Properties

Label 174.4.f.a.17.19
Level $174$
Weight $4$
Character 174.17
Analytic conductor $10.266$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,4,Mod(17,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 174.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2663323410\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.19
Character \(\chi\) \(=\) 174.17
Dual form 174.4.f.a.41.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 1.41421i) q^{2} +(-3.92999 - 3.39930i) q^{3} +4.00000i q^{4} -1.42088 q^{5} +(-0.750511 - 10.3652i) q^{6} +6.13369 q^{7} +(-5.65685 + 5.65685i) q^{8} +(3.88959 + 26.7184i) q^{9} +(-2.00943 - 2.00943i) q^{10} +(-25.3324 - 25.3324i) q^{11} +(13.5972 - 15.7199i) q^{12} -63.0706i q^{13} +(8.67435 + 8.67435i) q^{14} +(5.58405 + 4.83000i) q^{15} -16.0000 q^{16} +(-71.2790 - 71.2790i) q^{17} +(-32.2848 + 43.2862i) q^{18} +(-82.3877 + 82.3877i) q^{19} -5.68353i q^{20} +(-24.1053 - 20.8502i) q^{21} -71.6509i q^{22} -134.812i q^{23} +(41.4607 - 3.00204i) q^{24} -122.981 q^{25} +(89.1953 - 89.1953i) q^{26} +(75.5376 - 118.225i) q^{27} +24.5348i q^{28} +(-143.612 - 61.3560i) q^{29} +(1.06639 + 14.7277i) q^{30} +(142.561 - 142.561i) q^{31} +(-22.6274 - 22.6274i) q^{32} +(13.4437 + 185.668i) q^{33} -201.607i q^{34} -8.71526 q^{35} +(-106.873 + 15.5583i) q^{36} +(312.323 + 312.323i) q^{37} -233.028 q^{38} +(-214.396 + 247.867i) q^{39} +(8.03772 - 8.03772i) q^{40} +(-225.390 + 225.390i) q^{41} +(-4.60340 - 63.5768i) q^{42} +(79.9118 - 79.9118i) q^{43} +(101.330 - 101.330i) q^{44} +(-5.52664 - 37.9636i) q^{45} +(190.653 - 190.653i) q^{46} +(361.724 - 361.724i) q^{47} +(62.8798 + 54.3887i) q^{48} -305.378 q^{49} +(-173.922 - 173.922i) q^{50} +(37.8271 + 522.424i) q^{51} +252.282 q^{52} +331.628i q^{53} +(274.021 - 60.3686i) q^{54} +(35.9944 + 35.9944i) q^{55} +(-34.6974 + 34.6974i) q^{56} +(603.843 - 43.7225i) q^{57} +(-116.328 - 289.869i) q^{58} +215.986i q^{59} +(-19.3200 + 22.3362i) q^{60} +(341.341 - 341.341i) q^{61} +403.222 q^{62} +(23.8575 + 163.882i) q^{63} -64.0000i q^{64} +89.6159i q^{65} +(-243.562 + 281.587i) q^{66} +392.396i q^{67} +(285.116 - 285.116i) q^{68} +(-458.265 + 529.809i) q^{69} +(-12.3252 - 12.3252i) q^{70} -59.9611 q^{71} +(-173.145 - 129.139i) q^{72} +(-745.932 - 745.932i) q^{73} +883.383i q^{74} +(483.314 + 418.049i) q^{75} +(-329.551 - 329.551i) q^{76} +(-155.381 - 155.381i) q^{77} +(-653.738 + 47.3352i) q^{78} +(76.1582 - 76.1582i) q^{79} +22.7341 q^{80} +(-698.742 + 207.847i) q^{81} -637.498 q^{82} +751.267i q^{83} +(83.4009 - 96.4213i) q^{84} +(101.279 + 101.279i) q^{85} +226.025 q^{86} +(355.827 + 729.308i) q^{87} +286.603 q^{88} +(19.0121 + 19.0121i) q^{89} +(45.8729 - 61.5046i) q^{90} -386.856i q^{91} +539.247 q^{92} +(-1044.87 + 75.6557i) q^{93} +1023.11 q^{94} +(117.063 - 117.063i) q^{95} +(12.0082 + 165.843i) q^{96} +(-291.810 - 291.810i) q^{97} +(-431.869 - 431.869i) q^{98} +(578.308 - 775.373i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 24 q^{10} + 88 q^{15} - 960 q^{16} + 48 q^{19} - 752 q^{21} + 64 q^{24} + 1500 q^{25} + 600 q^{27} + 312 q^{30} - 300 q^{31} - 224 q^{36} - 192 q^{37} - 172 q^{39} + 96 q^{40} + 888 q^{43} - 1532 q^{45}+ \cdots - 6000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 + 1.41421i 0.500000 + 0.500000i
\(3\) −3.92999 3.39930i −0.756326 0.654195i
\(4\) 4.00000i 0.500000i
\(5\) −1.42088 −0.127088 −0.0635438 0.997979i \(-0.520240\pi\)
−0.0635438 + 0.997979i \(0.520240\pi\)
\(6\) −0.750511 10.3652i −0.0510658 0.705260i
\(7\) 6.13369 0.331188 0.165594 0.986194i \(-0.447046\pi\)
0.165594 + 0.986194i \(0.447046\pi\)
\(8\) −5.65685 + 5.65685i −0.250000 + 0.250000i
\(9\) 3.88959 + 26.7184i 0.144059 + 0.989569i
\(10\) −2.00943 2.00943i −0.0635438 0.0635438i
\(11\) −25.3324 25.3324i −0.694364 0.694364i 0.268825 0.963189i \(-0.413365\pi\)
−0.963189 + 0.268825i \(0.913365\pi\)
\(12\) 13.5972 15.7199i 0.327097 0.378163i
\(13\) 63.0706i 1.34559i −0.739830 0.672794i \(-0.765094\pi\)
0.739830 0.672794i \(-0.234906\pi\)
\(14\) 8.67435 + 8.67435i 0.165594 + 0.165594i
\(15\) 5.58405 + 4.83000i 0.0961196 + 0.0831400i
\(16\) −16.0000 −0.250000
\(17\) −71.2790 71.2790i −1.01692 1.01692i −0.999854 0.0170690i \(-0.994567\pi\)
−0.0170690 0.999854i \(-0.505433\pi\)
\(18\) −32.2848 + 43.2862i −0.422755 + 0.566814i
\(19\) −82.3877 + 82.3877i −0.994792 + 0.994792i −0.999987 0.00519488i \(-0.998346\pi\)
0.00519488 + 0.999987i \(0.498346\pi\)
\(20\) 5.68353i 0.0635438i
\(21\) −24.1053 20.8502i −0.250486 0.216662i
\(22\) 71.6509i 0.694364i
\(23\) 134.812i 1.22218i −0.791560 0.611092i \(-0.790731\pi\)
0.791560 0.611092i \(-0.209269\pi\)
\(24\) 41.4607 3.00204i 0.352630 0.0255329i
\(25\) −122.981 −0.983849
\(26\) 89.1953 89.1953i 0.672794 0.672794i
\(27\) 75.5376 118.225i 0.538415 0.842680i
\(28\) 24.5348i 0.165594i
\(29\) −143.612 61.3560i −0.919590 0.392880i
\(30\) 1.06639 + 14.7277i 0.00648983 + 0.0896298i
\(31\) 142.561 142.561i 0.825956 0.825956i −0.160998 0.986955i \(-0.551471\pi\)
0.986955 + 0.160998i \(0.0514713\pi\)
\(32\) −22.6274 22.6274i −0.125000 0.125000i
\(33\) 13.4437 + 185.668i 0.0709165 + 0.979415i
\(34\) 201.607i 1.01692i
\(35\) −8.71526 −0.0420899
\(36\) −106.873 + 15.5583i −0.494785 + 0.0720294i
\(37\) 312.323 + 312.323i 1.38772 + 1.38772i 0.830092 + 0.557627i \(0.188288\pi\)
0.557627 + 0.830092i \(0.311712\pi\)
\(38\) −233.028 −0.994792
\(39\) −214.396 + 247.867i −0.880276 + 1.01770i
\(40\) 8.03772 8.03772i 0.0317719 0.0317719i
\(41\) −225.390 + 225.390i −0.858535 + 0.858535i −0.991166 0.132631i \(-0.957658\pi\)
0.132631 + 0.991166i \(0.457658\pi\)
\(42\) −4.60340 63.5768i −0.0169124 0.233574i
\(43\) 79.9118 79.9118i 0.283406 0.283406i −0.551060 0.834466i \(-0.685776\pi\)
0.834466 + 0.551060i \(0.185776\pi\)
\(44\) 101.330 101.330i 0.347182 0.347182i
\(45\) −5.52664 37.9636i −0.0183081 0.125762i
\(46\) 190.653 190.653i 0.611092 0.611092i
\(47\) 361.724 361.724i 1.12261 1.12261i 0.131268 0.991347i \(-0.458095\pi\)
0.991347 0.131268i \(-0.0419047\pi\)
\(48\) 62.8798 + 54.3887i 0.189082 + 0.163549i
\(49\) −305.378 −0.890314
\(50\) −173.922 173.922i −0.491924 0.491924i
\(51\) 37.8271 + 522.424i 0.103860 + 1.43439i
\(52\) 252.282 0.672794
\(53\) 331.628i 0.859483i 0.902952 + 0.429741i \(0.141395\pi\)
−0.902952 + 0.429741i \(0.858605\pi\)
\(54\) 274.021 60.3686i 0.690547 0.152132i
\(55\) 35.9944 + 35.9944i 0.0882451 + 0.0882451i
\(56\) −34.6974 + 34.6974i −0.0827971 + 0.0827971i
\(57\) 603.843 43.7225i 1.40317 0.101600i
\(58\) −116.328 289.869i −0.263355 0.656235i
\(59\) 215.986i 0.476594i 0.971192 + 0.238297i \(0.0765891\pi\)
−0.971192 + 0.238297i \(0.923411\pi\)
\(60\) −19.3200 + 22.3362i −0.0415700 + 0.0480598i
