\(654\) 0 0
\(655\) 1.20887 0.331699i 0.0472343 0.0129606i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 35.9464i 1.40027i 0.714009 + 0.700137i \(0.246878\pi\)
−0.714009 + 0.700137i \(0.753122\pi\)
\(660\) 0 0
\(661\) 20.6119 0.801711 0.400855 0.916141i \(-0.368713\pi\)
0.400855 + 0.916141i \(0.368713\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.6003 + 45.9215i 0.488620 + 1.78076i
\(666\) 0 0
\(667\) −0.271266 0.357058i −0.0105035 0.0138253i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.49509 0.327949
\(672\) 0 0
\(673\) 6.76765i 0.260874i 0.991457 + 0.130437i \(0.0416380\pi\)
−0.991457 + 0.130437i \(0.958362\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.43219 −0.170343 −0.0851715 0.996366i \(-0.527144\pi\)
−0.0851715 + 0.996366i \(0.527144\pi\)
\(678\) 0 0
\(679\) 11.2844i 0.433056i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.8482i 1.44822i −0.689684 0.724110i \(-0.742251\pi\)
0.689684 0.724110i \(-0.257749\pi\)
\(684\) 0 0
\(685\) 12.6574 + 46.1295i 0.483615 + 1.76252i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.7463 −0.714176
\(690\) 0 0
\(691\) 29.2078 1.11112 0.555559 0.831477i \(-0.312504\pi\)
0.555559 + 0.831477i \(0.312504\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.74211 24.5714i −0.255743 0.932046i
\(696\) 0 0
\(697\) 4.04320i 0.153147i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.7710 0.708969 0.354485 0.935062i \(-0.384656\pi\)
0.354485 + 0.935062i \(0.384656\pi\)
\(702\) 0 0
\(703\) 24.1789i 0.911923i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.00193 −0.300943
\(708\) 0 0
\(709\) −36.7978 −1.38197 −0.690986 0.722868i \(-0.742823\pi\)
−0.690986 + 0.722868i \(0.742823\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.168483 0.00630974
\(714\) 0 0
\(715\) 1.71723 + 6.25839i 0.0642209 + 0.234051i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.7934 0.850051 0.425025 0.905181i \(-0.360265\pi\)
0.425025 + 0.905181i \(0.360265\pi\)
\(720\) 0 0
\(721\) 4.43358 0.165115
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.1248 24.9497i 0.376026 0.926609i
\(726\) 0 0
\(727\) 12.4337 0.461142 0.230571 0.973056i \(-0.425941\pi\)
0.230571 + 0.973056i \(0.425941\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.36576 0.272433
\(732\) 0 0
\(733\) 1.40998 0.0520789 0.0260395 0.999661i \(-0.491710\pi\)
0.0260395 + 0.999661i \(0.491710\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.33010 −0.0858302
\(738\) 0 0
\(739\) 44.1174i 1.62289i 0.584432 + 0.811443i \(0.301317\pi\)
−0.584432 + 0.811443i \(0.698683\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.86033 0.214995 0.107497 0.994205i \(-0.465716\pi\)
0.107497 + 0.994205i \(0.465716\pi\)
\(744\) 0 0
\(745\) 4.78520 + 17.4395i 0.175316 + 0.638933i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.9169 −0.691209
\(750\) 0 0
\(751\) 11.7992i 0.430559i −0.976552 0.215280i \(-0.930934\pi\)
0.976552 0.215280i \(-0.0690663\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.96245 14.4410i −0.144208 0.525563i
\(756\) 0 0
\(757\) 0.997808 0.0362660 0.0181330 0.999836i \(-0.494228\pi\)
0.0181330 + 0.999836i \(0.494228\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.47998 0.234899 0.117450 0.993079i \(-0.462528\pi\)
0.117450 + 0.993079i \(0.462528\pi\)
\(762\) 0 0
\(763\) 43.0786i 1.55955i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 34.5755i 1.24845i
\(768\) 0 0
\(769\) 31.5502i 1.13773i −0.822431 0.568864i \(-0.807383\pi\)
0.822431 0.568864i \(-0.192617\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −31.7747 −1.14286 −0.571428 0.820652i \(-0.693610\pi\)
−0.571428 + 0.820652i \(0.693610\pi\)
\(774\) 0 0
\(775\) 5.16317 + 8.70013i 0.185466 + 0.312518i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.0255 −1.11160