\(61\) 341.341 341.341i 0.716463 0.716463i −0.251416 0.967879i \(-0.580896\pi\)
0.967879 + 0.251416i \(0.0808962\pi\)
\(62\) 403.222 0.825956
\(63\) 23.8575 + 163.882i 0.0477106 + 0.327734i
\(64\) 64.0000i 0.125000i
\(65\) 89.6159i 0.171007i
\(66\) −243.562 + 281.587i −0.454249 + 0.525166i
\(67\) 392.396i 0.715505i 0.933816 + 0.357753i \(0.116457\pi\)
−0.933816 + 0.357753i \(0.883543\pi\)
\(68\) 285.116 285.116i 0.508462 0.508462i
\(69\) −458.265 + 529.809i −0.799546 + 0.924369i
\(70\) −12.3252 12.3252i −0.0210450 0.0210450i
\(71\) −59.9611 −0.100226 −0.0501132 0.998744i \(-0.515958\pi\)
−0.0501132 + 0.998744i \(0.515958\pi\)
\(72\) −173.145 129.139i −0.283407 0.211378i
\(73\) −745.932 745.932i −1.19595 1.19595i −0.975367 0.220587i \(-0.929203\pi\)
−0.220587 0.975367i \(-0.570797\pi\)
\(74\) 883.383i 1.38772i
\(75\) 483.314 + 418.049i 0.744111 + 0.643629i
\(76\) −329.551 329.551i −0.497396 0.497396i
\(77\) −155.381 155.381i −0.229965 0.229965i
\(78\) −653.738 + 47.3352i −0.948990 + 0.0687135i
\(79\) 76.1582 76.1582i 0.108462 0.108462i −0.650793 0.759255i \(-0.725564\pi\)
0.759255 + 0.650793i \(0.225564\pi\)
\(80\) 22.7341 0.0317719
\(81\) −698.742 + 207.847i −0.958494 + 0.285112i
\(82\) −637.498 −0.858535
\(83\) 751.267i 0.993521i 0.867888 + 0.496760i \(0.165477\pi\)
−0.867888 + 0.496760i \(0.834523\pi\)
\(84\) 83.4009 96.4213i 0.108331 0.125243i
\(85\) 101.279 + 101.279i 0.129238 + 0.129238i
\(86\) 226.025 0.283406
\(87\) 355.827 + 729.308i 0.438490 + 0.898736i
\(88\) 286.603 0.347182
\(89\) 19.0121 + 19.0121i 0.0226436 + 0.0226436i 0.718338 0.695694i \(-0.244903\pi\)
−0.695694 + 0.718338i \(0.744903\pi\)
\(90\) 45.8729 61.5046i 0.0537269 0.0720350i
\(91\) 386.856i 0.445643i
\(92\) 539.247 0.611092
\(93\) −1044.87 + 75.6557i −1.16503 + 0.0843563i
\(94\) 1023.11 1.12261
\(95\) 117.063 117.063i 0.126426 0.126426i
\(96\) 12.0082 + 165.843i 0.0127664 + 0.176315i
\(97\) −291.810 291.810i −0.305451 0.305451i 0.537691 0.843142i \(-0.319297\pi\)
−0.843142 + 0.537691i \(0.819297\pi\)
\(98\) −431.869 431.869i −0.445157 0.445157i
\(99\) 578.308 775.373i 0.587092 0.787151i
\(100\) 491.924i 0.491924i
\(101\) 665.309 + 665.309i 0.655453 + 0.655453i 0.954301 0.298848i \(-0.0966024\pi\)
−0.298848 + 0.954301i \(0.596602\pi\)
\(102\) −685.323 + 792.315i −0.665266 + 0.769126i
\(103\) −25.2560 −0.0241607 −0.0120803 0.999927i \(-0.503845\pi\)
−0.0120803 + 0.999927i \(0.503845\pi\)
\(104\) 356.781 + 356.781i 0.336397 + 0.336397i
\(105\) 34.2508 + 29.6257i 0.0318337 + 0.0275350i
\(106\) −468.992 + 468.992i −0.429741 + 0.429741i
\(107\) 904.322i 0.817048i 0.912748 + 0.408524i \(0.133956\pi\)
−0.912748 + 0.408524i \(0.866044\pi\)
\(108\) 472.899 + 302.150i 0.421340 + 0.269208i
\(109\) 411.342i 0.361463i −0.983533 0.180731i \(-0.942154\pi\)
0.983533 0.180731i \(-0.0578465\pi\)
\(110\) 101.807i 0.0882451i
\(111\) −165.747 2289.10i −0.141730 1.95741i
\(112\) −98.1391 −0.0827971
\(113\) −778.950 + 778.950i −0.648473 + 0.648473i −0.952624 0.304151i \(-0.901627\pi\)
0.304151 + 0.952624i \(0.401627\pi\)
\(114\) 915.796 + 792.130i 0.752387 + 0.650787i
\(115\) 191.552i 0.155324i
\(116\) 245.424 574.449i 0.196440 0.459795i
\(117\) 1685.14 245.319i 1.33155 0.193844i
\(118\) −305.451 + 305.451i −0.238297 + 0.238297i
\(119\) −437.204 437.204i −0.336793 0.336793i
\(120\) −58.9107 + 4.26555i −0.0448149 + 0.00324491i
\(121\) 47.5385i 0.0357164i
\(122\) 965.459 0.716463
\(123\) 1651.94 119.612i 1.21098 0.0876835i
\(124\) 570.243 + 570.243i 0.412978 + 0.412978i
\(125\) 352.352 0.252122
\(126\) −198.025 + 265.504i −0.140012 + 0.187722i
\(127\) 1409.05 1409.05i 0.984509 0.984509i −0.0153730 0.999882i \(-0.504894\pi\)
0.999882 + 0.0153730i \(0.00489359\pi\)
\(128\) 90.5097 90.5097i 0.0625000 0.0625000i
\(129\) −585.696 + 42.4085i −0.399750 + 0.0289447i
\(130\) −126.736 + 126.736i −0.0855037 + 0.0855037i
\(131\) 1173.07 1173.07i 0.782380 0.782380i −0.197852 0.980232i \(-0.563396\pi\)
0.980232 + 0.197852i \(0.0633965\pi\)
\(132\) −742.673 + 53.7748i −0.489708 + 0.0354583i
\(133\) −505.341 + 505.341i −0.329463 + 0.329463i
\(134\) −554.932 + 554.932i −0.357753 + 0.357753i
\(135\) −107.330 + 167.983i −0.0684259 + 0.107094i
\(136\) 806.430 0.508462
\(137\) −1777.52 1777.52i −1.10849 1.10849i −0.993349 0.115145i \(-0.963267\pi\)
−0.115145 0.993349i \(-0.536733\pi\)
\(138\) −1397.35 + 101.178i −0.861958 + 0.0624118i
\(139\) 3132.55 1.91151 0.955753 0.294169i \(-0.0950430\pi\)
0.955753 + 0.294169i \(0.0950430\pi\)
\(140\) 34.8610i 0.0210450i
\(141\) −2651.18 + 191.964i −1.58347 + 0.114654i
\(142\) −84.7978 84.7978i −0.0501132 0.0501132i
\(143\) −1597.73 + 1597.73i −0.934328 + 0.934328i
\(144\) −62.2334 427.494i −0.0360147 0.247392i
\(145\) 204.056 + 87.1796i 0.116868 + 0.0499301i
\(146\) 2109.81i 1.19595i
\(147\) 1200.13 + 1038.07i 0.673368 + 0.582439i
\(148\) −1249.29 + 1249.29i −0.693859 + 0.693859i
\(149\) −1185.56 −0.651843 −0.325922 0.945397i \(-0.605675\pi\)
−0.325922 + 0.945397i \(0.605675\pi\)
\(150\) 92.2986 + 1274.72i 0.0502410 + 0.693870i
\(151\) 258.273i 0.139192i −0.997575 0.0695958i \(-0.977829\pi\)
0.997575 0.0695958i \(-0.0221710\pi\)
\(152\) 932.111i 0.497396i
\(153\) 1627.21 2181.70i 0.859819 1.15281i
\(154\) 439.484i 0.229965i
\(155\) −202.562 + 202.562i −0.104969 + 0.104969i
\(156\) −991.467 857.582i −0.508852 0.440138i
\(157\) −1161.71 1161.71i −0.590536 0.590536i 0.347240 0.937776i \(-0.387119\pi\)
−0.937776 + 0.347240i \(0.887119\pi\)
\(158\) 215.408 0.108462
\(159\) 1127.30 1303.29i 0.562269 0.650049i
\(160\) 32.1509 + 32.1509i 0.0158859 + 0.0158859i
\(161\) 826.895i 0.404773i
\(162\) −1282.11 694.231i −0.621803 0.336691i
\(163\) −1339.89 1339.89i −0.643853 0.643853i 0.307647 0.951500i \(-0.400458\pi\)
−0.951500 + 0.307647i \(0.900458\pi\)
\(164\) −901.558 901.558i −0.429267 0.429267i
\(165\) −19.1019 263.813i −0.00901261 0.124471i
\(166\) −1062.45 + 1062.45i −0.496760 + 0.496760i
\(167\) −1520.24 −0.704430 −0.352215 0.935919i \(-0.614571\pi\)
−0.352215 + 0.935919i \(0.614571\pi\)
\(168\) 254.307 18.4136i 0.116787 0.00845620i
\(169\) −1780.90 −0.810606
\(170\) 286.460i 0.129238i
\(171\) −2521.72 1880.81i −1.12772 0.841107i
\(172\) 319.647 + 319.647i 0.141703 + 0.141703i
\(173\) 4360.21 1.91619 0.958095 0.286450i \(-0.0924753\pi\)
0.958095 + 0.286450i \(0.0924753\pi\)
\(174\) −528.182 + 1534.61i −0.230123 + 0.668613i
\(175\) −754.328 −0.325839
\(176\) 405.318 + 405.318i 0.173591 + 0.173591i
\(177\) 734.201 848.823i 0.311785 0.360460i
\(178\) 53.7744i 0.0226436i
\(179\) −3491.79 −1.45804 −0.729019 0.684493i \(-0.760024\pi\)
−0.729019 + 0.684493i \(0.760024\pi\)
\(180\) 151.855 22.1066i 0.0628810 0.00915404i