\(780\) 0 0
\(781\) 10.8174i 0.387078i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.92278 + 17.9409i 0.175701 + 0.640338i
\(786\) 0 0
\(787\) 15.6567i 0.558100i −0.960277 0.279050i \(-0.909980\pi\)
0.960277 0.279050i \(-0.0900196\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.5984i 0.945731i
\(792\) 0 0
\(793\) 26.2923 0.933666
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −55.4594 −1.96447 −0.982237 0.187647i \(-0.939914\pi\)
−0.982237 + 0.187647i \(0.939914\pi\)
\(798\) 0 0
\(799\) −0.570239 −0.0201736
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.25016i 0.255853i
\(804\) 0 0
\(805\) −0.132893 0.484324i −0.00468387 0.0170702i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.45022i 0.191619i 0.995400 + 0.0958097i \(0.0305440\pi\)
−0.995400 + 0.0958097i \(0.969456\pi\)
\(810\) 0 0
\(811\) 2.51950 0.0884717 0.0442359 0.999021i \(-0.485915\pi\)
0.0442359 + 0.999021i \(0.485915\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.34493 + 15.8349i 0.152196 + 0.554673i
\(816\) 0 0
\(817\) 56.5212i 1.97743i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.04758 0.280862 0.140431 0.990090i \(-0.455151\pi\)
0.140431 + 0.990090i \(0.455151\pi\)
\(822\) 0 0
\(823\) 41.5365 1.44787 0.723936 0.689867i \(-0.242331\pi\)
0.723936 + 0.689867i \(0.242331\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.3771 0.569487 0.284744 0.958604i \(-0.408092\pi\)
0.284744 + 0.958604i \(0.408092\pi\)
\(828\) 0 0
\(829\) 7.41324i 0.257472i −0.991679 0.128736i \(-0.958908\pi\)
0.991679 0.128736i \(-0.0410920\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.283508 0.00982297
\(834\) 0 0
\(835\) 27.4606 7.53489i 0.950314 0.260756i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 34.0179i 1.17443i −0.809431 0.587214i \(-0.800225\pi\)
0.809431 0.587214i \(-0.199775\pi\)
\(840\) 0 0
\(841\) 7.77439 27.9385i 0.268083 0.963396i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.37705 8.66306i −0.0817729 0.298018i
\(846\) 0 0
\(847\) 27.1412i 0.932582i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.255010i 0.00874162i
\(852\) 0 0
\(853\) −52.1341 −1.78504 −0.892519 0.451011i \(-0.851064\pi\)
−0.892519 + 0.451011i \(0.851064\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37.8222i 1.29198i −0.763346 0.645990i \(-0.776445\pi\)
0.763346 0.645990i \(-0.223555\pi\)
\(858\) 0 0
\(859\) 26.6791i 0.910281i −0.890420 0.455140i \(-0.849589\pi\)
0.890420 0.455140i \(-0.150411\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.0283i 1.15834i −0.815208 0.579168i \(-0.803378\pi\)
0.815208 0.579168i \(-0.196622\pi\)
\(864\) 0 0
\(865\) 50.6306 13.8925i 1.72149 0.472358i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.34400 0.215205
\(870\) 0 0
\(871\) −7.21164 −0.244357
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 20.9370 21.7045i 0.707801 0.733745i
\(876\) 0 0
\(877\) 40.7864i 1.37726i 0.725114 + 0.688629i \(0.241787\pi\)
−0.725114 + 0.688629i \(0.758213\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.93942i 0.166413i 0.996532 + 0.0832066i \(0.0265161\pi\)
−0.996532 + 0.0832066i \(0.973484\pi\)
\(882\) 0 0
\(883\) 1.88143i 0.0633151i 0.999499 + 0.0316575i \(0.0100786\pi\)
−0.999499 + 0.0316575i \(0.989921\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 54.3735 1.82568 0.912842 0.408312i \(-0.133883\pi\)
0.912842 + 0.408312i \(0.133883\pi\)
\(888\) 0 0
\(889\) 34.5345i 1.15825i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.37573i 0.146428i
\(894\) 0 0
\(895\) −8.66576 31.5821i −0.289664 1.05567i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.59159 + 8.67627i 0.219842 + 0.289370i
\(900\) 0 0
\(901\) 6.43549i 0.214397i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.402359 1.46638i −0.0133749 0.0487442i
\(906\) 0 0
\(907\) −0.482567 −0.0160234 −0.00801169 0.999968i \(-0.502550\pi\)
−0.00801169 + 0.999968i \(0.502550\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.5859i 0.880831i −0.897794 0.440416i \(-0.854831\pi\)
0.897794 0.440416i \(-0.145169\pi\)
\(912\) 0 0
\(913\) −6.87636 −0.227574
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.51213 0.0499348
\(918\) 0 0
\(919\) −7.53009 −0.248395 −0.124197 0.992258i \(-0.539636\pi\)
−0.124197 + 0.992258i \(0.539636\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 33.4799i 1.10200i
\(924\) 0 0
\(925\) −13.1682 + 7.81478i −0.432968 + 0.256948i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −40.7004 −1.33534 −0.667669 0.744458i \(-0.732708\pi\)
−0.667669 + 0.744458i \(0.732708\pi\)
\(930\) 0 0
\(931\) 2.17550i 0.0712991i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.14847 + 0.589516i −0.0702625 + 0.0192792i
\(936\) 0 0
\(937\) 16.7717i 0.547908i −0.961743 0.273954i \(-0.911668\pi\)
0.961743 0.273954i \(-0.0883316\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −44.2670 −1.44306 −0.721531 0.692382i \(-0.756561\pi\)
−0.721531 + 0.692382i \(0.756561\pi\)
\(942\) 0 0
\(943\) 0.327220 0.0106557
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.91810 0.257304 0.128652 0.991690i \(-0.458935\pi\)
0.128652 + 0.991690i \(0.458935\pi\)
\(948\) 0 0
\(949\) 22.4392i 0.728408i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.1276i 1.04072i 0.853948 + 0.520358i \(0.174201\pi\)
−0.853948 + 0.520358i \(0.825799\pi\)
\(954\) 0 0
\(955\) 15.1700 4.16247i 0.490889 0.134694i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 57.7018i 1.86329i
\(960\) 0 0
\(961\) 26.9060 0.867935
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.0987 + 58.6710i 0.518234 + 1.88869i
\(966\) 0 0
\(967\) −32.7437 −1.05296 −0.526482 0.850186i \(-0.676489\pi\)
−0.526482 + 0.850186i \(0.676489\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.19697i 0.263053i −0.991313 0.131527i \(-0.958012\pi\)
0.991313 0.131527i \(-0.0419879\pi\)
\(972\) 0 0
\(973\) 30.7355i 0.985334i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.55744i 0.241784i −0.992666 0.120892i \(-0.961425\pi\)
0.992666 0.120892i \(-0.0385755\pi\)
\(978\) 0 0
\(979\) −6.61655 −0.211466
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.0276 1.02152 0.510761 0.859723i \(-0.329364\pi\)
0.510761 + 0.859723i \(0.329364\pi\)
\(984\) 0 0
\(985\) 23.4553 6.43587i 0.747348 0.205064i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.596117i 0.0189554i
\(990\) 0 0
\(991\) 52.0196 1.65246 0.826229 0.563335i \(-0.190482\pi\)
0.826229 + 0.563335i \(0.190482\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.63446 + 20.5346i 0.178624 + 0.650991i
\(996\) 0 0
\(997\) −54.1997 −1.71652 −0.858261 0.513213i \(-0.828455\pi\)
−0.858261 + 0.513213i \(0.828455\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.b.d.289.7 14
3.2 odd 2 1740.2.b.a.289.8 yes 14
5.4 even 2 5220.2.b.c.289.8 14
15.2 even 4 8700.2.l.j.6901.20 28
15.8 even 4 8700.2.l.j.6901.17 28
15.14 odd 2 1740.2.b.b.289.7 yes 14
29.28 even 2 5220.2.b.c.289.7 14
87.86 odd 2 1740.2.b.b.289.8 yes 14
145.144 even 2 inner 5220.2.b.d.289.8 14
435.173 even 4 8700.2.l.j.6901.19 28
435.347 even 4 8700.2.l.j.6901.18 28
435.434 odd 2 1740.2.b.a.289.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.b.a.289.7 14 435.434 odd 2
1740.2.b.a.289.8 yes 14 3.2 odd 2
1740.2.b.b.289.7 yes 14 15.14 odd 2
1740.2.b.b.289.8 yes 14 87.86 odd 2
5220.2.b.c.289.7 14 29.28 even 2
5220.2.b.c.289.8 14 5.4 even 2
5220.2.b.d.289.7 14 1.1 even 1 trivial
5220.2.b.d.289.8 14 145.144 even 2 inner
8700.2.l.j.6901.17 28 15.8 even 4
8700.2.l.j.6901.18 28 435.347 even 4
8700.2.l.j.6901.19 28 435.173 even 4
8700.2.l.j.6901.20 28 15.2 even 4