\(181\) −2503.71 −1.02817 −0.514086 0.857739i \(-0.671869\pi\)
−0.514086 + 0.857739i \(0.671869\pi\)
\(182\) 547.097 547.097i 0.222821 0.222821i
\(183\) −2501.79 + 181.147i −1.01059 + 0.0731735i
\(184\) 762.611 + 762.611i 0.305546 + 0.305546i
\(185\) −443.774 443.774i −0.176362 0.176362i
\(186\) −1584.66 1370.67i −0.624693 0.540336i
\(187\) 3611.34i 1.41223i
\(188\) 1446.90 + 1446.90i 0.561307 + 0.561307i
\(189\) 463.324 725.154i 0.178317 0.279086i
\(190\) 331.105 0.126426
\(191\) 648.681 + 648.681i 0.245743 + 0.245743i 0.819221 0.573478i \(-0.194406\pi\)
−0.573478 + 0.819221i \(0.694406\pi\)
\(192\) −217.555 + 251.519i −0.0817743 + 0.0945408i
\(193\) 385.438 385.438i 0.143754 0.143754i −0.631567 0.775321i \(-0.717588\pi\)
0.775321 + 0.631567i \(0.217588\pi\)
\(194\) 825.362i 0.305451i
\(195\) 304.631 352.189i 0.111872 0.129337i
\(196\) 1221.51i 0.445157i
\(197\) 220.753i 0.0798375i −0.999203 0.0399187i \(-0.987290\pi\)
0.999203 0.0399187i \(-0.0127099\pi\)
\(198\) 1914.39 278.692i 0.687122 0.100029i
\(199\) 1698.15 0.604918 0.302459 0.953162i \(-0.402192\pi\)
0.302459 + 0.953162i \(0.402192\pi\)
\(200\) 695.686 695.686i 0.245962 0.245962i
\(201\) 1333.87 1542.11i 0.468080 0.541155i
\(202\) 1881.78i 0.655453i
\(203\) −880.873 376.339i −0.304557 0.130117i
\(204\) −2089.70 + 151.309i −0.717196 + 0.0519300i
\(205\) 320.252 320.252i 0.109109 0.109109i
\(206\) −35.7174 35.7174i −0.0120803 0.0120803i
\(207\) 3601.95 524.362i 1.20943 0.176066i
\(208\) 1009.13i 0.336397i
\(209\) 4174.16 1.38150
\(210\) 6.54089 + 90.3351i 0.00214935 + 0.0296844i
\(211\) 1959.38 + 1959.38i 0.639287 + 0.639287i 0.950380 0.311093i \(-0.100695\pi\)
−0.311093 + 0.950380i \(0.600695\pi\)
\(212\) −1326.51 −0.429741
\(213\) 235.646 + 203.825i 0.0758038 + 0.0655675i
\(214\) −1278.90 + 1278.90i −0.408524 + 0.408524i
\(215\) −113.545 + 113.545i −0.0360173 + 0.0360173i
\(216\) 241.475 + 1096.08i 0.0760660 + 0.345274i
\(217\) 874.423 874.423i 0.273547 0.273547i
\(218\) 581.726 581.726i 0.180731 0.180731i
\(219\) 395.859 + 5467.14i 0.122145 + 1.68692i
\(220\) −143.977 + 143.977i −0.0441225 + 0.0441225i
\(221\) −4495.61 + 4495.61i −1.36836 + 1.36836i
\(222\) 3002.88 3471.68i 0.907838 1.04957i
\(223\) 2134.67 0.641021 0.320511 0.947245i \(-0.396145\pi\)
0.320511 + 0.947245i \(0.396145\pi\)
\(224\) −138.790 138.790i −0.0413985 0.0413985i
\(225\) −478.346 3285.85i −0.141732 0.973586i
\(226\) −2203.20 −0.648473
\(227\) 2388.99i 0.698513i −0.937027 0.349257i \(-0.886434\pi\)
0.937027 0.349257i \(-0.113566\pi\)
\(228\) 174.890 + 2415.37i 0.0507998 + 0.701587i
\(229\) −1280.94 1280.94i −0.369638 0.369638i 0.497707 0.867345i \(-0.334175\pi\)
−0.867345 + 0.497707i \(0.834175\pi\)
\(230\) −270.895 + 270.895i −0.0776621 + 0.0776621i
\(231\) 82.4595 + 1138.83i 0.0234867 + 0.324371i
\(232\) 1159.47 465.311i 0.328117 0.131677i
\(233\) 410.947i 0.115545i 0.998330 + 0.0577726i \(0.0183998\pi\)
−0.998330 + 0.0577726i \(0.981600\pi\)
\(234\) 2730.09 + 2036.22i 0.762698 + 0.568854i
\(235\) −513.967 + 513.967i −0.142670 + 0.142670i
\(236\) −863.945 −0.238297
\(237\) −558.185 + 40.4165i −0.152987 + 0.0110774i
\(238\) 1236.60i 0.336793i
\(239\) 1411.18i 0.381932i −0.981597 0.190966i \(-0.938838\pi\)
0.981597 0.190966i \(-0.0611620\pi\)
\(240\) −89.3448 77.2800i −0.0240299 0.0207850i
\(241\) 3471.71i 0.927935i 0.885852 + 0.463967i \(0.153575\pi\)
−0.885852 + 0.463967i \(0.846425\pi\)
\(242\) 67.2296 67.2296i 0.0178582 0.0178582i
\(243\) 3452.58 + 1558.40i 0.911453 + 0.411404i
\(244\) 1365.36 + 1365.36i 0.358232 + 0.358232i
\(245\) 433.906 0.113148
\(246\) 2505.36 + 2167.04i 0.649332 + 0.561649i
\(247\) 5196.24 + 5196.24i 1.33858 + 1.33858i
\(248\) 1612.89i 0.412978i
\(249\) 2553.78 2952.47i 0.649956 0.751426i
\(250\) 498.301 + 498.301i 0.126061 + 0.126061i
\(251\) −1662.17 1662.17i −0.417988 0.417988i 0.466522 0.884510i \(-0.345507\pi\)
−0.884510 + 0.466522i \(0.845507\pi\)
\(252\) −655.529 + 95.4301i −0.163867 + 0.0238553i
\(253\) −3415.11 + 3415.11i −0.848640 + 0.848640i
\(254\) 3985.38 0.984509
\(255\) −53.7479 742.303i −0.0131993 0.182293i
\(256\) 256.000 0.0625000
\(257\) 7905.98i 1.91892i 0.281850 + 0.959459i \(0.409052\pi\)
−0.281850 + 0.959459i \(0.590948\pi\)
\(258\) −888.274 768.325i −0.214347 0.185402i
\(259\) 1915.69 + 1915.69i 0.459596 + 0.459596i
\(260\) −358.464 −0.0855037
\(261\) 1080.74 4075.73i 0.256307 0.966595i
\(262\) 3317.95 0.782380
\(263\) 634.797 + 634.797i 0.148834 + 0.148834i 0.777597 0.628763i \(-0.216439\pi\)
−0.628763 + 0.777597i \(0.716439\pi\)
\(264\) −1126.35 974.250i −0.262583 0.227125i
\(265\) 471.204i 0.109230i
\(266\) −1429.32 −0.329463
\(267\) −10.0896 139.345i −0.00231263 0.0319393i
\(268\) −1569.59 −0.357753
\(269\) 5120.20 5120.20i 1.16054 1.16054i 0.176177 0.984358i \(-0.443627\pi\)
0.984358 0.176177i \(-0.0563731\pi\)
\(270\) −389.352 + 85.7767i −0.0877600 + 0.0193341i
\(271\) −4552.80 4552.80i −1.02053 1.02053i −0.999785 0.0207425i \(-0.993397\pi\)
−0.0207425 0.999785i \(-0.506603\pi\)
\(272\) 1140.46 + 1140.46i 0.254231 + 0.254231i
\(273\) −1315.04 + 1520.34i −0.291537 + 0.337051i
\(274\) 5027.58i 1.10849i
\(275\) 3115.41 + 3115.41i 0.683149 + 0.683149i
\(276\) −2119.24 1833.06i −0.462185 0.399773i
\(277\) −8054.07 −1.74701 −0.873505 0.486814i \(-0.838159\pi\)
−0.873505 + 0.486814i \(0.838159\pi\)
\(278\) 4430.09 + 4430.09i 0.955753 + 0.955753i
\(279\) 4363.49 + 3254.49i 0.936327 + 0.698355i
\(280\) 49.3009 49.3009i 0.0105225 0.0105225i
\(281\) 1010.91i 0.214612i 0.994226 + 0.107306i \(0.0342225\pi\)
−0.994226 + 0.107306i \(0.965778\pi\)
\(282\) −4020.81 3477.85i −0.849063 0.734408i
\(283\) 868.704i 0.182470i 0.995829 + 0.0912351i \(0.0290815\pi\)
−0.995829 + 0.0912351i \(0.970919\pi\)
\(284\) 239.844i 0.0501132i
\(285\) −857.989 + 62.1244i −0.178326 + 0.0129121i
\(286\) −4519.06 −0.934328
\(287\) −1382.47 + 1382.47i −0.284337 + 0.284337i
\(288\) 516.556 692.579i 0.105689 0.141703i
\(289\) 5248.39i 1.06827i
\(290\) 165.288 + 411.869i 0.0334691 + 0.0833993i
\(291\) 154.861 + 2138.75i 0.0311962 + 0.430845i
\(292\) 2983.73 2983.73i 0.597977 0.597977i
\(293\) −3062.66 3062.66i −0.610656 0.610656i 0.332461 0.943117i \(-0.392121\pi\)
−0.943117 + 0.332461i \(0.892121\pi\)
\(294\) 229.189 + 3165.29i 0.0454646 + 0.627903i
\(295\) 306.891i 0.0605691i
\(296\) −3533.53 −0.693859
\(297\) −4908.46 + 1081.37i −0.958983 + 0.211270i
\(298\) −1676.63 1676.63i −0.325922 0.325922i
\(299\) −8502.67 −1.64455
\(300\) −1672.20 + 1933.26i −0.321814 + 0.372055i
\(301\) 490.155 490.155i 0.0938606 0.0938606i
\(302\) 365.253 365.253i 0.0695958 0.0695958i
\(303\) −353.074 4876.24i −0.0669424 0.924530i
\(304\) 1318.20 1318.20i 0.248698 0.248698i
\(305\) −485.006 + 485.006i −0.0910536 + 0.0910536i
\(306\) 5386.62 784.170i 1.00632 0.146497i
\(307\) −796.337 + 796.337i −0.148043 + 0.148043i −0.777243 0.629200i \(-0.783383\pi\)
0.629200 + 0.777243i \(0.283383\pi\)
\(308\) 621.525 621.525i 0.114983 0.114983i
\(309\) 99.2557 + 85.8526i 0.0182733 + 0.0158058i
\(310\) −572.932 −0.104969
\(311\) −2167.29 2167.29i −0.395163 0.395163i 0.481360 0.876523i \(-0.340143\pi\)
−0.876523 + 0.481360i \(0.840143\pi\)
\(312\) −189.341 2614.95i −0.0343568 0.474495i
\(313\) −2254.32 −0.407097 −0.203549 0.979065i \(-0.565248\pi\)
−0.203549 + 0.979065i \(0.565248\pi\)
\(314\) 3285.80i 0.590536i
\(315\) −33.8987 232.857i −0.00606342 0.0416509i
\(316\) 304.633 + 304.633i 0.0542308 + 0.0542308i
\(317\) 891.183 891.183i 0.157899 0.157899i −0.623736 0.781635i \(-0.714386\pi\)
0.781635 + 0.623736i \(0.214386\pi\)
\(318\) 3437.38 248.890i 0.606159 0.0438902i
\(319\) 2083.75 + 5192.33i 0.365729 + 0.911332i
\(320\) 90.9364i 0.0158859i
\(321\) 3074.06 3553.97i 0.534508 0.617955i
\(322\) 1169.41 1169.41i 0.202386 0.202386i
\(323\) 11745.0 2.02325
\(324\) −831.387 2794.97i −0.142556 0.479247i
\(325\) 7756.49i 1.32385i
\(326\) 3789.77i 0.643853i
\(327\) −1398.27 + 1616.57i −0.236467 + 0.273384i
\(328\) 2549.99i 0.429267i
\(329\) 2218.70 2218.70i 0.371797 0.371797i
\(330\) 346.073 400.102i 0.0577294 0.0667421i
\(331\) −3113.59 3113.59i −0.517035 0.517035i 0.399638 0.916673i \(-0.369136\pi\)
−0.916673 + 0.399638i \(0.869136\pi\)
\(332\) −3005.07 −0.496760
\(333\) −7129.95 + 9559.57i −1.17333 + 1.57316i
\(334\) −2149.95 2149.95i −0.352215 0.352215i
\(335\) 557.549i 0.0909318i
\(336\) 385.685 + 333.604i 0.0626216 + 0.0541654i
\(337\) −663.556 663.556i −0.107259 0.107259i 0.651441 0.758700i \(-0.274165\pi\)
−0.758700 + 0.651441i \(0.774165\pi\)
\(338\) −2518.58 2518.58i −0.405303 0.405303i
\(339\) 5709.15 413.382i 0.914685 0.0662296i
\(340\) −405.116 + 405.116i −0.0646191 + 0.0646191i
\(341\) −7222.81 −1.14703
\(342\) −906.381 6226.12i −0.143308 0.984415i
\(343\) −3976.95 −0.626050
\(344\) 904.099i 0.141703i
\(345\) 651.141 752.796i 0.101612 0.117476i
\(346\) 6166.27 + 6166.27i 0.958095 + 0.958095i
\(347\) 9981.33 1.54417 0.772083 0.635522i \(-0.219215\pi\)
0.772083 + 0.635522i \(0.219215\pi\)
\(348\) −2917.23 + 1423.31i −0.449368 + 0.219245i
\(349\) 7528.08 1.15464 0.577319 0.816519i \(-0.304099\pi\)
0.577319 + 0.816519i \(0.304099\pi\)
\(350\) −1066.78 1066.78i −0.162920 0.162920i
\(351\) −7456.50 4764.20i −1.13390 0.724485i
\(352\) 1146.41i 0.173591i
\(353\) 4915.57 0.741159 0.370580 0.928801i \(-0.379159\pi\)
0.370580 + 0.928801i \(0.379159\pi\)
\(354\) 2238.74 162.100i 0.336123 0.0243376i
\(355\) 85.1976 0.0127375
\(356\) −76.0485 + 76.0485i −0.0113218 + 0.0113218i
\(357\) 232.020 + 3204.39i 0.0343972 + 0.475054i
\(358\) −4938.14 4938.14i −0.729019 0.729019i
\(359\) −6160.03 6160.03i −0.905609 0.905609i 0.0903048 0.995914i \(-0.471216\pi\)
−0.995914 + 0.0903048i \(0.971216\pi\)
\(360\) 246.018 + 183.491i 0.0360175 + 0.0268635i
\(361\) 6716.48i 0.979221i
\(362\) −3540.78 3540.78i −0.514086 0.514086i
\(363\) −161.597 + 186.826i −0.0233655 + 0.0270132i
\(364\) 1547.42 0.222821
\(365\) 1059.88 + 1059.88i 0.151991 + 0.151991i
\(366\) −3794.24 3281.88i −0.541880 0.468707i
\(367\) 8962.75 8962.75i 1.27480 1.27480i 0.331261 0.943539i \(-0.392526\pi\)
0.943539 0.331261i \(-0.107474\pi\)
\(368\) 2156.99i 0.305546i
\(369\) −6898.71 5145.37i −0.973259 0.725900i
\(370\) 1255.18i 0.176362i
\(371\) 2034.10i 0.284651i
\(372\) −302.623 4179.47i −0.0421781 0.582514i
\(373\) 12809.0 1.77809 0.889043 0.457824i \(-0.151371\pi\)
0.889043 + 0.457824i \(0.151371\pi\)
\(374\) −5107.20 + 5107.20i −0.706115 + 0.706115i
\(375\) −1384.74 1197.75i −0.190687 0.164937i
\(376\) 4092.44i 0.561307i
\(377\) −3869.76 + 9057.71i −0.528654 + 1.23739i
\(378\) 1680.76 370.283i 0.228701 0.0503844i
\(379\) −675.716 + 675.716i −0.0915810 + 0.0915810i −0.751413 0.659832i \(-0.770627\pi\)
0.659832 + 0.751413i \(0.270627\pi\)
\(380\) 468.253 + 468.253i 0.0632128 + 0.0632128i
\(381\) −10327.3 + 747.768i −1.38867 + 0.100549i
\(382\) 1834.75i 0.245743i
\(383\) −2103.90 −0.280691 −0.140345 0.990103i \(-0.544821\pi\)
−0.140345 + 0.990103i \(0.544821\pi\)
\(384\) −663.371 + 48.0327i −0.0881576 + 0.00638322i
\(385\) 220.778 + 220.778i 0.0292257 + 0.0292257i
\(386\) 1090.18 0.143754
\(387\) 2445.94 + 1824.29i 0.321276 + 0.239622i
\(388\) 1167.24 1167.24i 0.152726 0.152726i
\(389\) −5167.02 + 5167.02i −0.673467 + 0.673467i −0.958514 0.285047i \(-0.907991\pi\)
0.285047 + 0.958514i \(0.407991\pi\)
\(390\) 928.884 67.2577i 0.120605 0.00873263i
\(391\) −9609.25 + 9609.25i −1.24287 + 1.24287i
\(392\) 1727.48 1727.48i 0.222579 0.222579i
\(393\) −8597.78 + 622.539i −1.10356 + 0.0799057i
\(394\) 312.192 312.192i 0.0399187 0.0399187i
\(395\) −108.212 + 108.212i −0.0137841 + 0.0137841i
\(396\) 3101.49 + 2313.23i 0.393575 + 0.293546i
\(397\) 3298.37 0.416978 0.208489 0.978025i \(-0.433145\pi\)
0.208489 + 0.978025i \(0.433145\pi\)
\(398\) 2401.55 + 2401.55i 0.302459 + 0.302459i
\(399\) 3703.79 268.180i 0.464715 0.0336486i
\(400\) 1967.70 0.245962
\(401\) 14040.0i 1.74844i −0.485532 0.874219i \(-0.661374\pi\)
0.485532 0.874219i \(-0.338626\pi\)
\(402\) 4067.25 294.498i 0.504617 0.0365378i
\(403\) −8991.39 8991.39i −1.11140 1.11140i
\(404\) −2661.24 + 2661.24i −0.327726 + 0.327726i
\(405\) 992.830 295.326i 0.121813 0.0362342i
\(406\) −713.519 1777.97i −0.0872201 0.217337i
\(407\) 15823.8i 1.92716i
\(408\) −3169.26 2741.29i −0.384563 0.332633i
\(409\) 6800.96 6800.96i 0.822215 0.822215i −0.164210 0.986425i \(-0.552508\pi\)
0.986425 + 0.164210i \(0.0525076\pi\)
\(410\) 905.809 0.109109
\(411\) 943.314 + 13027.9i 0.113212 + 1.56355i
\(412\) 101.024i 0.0120803i
\(413\) 1324.79i 0.157842i
\(414\) 5835.49 + 4352.37i 0.692751 + 0.516684i
\(415\) 1067.46i 0.126264i
\(416\) −1427.13 + 1427.13i −0.168198 + 0.168198i
\(417\) −12310.9 10648.5i −1.44572 1.25050i
\(418\) 5903.15 + 5903.15i 0.690748 + 0.690748i
\(419\) −4492.52 −0.523804 −0.261902 0.965094i \(-0.584350\pi\)
−0.261902 + 0.965094i \(0.584350\pi\)
\(420\) −118.503 + 137.003i −0.0137675 + 0.0159169i
\(421\) −8808.67 8808.67i −1.01973 1.01973i −0.999801 0.0199336i \(-0.993655\pi\)
−0.0199336 0.999801i \(-0.506345\pi\)
\(422\) 5541.97i 0.639287i
\(423\) 11071.6 + 8257.72i 1.27263 + 0.949182i
\(424\) −1875.97 1875.97i −0.214871 0.214871i
\(425\) 8765.97 + 8765.97i 1.00050 + 1.00050i
\(426\) 45.0014 + 621.507i 0.00511814 + 0.0706857i
\(427\) 2093.68 2093.68i 0.237284 0.237284i
\(428\) −3617.29 −0.408524
\(429\) 11710.2 847.902i 1.31789 0.0954244i
\(430\) −321.155 −0.0360173
\(431\) 8396.61i 0.938400i −0.883092 0.469200i \(-0.844542\pi\)
0.883092 0.469200i \(-0.155458\pi\)
\(432\) −1208.60 + 1891.59i −0.134604 + 0.210670i
\(433\) −8643.79 8643.79i −0.959339 0.959339i 0.0398657 0.999205i \(-0.487307\pi\)
−0.999205 + 0.0398657i \(0.987307\pi\)
\(434\) 2473.24 0.273547
\(435\) −505.588 1036.26i −0.0557266 0.114218i
\(436\) 1645.37 0.180731
\(437\) 11106.8 + 11106.8i 1.21582 + 1.21582i
\(438\) −7171.88 + 8291.54i −0.782387 + 0.904532i
\(439\) 10338.4i 1.12398i 0.827144 + 0.561990i \(0.189964\pi\)
−0.827144 + 0.561990i \(0.810036\pi\)
\(440\) −407.230 −0.0441225
\(441\) −1187.79 8159.20i −0.128258 0.881028i
\(442\) −12715.5 −1.36836
\(443\) −1799.97 + 1799.97i −0.193045 + 0.193045i −0.797011 0.603965i \(-0.793587\pi\)
0.603965 + 0.797011i \(0.293587\pi\)
\(444\) 9156.41 662.988i 0.978703 0.0708650i
\(445\) −27.0140 27.0140i −0.00287772 0.00287772i
\(446\) 3018.87 + 3018.87i 0.320511 + 0.320511i
\(447\) 4659.22 + 4030.06i 0.493006 + 0.426432i
\(448\) 392.556i 0.0413985i
\(449\) 2156.21 + 2156.21i 0.226632 + 0.226632i 0.811284 0.584652i \(-0.198769\pi\)
−0.584652 + 0.811284i \(0.698769\pi\)
\(450\) 3970.42 5323.38i 0.415927 0.557659i
\(451\) 11419.3 1.19227
\(452\) −3115.80 3115.80i −0.324237 0.324237i
\(453\) −877.945 + 1015.01i −0.0910584 + 0.105274i
\(454\) 3378.54 3378.54i 0.349257 0.349257i
\(455\) 549.676i 0.0566357i
\(456\) −3168.52 + 3663.18i −0.325394 + 0.376194i
\(457\) 6071.96i 0.621519i 0.950489 + 0.310760i \(0.100583\pi\)
−0.950489 + 0.310760i \(0.899417\pi\)
\(458\) 3623.05i 0.369638i
\(459\) −13811.2 + 3042.69i −1.40447 + 0.309413i
\(460\) −766.207 −0.0776621
\(461\) 6594.67 6594.67i 0.666257 0.666257i −0.290590 0.956848i \(-0.593852\pi\)
0.956848 + 0.290590i \(0.0938517\pi\)
\(462\) −1493.94 + 1727.17i −0.150442 + 0.173929i
\(463\) 2566.46i 0.257611i −0.991670 0.128805i \(-0.958886\pi\)
0.991670 0.128805i \(-0.0411142\pi\)
\(464\) 2297.79 + 981.695i 0.229897 + 0.0982200i
\(465\) 1484.63 107.498i 0.148061 0.0107206i
\(466\) −581.167 + 581.167i −0.0577726 + 0.0577726i
\(467\) 4478.43 + 4478.43i 0.443763 + 0.443763i 0.893274 0.449512i \(-0.148402\pi\)
−0.449512 + 0.893274i \(0.648402\pi\)
\(468\) 981.274 + 6740.58i 0.0969218 + 0.665776i
\(469\) 2406.84i 0.236967i
\(470\) −1453.72 −0.142670
\(471\) 616.507 + 8514.47i 0.0603124 + 0.832964i
\(472\) −1221.80 1221.80i −0.119148 0.119148i
\(473\) −4048.72 −0.393573
\(474\) −846.551 732.235i −0.0820324 0.0709550i
\(475\) 10132.1 10132.1i 0.978725 0.978725i
\(476\) 1748.81 1748.81i 0.168397 0.168397i
\(477\) −8860.55 + 1289.89i −0.850517 + 0.123816i
\(478\) 1995.71 1995.71i 0.190966 0.190966i
\(479\) 3918.19 3918.19i 0.373751 0.373751i −0.495090 0.868841i \(-0.664865\pi\)
0.868841 + 0.495090i \(0.164865\pi\)
\(480\) −17.0622 235.643i −0.00162246 0.0224075i
\(481\) 19698.4 19698.4i 1.86730 1.86730i
\(482\) −4909.73 + 4909.73i −0.463967 + 0.463967i
\(483\) −2810.86 + 3249.68i −0.264800 + 0.306140i
\(484\) 190.154 0.0178582
\(485\) 414.627 + 414.627i 0.0388191 + 0.0388191i
\(486\) 2678.78 + 7086.59i 0.250025 + 0.661429i
\(487\) −7563.62 −0.703779 −0.351890 0.936042i \(-0.614461\pi\)
−0.351890 + 0.936042i \(0.614461\pi\)
\(488\) 3861.84i 0.358232i
\(489\) 711.066 + 9820.41i 0.0657577 + 0.908168i
\(490\) 613.635 + 613.635i 0.0565739 + 0.0565739i
\(491\) 8506.19 8506.19i 0.781831 0.781831i −0.198308 0.980140i \(-0.563545\pi\)
0.980140 + 0.198308i \(0.0635448\pi\)
\(492\) 478.449 + 6607.77i 0.0438418 + 0.605491i
\(493\) 5863.14 + 14609.9i 0.535624 + 1.33468i
\(494\) 14697.2i 1.33858i
\(495\) −821.707 + 1101.71i −0.0746121 + 0.100037i
\(496\) −2280.97 + 2280.97i −0.206489 + 0.206489i
\(497\) −367.783 −0.0331938
\(498\) 7787.01 563.834i 0.700691 0.0507349i
\(499\) 16856.8i 1.51225i −0.654428 0.756124i \(-0.727091\pi\)
0.654428 0.756124i \(-0.272909\pi\)
\(500\) 1409.41i 0.126061i
\(501\) 5974.53 + 5167.75i 0.532779 + 0.460834i
\(502\) 4701.32i 0.417988i
\(503\) 352.664 352.664i 0.0312614 0.0312614i −0.691303 0.722565i \(-0.742963\pi\)
0.722565 + 0.691303i \(0.242963\pi\)
\(504\) −1062.02 792.100i −0.0938611 0.0700058i
\(505\) −945.325 945.325i −0.0832999 0.0832999i
\(506\) −9659.39 −0.848640
\(507\) 6998.92 + 6053.81i 0.613083 + 0.530294i
\(508\) 5636.18 + 5636.18i 0.492254 + 0.492254i
\(509\) 1000.64i 0.0871369i −0.999050 0.0435685i \(-0.986127\pi\)
0.999050 0.0435685i \(-0.0138727\pi\)
\(510\) 973.763 1125.79i 0.0845470 0.0977463i
\(511\) −4575.32 4575.32i −0.396086 0.396086i
\(512\) 362.039 + 362.039i 0.0312500 + 0.0312500i
\(513\) 3516.89 + 15963.6i 0.302679 + 1.37390i
\(514\) −11180.7 + 11180.7i −0.959459 + 0.959459i
\(515\) 35.8858 0.00307052
\(516\) −169.634 2342.79i −0.0144723 0.199875i
\(517\) −18326.7 −1.55901
\(518\) 5418.40i 0.459596i
\(519\) −17135.6 14821.7i −1.44927 1.25356i
\(520\) −506.944 506.944i −0.0427519 0.0427519i
\(521\) −10766.0 −0.905313 −0.452657 0.891685i \(-0.649524\pi\)
−0.452657 + 0.891685i \(0.649524\pi\)
\(522\) 7292.35 4235.56i 0.611451 0.355144i
\(523\) −449.958 −0.0376200 −0.0188100 0.999823i \(-0.505988\pi\)
−0.0188100 + 0.999823i \(0.505988\pi\)
\(524\) 4692.29 + 4692.29i 0.391190 + 0.391190i
\(525\) 2964.50 + 2564.18i 0.246441 + 0.213162i
\(526\) 1795.48i 0.148834i
\(527\) −20323.2 −1.67987
\(528\) −215.099 2970.69i −0.0177291 0.244854i
\(529\) −6007.24 −0.493732
\(530\) 666.383 666.383i 0.0546148 0.0546148i
\(531\) −5770.80 + 840.098i −0.471622 + 0.0686575i
\(532\) −2021.36 2021.36i −0.164732 0.164732i
\(533\) 14215.5 + 14215.5i 1.15523 + 1.15523i
\(534\) 182.795 211.333i 0.0148133 0.0171260i
\(535\) 1284.93i 0.103837i
\(536\) −2219.73 2219.73i −0.178876 0.178876i
\(537\) 13722.7 + 11869.6i 1.10275 + 0.953841i
\(538\) 14482.1 1.16054
\(539\) 7735.95 + 7735.95i 0.618202 + 0.618202i
\(540\) −671.933 429.320i −0.0535470 0.0342129i
\(541\) 5928.01 5928.01i 0.471100 0.471100i −0.431170 0.902271i \(-0.641899\pi\)
0.902271 + 0.431170i \(0.141899\pi\)
\(542\) 12877.3i 1.02053i
\(543\) 9839.54 + 8510.84i 0.777633 + 0.672624i
\(544\) 3225.72i 0.254231i
\(545\) 584.469i 0.0459374i
\(546\) −4009.83 + 290.340i −0.314294 + 0.0227571i
\(547\) −23842.3 −1.86366 −0.931831 0.362893i \(-0.881789\pi\)
−0.931831 + 0.362893i \(0.881789\pi\)
\(548\) 7110.07 7110.07i 0.554247 0.554247i
\(549\) 10447.8 + 7792.40i 0.812203 + 0.605777i
\(550\) 8811.70i 0.683149i
\(551\) 16886.9 6776.90i 1.30563 0.523967i
\(552\) −404.711 5589.39i −0.0312059 0.430979i
\(553\) 467.131 467.131i 0.0359212 0.0359212i
\(554\) −11390.2 11390.2i −0.873505 0.873505i
\(555\) 235.507 + 3252.55i 0.0180121 + 0.248762i
\(556\) 12530.2i 0.955753i
\(557\) 2844.28 0.216366 0.108183 0.994131i \(-0.465497\pi\)
0.108183 + 0.994131i \(0.465497\pi\)
\(558\) 1568.37 + 10773.4i 0.118986 + 0.817341i
\(559\) −5040.09 5040.09i −0.381347 0.381347i
\(560\) 139.444 0.0105225
\(561\) 12276.0 14192.5i 0.923874 1.06811i
\(562\) −1429.65 + 1429.65i −0.107306 + 0.107306i
\(563\) −9464.30 + 9464.30i −0.708477 + 0.708477i −0.966215 0.257738i \(-0.917023\pi\)
0.257738 + 0.966215i \(0.417023\pi\)
\(564\) −767.855 10604.7i −0.0573272 0.791736i
\(565\) 1106.80 1106.80i 0.0824129 0.0824129i
\(566\) −1228.53 + 1228.53i −0.0912351 + 0.0912351i
\(567\) −4285.87 + 1274.87i −0.317442 + 0.0944258i
\(568\) 339.191 339.191i 0.0250566 0.0250566i
\(569\) 4873.74 4873.74i 0.359083 0.359083i −0.504392 0.863475i \(-0.668283\pi\)
0.863475 + 0.504392i \(0.168283\pi\)
\(570\) −1301.24 1125.52i −0.0956190 0.0827070i
\(571\) 17381.0 1.27385 0.636927 0.770924i \(-0.280205\pi\)
0.636927 + 0.770924i \(0.280205\pi\)
\(572\) −6390.92 6390.92i −0.467164 0.467164i
\(573\) −344.249 4754.37i −0.0250981 0.346626i
\(574\) −3910.22 −0.284337
\(575\) 16579.3i 1.20244i
\(576\) 1709.98 248.934i 0.123696 0.0180073i
\(577\) −12774.4 12774.4i −0.921672 0.921672i 0.0754757 0.997148i \(-0.475952\pi\)
−0.997148 + 0.0754757i \(0.975952\pi\)
\(578\) −7422.35 + 7422.35i −0.534133 + 0.534133i
\(579\) −2824.98 + 204.549i −0.202767 + 0.0146818i
\(580\) −348.718 + 816.224i −0.0249651 + 0.0584342i
\(581\) 4608.04i 0.329043i
\(582\) −2805.65 + 3243.66i −0.199825 + 0.231021i
\(583\) 8400.93 8400.93i 0.596794 0.596794i
\(584\) 8439.25 0.597977
\(585\) −2394.39 + 348.569i −0.169224 + 0.0246351i
\(586\) 8662.50i 0.610656i
\(587\) 14576.7i 1.02495i −0.858702 0.512476i \(-0.828728\pi\)
0.858702 0.512476i \(-0.171272\pi\)
\(588\) −4152.28 + 4800.52i −0.291219 + 0.336684i
\(589\) 23490.5i 1.64331i
\(590\) 434.010 434.010i 0.0302846 0.0302846i
\(591\) −750.404 + 867.556i −0.0522293 + 0.0603832i
\(592\) −4997.17 4997.17i −0.346930 0.346930i
\(593\) 7784.36 0.539065 0.269532 0.962991i \(-0.413131\pi\)
0.269532 + 0.962991i \(0.413131\pi\)
\(594\) −8470.90 5412.33i −0.585127 0.373856i
\(595\) 621.215 + 621.215i 0.0428022 + 0.0428022i
\(596\) 4742.23i 0.325922i
\(597\) −6673.71 5772.52i −0.457516 0.395734i
\(598\) −12024.6 12024.6i −0.822277 0.822277i
\(599\) 2297.69 + 2297.69i 0.156729 + 0.156729i 0.781116 0.624386i \(-0.214651\pi\)
−0.624386 + 0.781116i \(0.714651\pi\)
\(600\) −5098.88 + 369.195i −0.346935 + 0.0251205i
\(601\) 6532.72 6532.72i 0.443386 0.443386i −0.449762 0.893148i \(-0.648491\pi\)
0.893148 + 0.449762i \(0.148491\pi\)
\(602\) 1386.37 0.0938606
\(603\) −10484.2 + 1526.26i −0.708042 + 0.103075i
\(604\) 1033.09 0.0695958
\(605\) 67.5466i 0.00453911i
\(606\) 6396.72 7395.36i 0.428794 0.495736i
\(607\) 6176.70 + 6176.70i 0.413022 + 0.413022i 0.882790 0.469768i \(-0.155662\pi\)
−0.469768 + 0.882790i \(0.655662\pi\)
\(608\) 3728.44 0.248698
\(609\) 2182.53 + 4473.35i 0.145223 + 0.297651i
\(610\) −1371.80 −0.0910536
\(611\) −22814.2 22814.2i −1.51058 1.51058i
\(612\) 8726.82 + 6508.85i 0.576406 + 0.429910i
\(613\) 8648.38i 0.569828i 0.958553 + 0.284914i \(0.0919651\pi\)
−0.958553 + 0.284914i \(0.908035\pi\)
\(614\) −2252.38 −0.148043
\(615\) −2347.22 + 169.955i −0.153901 + 0.0111435i
\(616\) 1757.94 0.114983
\(617\) −3726.44 + 3726.44i −0.243146 + 0.243146i −0.818150 0.575005i \(-0.805000\pi\)
0.575005 + 0.818150i \(0.305000\pi\)
\(618\) 18.9549 + 261.783i 0.00123378 + 0.0170396i
\(619\) −4610.35 4610.35i −0.299363 0.299363i 0.541402 0.840764i \(-0.317894\pi\)
−0.840764 + 0.541402i \(0.817894\pi\)
\(620\) −810.248 810.248i −0.0524844 0.0524844i
\(621\) −15938.1 10183.4i −1.02991 0.658042i
\(622\) 6130.02i 0.395163i
\(623\) 116.615 + 116.615i 0.00749930 + 0.00749930i
\(624\) 3430.33 3965.87i 0.220069 0.254426i
\(625\) 14872.0 0.951807
\(626\) −3188.09 3188.09i −0.203549 0.203549i
\(627\) −16404.4 14189.2i −1.04486 0.903767i
\(628\) 4646.82 4646.82i 0.295268 0.295268i
\(629\) 44524.1i 2.82241i
\(630\) 281.370 377.250i 0.0177937 0.0238571i
\(631\) 3251.45i 0.205132i 0.994726 + 0.102566i \(0.0327053\pi\)
−0.994726 + 0.102566i \(0.967295\pi\)
\(632\) 861.632i 0.0542308i
\(633\) −1039.83 14360.9i −0.0652914 0.901727i
\(634\) 2520.65 0.157899
\(635\) −2002.09 + 2002.09i −0.125119 + 0.125119i
\(636\) 5213.17 + 4509.20i 0.325025 + 0.281134i
\(637\) 19260.4i 1.19800i
\(638\) −4396.21 + 10289.9i −0.272802 + 0.638530i
\(639\) −233.224 1602.06i −0.0144385 0.0991809i
\(640\) −128.604 + 128.604i −0.00794297 + 0.00794297i
\(641\) 14704.8 + 14704.8i 0.906090 + 0.906090i 0.995954 0.0898638i \(-0.0286432\pi\)
−0.0898638 + 0.995954i \(0.528643\pi\)
\(642\) 9373.45 678.703i 0.576231 0.0417232i
\(643\) 29890.9i 1.83325i 0.399743 + 0.916627i \(0.369100\pi\)
−0.399743 + 0.916627i \(0.630900\pi\)
\(644\) 3307.58 0.202386
\(645\) 832.205 60.2575i 0.0508032 0.00367851i
\(646\) 16610.0 + 16610.0i 1.01163 + 1.01163i
\(647\) −2745.64 −0.166835 −0.0834176 0.996515i \(-0.526584\pi\)
−0.0834176 + 0.996515i \(0.526584\pi\)
\(648\) 2776.92 5128.44i 0.168345 0.310902i
\(649\) 5471.45 5471.45i 0.330930 0.330930i
\(650\) −10969.3 + 10969.3i −0.661927 + 0.661927i
\(651\) −6408.90 + 464.049i −0.385844 + 0.0279378i
\(652\) 5359.55 5359.55i 0.321926 0.321926i
\(653\) −9003.78 + 9003.78i −0.539579 + 0.539579i −0.923405 0.383826i \(-0.874606\pi\)
0.383826 + 0.923405i \(0.374606\pi\)
\(654\) −4263.63 + 308.717i −0.254925 + 0.0184584i
\(655\) −1666.80 + 1666.80i −0.0994308 + 0.0994308i
\(656\) 3606.23 3606.23i 0.214634 0.214634i
\(657\) 17028.7 22831.4i 1.01119 1.35577i
\(658\) 6275.45 0.371797
\(659\) −5595.61 5595.61i −0.330765 0.330765i 0.522112 0.852877i \(-0.325144\pi\)
−0.852877 + 0.522112i \(0.825144\pi\)
\(660\) 1055.25 76.4076i 0.0622357 0.00450630i
\(661\) 22949.6 1.35043 0.675216 0.737620i \(-0.264050\pi\)
0.675216 + 0.737620i \(0.264050\pi\)
\(662\) 8806.58i 0.517035i
\(663\) 32949.6 2385.78i 1.93010 0.139753i
\(664\) −4249.81 4249.81i −0.248380 0.248380i
\(665\) 718.030 718.030i 0.0418707 0.0418707i
\(666\) −23602.5 + 3435.99i −1.37324 + 0.199913i
\(667\) −8271.51 + 19360.6i −0.480171 + 1.12391i
\(668\) 6080.96i 0.352215i
\(669\) −8389.21 7256.36i −0.484821 0.419353i
\(670\) 788.493 788.493i 0.0454659 0.0454659i
\(671\) −17294.0 −0.994973
\(672\) 73.6545 + 1017.23i 0.00422810 + 0.0583935i
\(673\) 12568.7i 0.719893i −0.932973 0.359947i \(-0.882795\pi\)
0.932973 0.359947i \(-0.117205\pi\)
\(674\) 1876.82i 0.107259i
\(675\) −9289.70 + 14539.4i −0.529719 + 0.829069i
\(676\) 7123.61i 0.405303i
\(677\) −2461.65 + 2461.65i −0.139747 + 0.139747i −0.773520 0.633772i \(-0.781506\pi\)
0.633772 + 0.773520i \(0.281506\pi\)
\(678\) 8658.56 + 7489.34i 0.490457 + 0.424228i
\(679\) −1789.87 1789.87i −0.101162 0.101162i
\(680\) −1145.84 −0.0646191
\(681\) −8120.87 + 9388.68i −0.456964 + 0.528304i
\(682\) −10214.6 10214.6i −0.573515 0.573515i
\(683\) 20945.3i 1.17342i −0.809796 0.586712i \(-0.800422\pi\)
0.809796 0.586712i \(-0.199578\pi\)
\(684\) 7523.25 10086.9i 0.420553 0.563862i
\(685\) 2525.64 + 2525.64i 0.140876 + 0.140876i
\(686\) −5624.26 5624.26i −0.313025 0.313025i
\(687\) 679.785 + 9388.39i 0.0377517 + 0.521382i
\(688\) −1278.59 + 1278.59i −0.0708514 + 0.0708514i
\(689\) 20916.0 1.15651
\(690\) 1985.47 143.762i 0.109544 0.00793176i
\(691\) −32418.4 −1.78474 −0.892369 0.451307i \(-0.850958\pi\)
−0.892369 + 0.451307i \(0.850958\pi\)
\(692\) 17440.9i 0.958095i
\(693\) 3547.16 4755.90i 0.194438 0.260695i
\(694\) 14115.7 + 14115.7i 0.772083 + 0.772083i
\(695\) −4450.98 −0.242929
\(696\) −6138.45 2112.73i −0.334307 0.115062i
\(697\) 32131.1 1.74613
\(698\) 10646.3 + 10646.3i 0.577319 + 0.577319i
\(699\) 1396.93 1615.02i 0.0755891 0.0873899i
\(700\) 3017.31i 0.162920i
\(701\) −27238.0 −1.46757 −0.733784 0.679383i \(-0.762248\pi\)
−0.733784 + 0.679383i \(0.762248\pi\)
\(702\) −3807.49 17282.7i −0.204707 0.929192i
\(703\) −51463.2 −2.76098
\(704\) −1621.27 + 1621.27i −0.0867955 + 0.0867955i
\(705\) 3767.01 272.758i 0.201239 0.0145711i
\(706\) 6951.66 + 6951.66i 0.370580 + 0.370580i
\(707\) 4080.80 + 4080.80i 0.217078 + 0.217078i
\(708\) 3395.29 + 2936.81i 0.180230 + 0.155893i
\(709\) 26869.4i 1.42327i 0.702548 + 0.711637i \(0.252046\pi\)
−0.702548 + 0.711637i \(0.747954\pi\)
\(710\) 120.488 + 120.488i 0.00636876 + 0.00636876i
\(711\) 2331.05 + 1738.60i 0.122955 + 0.0917055i
\(712\) −215.098 −0.0113218
\(713\) −19218.9 19218.9i −1.00947 1.00947i
\(714\) −4203.56 + 4859.81i −0.220328 + 0.254725i
\(715\) 2270.19 2270.19i 0.118741 0.118741i
\(716\) 13967.2i 0.729019i
\(717\) −4797.02 + 5545.92i −0.249858 + 0.288865i
\(718\) 17423.2i 0.905609i
\(719\) 2081.45i 0.107963i 0.998542 + 0.0539813i \(0.0171911\pi\)
−0.998542 + 0.0539813i \(0.982809\pi\)
\(720\) 88.4263 + 607.418i 0.00457702 + 0.0314405i
\(721\) −154.913 −0.00800173
\(722\) 9498.53 9498.53i 0.489610 0.489610i
\(723\) 11801.4 13643.8i 0.607050 0.701821i
\(724\) 10014.8i 0.514086i
\(725\) 17661.6 + 7545.62i 0.904737 + 0.386534i
\(726\) −492.745 + 35.6782i −0.0251893 + 0.00182389i
\(727\) 22321.5 22321.5i 1.13873 1.13873i 0.150054 0.988678i \(-0.452055\pi\)
0.988678 0.150054i \(-0.0479447\pi\)
\(728\) 2188.39 + 2188.39i 0.111411 + 0.111411i
\(729\) −8271.14 17860.8i −0.420218 0.907423i
\(730\) 2997.80i 0.151991i
\(731\) −11392.1 −0.576403
\(732\) −724.587 10007.1i −0.0365868 0.505293i
\(733\) 22642.3 + 22642.3i 1.14095 + 1.14095i 0.988278 + 0.152668i \(0.0487864\pi\)
0.152668 + 0.988278i \(0.451214\pi\)
\(734\) 25350.5 1.27480
\(735\) −1705.24 1474.97i −0.0855767 0.0740207i
\(736\) −3050.44 + 3050.44i −0.152773 + 0.152773i
\(737\) 9940.34 9940.34i 0.496821 0.496821i
\(738\) −2479.60 17032.9i −0.123679 0.849580i
\(739\) −8110.79 + 8110.79i −0.403735 + 0.403735i −0.879547 0.475812i \(-0.842154\pi\)
0.475812 + 0.879547i \(0.342154\pi\)
\(740\) 1775.10 1775.10i 0.0881809 0.0881809i
\(741\) −2757.60 38084.7i −0.136711 1.88809i
\(742\) −2876.66 + 2876.66i −0.142325 + 0.142325i
\(743\) −3721.91 + 3721.91i −0.183774 + 0.183774i −0.792998 0.609224i \(-0.791481\pi\)
0.609224 + 0.792998i \(0.291481\pi\)
\(744\) 5482.69 6338.63i 0.270168 0.312346i
\(745\) 1684.54 0.0828411
\(746\) 18114.7 + 18114.7i 0.889043 + 0.889043i
\(747\) −20072.6 + 2922.12i −0.983158 + 0.143125i
\(748\) −14445.3 −0.706115
\(749\) 5546.83i 0.270597i
\(750\) −264.444 3652.19i −0.0128748 0.177812i
\(751\) 16096.2 + 16096.2i 0.782101 + 0.782101i 0.980185 0.198084i \(-0.0634718\pi\)
−0.198084 + 0.980185i \(0.563472\pi\)
\(752\) −5787.59 + 5787.59i −0.280654 + 0.280654i
\(753\) 882.097 + 12182.5i 0.0426898 + 0.589581i
\(754\) −18282.2 + 7336.87i −0.883022 + 0.354367i
\(755\) 366.975i 0.0176895i
\(756\) 2900.62 + 1853.30i 0.139543 + 0.0891585i
\(757\) −23437.4 + 23437.4i −1.12529 + 1.12529i −0.134360 + 0.990933i \(0.542898\pi\)
−0.990933 + 0.134360i \(0.957102\pi\)
\(758\) −1911.21 −0.0915810
\(759\) 25030.3 1812.37i 1.19703 0.0866730i
\(760\) 1324.42i 0.0632128i
\(761\) 32161.6i 1.53201i 0.642836 + 0.766004i \(0.277758\pi\)
−0.642836 + 0.766004i \(0.722242\pi\)
\(762\) −15662.5 13547.5i −0.744610 0.644060i
\(763\) 2523.05i 0.119712i
\(764\) −2594.72 + 2594.72i −0.122872 + 0.122872i
\(765\) −2312.08 + 3099.94i −0.109272 + 0.146508i
\(766\) −2975.37 2975.37i −0.140345 0.140345i
\(767\) 13622.4 0.641299
\(768\) −1006.08 870.220i −0.0472704 0.0408872i
\(769\) −11854.0 11854.0i −0.555872 0.555872i 0.372257 0.928130i \(-0.378584\pi\)
−0.928130 + 0.372257i \(0.878584\pi\)
\(770\) 624.456i 0.0292257i
\(771\) 26874.8 31070.4i 1.25535 1.45133i
\(772\) 1541.75 + 1541.75i 0.0718768 + 0.0718768i
\(773\) 24640.9 + 24640.9i 1.14653 + 1.14653i 0.987229 + 0.159305i \(0.0509253\pi\)
0.159305 + 0.987229i \(0.449075\pi\)
\(774\) 879.143 + 6039.01i 0.0408271 + 0.280449i
\(775\) −17532.3 + 17532.3i −0.812616 + 0.812616i
\(776\) 3301.45 0.152726
\(777\) −1016.64 14040.7i −0.0469393 0.648270i
\(778\) −14614.6 −0.673467
\(779\) 37138.7i 1.70813i
\(780\) 1408.76 + 1218.52i 0.0646687 + 0.0559361i
\(781\) 1518.96 + 1518.96i 0.0695936 + 0.0695936i
\(782\) −27179.1 −1.24287
\(783\) −18101.9 + 12343.8i −0.826193 + 0.563387i
\(784\) 4886.04 0.222579
\(785\) 1650.65 + 1650.65i 0.0750498 + 0.0750498i
\(786\) −13039.5 11278.7i −0.591735 0.511829i
\(787\) 1562.42i 0.0707680i −0.999374 0.0353840i \(-0.988735\pi\)
0.999374 0.0353840i \(-0.0112654\pi\)
\(788\) 883.011 0.0399187
\(789\) −336.881 4652.61i −0.0152006 0.209933i
\(790\) −306.069 −0.0137841
\(791\) −4777.84 + 4777.84i −0.214767 + 0.214767i
\(792\) 1114.77 + 7657.58i 0.0500146 + 0.343561i
\(793\) −21528.6 21528.6i −0.964064 0.964064i
\(794\) 4664.59 + 4664.59i 0.208489 + 0.208489i
\(795\) −1601.76 + 1851.83i −0.0714574 + 0.0826132i
\(796\) 6792.61i 0.302459i
\(797\) −1755.70 1755.70i −0.0780304 0.0780304i 0.667014 0.745045i \(-0.267572\pi\)
−0.745045 + 0.667014i \(0.767572\pi\)
\(798\) 5617.21 + 4858.68i 0.249182 + 0.215533i
\(799\) −51566.7 −2.28323
\(800\) 2782.74 + 2782.74i 0.122981 + 0.122981i
\(801\) −434.024 + 581.923i −0.0191454 + 0.0256694i
\(802\) 19855.5 19855.5i 0.874219 0.874219i
\(803\) 37792.5i 1.66086i
\(804\) 6168.45 + 5335.48i 0.270578 + 0.234040i
\(805\) 1174.92i 0.0514416i
\(806\) 25431.5i 1.11140i
\(807\) −37527.4 + 2717.25i −1.63696 + 0.118527i
\(808\) −7527.11 −0.327726
\(809\) −26541.4 + 26541.4i −1.15346 + 1.15346i −0.167603 + 0.985855i \(0.553603\pi\)
−0.985855 + 0.167603i \(0.946397\pi\)
\(810\) 1821.73 + 986.420i 0.0790234 + 0.0427892i
\(811\) 25121.8i 1.08773i 0.839174 + 0.543864i \(0.183039\pi\)
−0.839174 + 0.543864i \(0.816961\pi\)
\(812\) 1505.35 3523.49i 0.0650586 0.152279i
\(813\) 2416.13 + 33368.8i 0.104228 + 1.43948i
\(814\) 22378.2 22378.2i 0.963582 0.963582i
\(815\) 1903.82 + 1903.82i 0.0818257 + 0.0818257i
\(816\) −605.234 8358.78i −0.0259650 0.358598i
\(817\) 13167.5i 0.563859i
\(818\) 19236.0 0.822215
\(819\) 10336.2 1504.71i 0.440995 0.0641988i
\(820\) 1281.01 + 1281.01i 0.0545545 + 0.0545545i
\(821\) 241.457 0.0102642 0.00513211 0.999987i \(-0.498366\pi\)
0.00513211 + 0.999987i \(0.498366\pi\)
\(822\) −17090.2 + 19758.3i −0.725171 + 0.838383i
\(823\) 15558.1 15558.1i 0.658958 0.658958i −0.296175 0.955134i \(-0.595711\pi\)
0.955134 + 0.296175i \(0.0957113\pi\)
\(824\) 142.870 142.870i 0.00604016 0.00604016i
\(825\) −1653.32 22833.7i −0.0697711 0.963597i
\(826\) −1873.54 + 1873.54i −0.0789211 + 0.0789211i
\(827\) 696.475 696.475i 0.0292851 0.0292851i −0.692313 0.721598i \(-0.743408\pi\)
0.721598 + 0.692313i \(0.243408\pi\)
\(828\) 2097.45 + 14407.8i 0.0880331 + 0.604717i
\(829\) −4813.99 + 4813.99i −0.201685 + 0.201685i −0.800722 0.599037i \(-0.795550\pi\)
0.599037 + 0.800722i \(0.295550\pi\)
\(830\) 1509.62 1509.62i 0.0631321 0.0631321i
\(831\) 31652.4 + 27378.2i 1.32131 + 1.14289i
\(832\) −4036.52 −0.168198
\(833\) 21767.0 + 21767.0i 0.905381 + 0.905381i
\(834\) −2351.01 32469.4i −0.0976126 1.34811i
\(835\) 2160.08 0.0895243
\(836\) 16696.6i 0.690748i
\(837\) −6085.50 27622.9i −0.251309 1.14072i
\(838\) −6353.39 6353.39i −0.261902 0.261902i
\(839\) −26714.5 + 26714.5i −1.09927 + 1.09927i −0.104772 + 0.994496i \(0.533411\pi\)
−0.994496 + 0.104772i \(0.966589\pi\)
\(840\) −361.340 + 26.1636i −0.0148422 + 0.00107468i
\(841\) 16859.9 + 17622.9i 0.691291 + 0.722577i
\(842\) 24914.7i 1.01973i
\(843\) 3436.39 3972.87i 0.140398 0.162317i
\(844\) −7837.53 + 7837.53i −0.319643 + 0.319643i
\(845\) 2530.45 0.103018
\(846\) 3979.48 + 27335.8i 0.161722 + 1.11090i
\(847\) 291.587i 0.0118288i
\(848\) 5306.04i 0.214871i
\(849\) 2952.98 3413.99i 0.119371 0.138007i
\(850\) 24793.9i 1.00050i
\(851\) 42104.8 42104.8i 1.69605 1.69605i
\(852\) −815.302 + 942.585i −0.0327838 + 0.0379019i
\(853\) 11764.5 + 11764.5i 0.472224 + 0.472224i 0.902634 0.430409i \(-0.141631\pi\)
−0.430409 + 0.902634i \(0.641631\pi\)
\(854\) 5921.83 0.237284
\(855\) 3583.07 + 2672.41i 0.143320 + 0.106894i
\(856\) −5115.62 5115.62i −0.204262 0.204262i
\(857\) 9236.09i 0.368143i 0.982913 + 0.184072i \(0.0589278\pi\)
−0.982913 + 0.184072i \(0.941072\pi\)
\(858\) 17759.9 + 15361.6i 0.706657 + 0.611232i
\(859\) 4869.86 + 4869.86i 0.193431 + 0.193431i 0.797177 0.603746i \(-0.206326\pi\)
−0.603746 + 0.797177i \(0.706326\pi\)
\(860\) −454.181 454.181i −0.0180087 0.0180087i
\(861\) 10132.5 733.665i 0.401063 0.0290398i
\(862\) 11874.6 11874.6i 0.469200 0.469200i
\(863\) 25981.3 1.02482 0.512408 0.858742i \(-0.328754\pi\)
0.512408 + 0.858742i \(0.328754\pi\)
\(864\) −4384.34 + 965.898i −0.172637 + 0.0380330i
\(865\) −6195.35 −0.243524
\(866\) 24448.3i 0.959339i
\(867\) 17840.8 20626.1i 0.698854 0.807958i
\(868\) 3497.69 + 3497.69i 0.136774 + 0.136774i
\(869\) −3858.54 −0.150624
\(870\) 750.485 2180.50i 0.0292458 0.0849724i
\(871\) 24748.7 0.962775
\(872\) 2326.90 + 2326.90i 0.0903657 + 0.0903657i
\(873\) 6661.66 8931.70i 0.258262 0.346268i
\(874\) 31414.9i 1.21582i
\(875\) 2161.22 0.0835000
\(876\) −21868.6 + 1583.44i −0.843459 + 0.0610724i
\(877\) −21870.8 −0.842102 −0.421051 0.907037i \(-0.638339\pi\)
−0.421051 + 0.907037i \(0.638339\pi\)
\(878\) −14620.8 + 14620.8i −0.561990 + 0.561990i
\(879\) 1625.32 + 22447.1i 0.0623673 + 0.861343i
\(880\) −575.910 575.910i −0.0220613 0.0220613i
\(881\) −15430.2 15430.2i −0.590075 0.590075i 0.347576 0.937652i \(-0.387005\pi\)
−0.937652 + 0.347576i \(0.887005\pi\)
\(882\) 9859.05 13218.6i 0.376385 0.504643i
\(883\) 26637.6i 1.01520i −0.861591 0.507602i \(-0.830532\pi\)
0.861591 0.507602i \(-0.169468\pi\)
\(884\) −17982.4 17982.4i −0.684180 0.684180i
\(885\) −1043.21 + 1206.08i −0.0396240 + 0.0458100i
\(886\) −5091.08 −0.193045
\(887\) 15323.0 + 15323.0i 0.580040 + 0.580040i 0.934914 0.354874i \(-0.115476\pi\)
−0.354874 + 0.934914i \(0.615476\pi\)
\(888\) 13886.7 + 12011.5i 0.524784 + 0.453919i
\(889\) 8642.66 8642.66i 0.326058 0.326058i
\(890\) 76.4071i 0.00287772i
\(891\) 22966.1 + 12435.6i 0.863516 + 0.467572i
\(892\) 8538.66i 0.320511i
\(893\) 59603.3i 2.23354i
\(894\) 889.773 + 12288.5i 0.0332869 + 0.459719i
\(895\) 4961.43 0.185299
\(896\) 555.159 555.159i 0.0206993 0.0206993i
\(897\) 33415.4 + 28903.1i 1.24382 + 1.07586i
\(898\) 6098.67i 0.226632i
\(899\) −29220.4 + 11726.5i −1.08404 + 0.435040i
\(900\) 13143.4 1913.38i 0.486793 0.0708660i
\(901\) 23638.1 23638.1i 0.874028 0.874028i
\(902\) 16149.4 + 16149.4i 0.596136 + 0.596136i
\(903\) −3592.48 + 260.121i −0.132392 + 0.00958614i
\(904\) 8812.82i 0.324237i
\(905\) 3557.47 0.130668
\(906\) −2677.04 + 193.836i −0.0981664 + 0.00710793i
\(907\) 15942.1 + 15942.1i 0.583626 + 0.583626i 0.935898 0.352272i \(-0.114591\pi\)
−0.352272 + 0.935898i \(0.614591\pi\)
\(908\) 9555.94 0.349257
\(909\) −15188.2 + 20363.7i −0.554192 + 0.743039i
\(910\) −777.360 + 777.360i −0.0283178 + 0.0283178i
\(911\) −17809.7 + 17809.7i −0.647708 + 0.647708i −0.952438 0.304731i \(-0.901433\pi\)
0.304731 + 0.952438i \(0.401433\pi\)
\(912\) −9661.49 + 699.559i −0.350794 + 0.0253999i
\(913\) 19031.4 19031.4i 0.689865 0.689865i
\(914\) −8587.05 + 8587.05i −0.310760 + 0.310760i
\(915\) 3554.74 257.388i 0.128433 0.00929945i
\(916\) 5123.77 5123.77i 0.184819 0.184819i
\(917\) 7195.27 7195.27i 0.259115 0.259115i
\(918\) −23835.0 15228.9i −0.856940 0.547527i
\(919\) 20514.0 0.736339 0.368170 0.929759i \(-0.379985\pi\)
0.368170 + 0.929759i \(0.379985\pi\)
\(920\) −1083.58 1083.58i −0.0388311 0.0388311i
\(921\) 5836.57 422.609i 0.208818 0.0151199i
\(922\) 18652.6 0.666257
\(923\) 3781.78i 0.134863i
\(924\) −4555.33 + 329.838i −0.162185 + 0.0117434i
\(925\) −38409.8 38409.8i −1.36531 1.36531i
\(926\) 3629.53 3629.53i 0.128805 0.128805i
\(927\) −98.2354 674.799i −0.00348055 0.0239086i
\(928\) 1861.24 + 4637.90i 0.0658387 + 0.164059i
\(929\) 6321.31i 0.223246i −0.993751 0.111623i \(-0.964395\pi\)
0.993751 0.111623i \(-0.0356049\pi\)
\(930\) 2251.61 + 1947.56i 0.0793906 + 0.0686700i
\(931\) 25159.4 25159.4i 0.885677 0.885677i
\(932\) −1643.79 −0.0577726
\(933\) 1150.16 + 15884.7i 0.0403586 + 0.557386i
\(934\) 12666.9i 0.443763i
\(935\) 5131.28i 0.179477i
\(936\) −8144.88 + 10920.3i −0.284427 + 0.381349i
\(937\) 15310.0i 0.533783i −0.963727 0.266892i \(-0.914003\pi\)
0.963727 0.266892i \(-0.0859966\pi\)
\(938\) −3403.78 + 3403.78i −0.118483 + 0.118483i
\(939\) 8859.43 + 7663.09i 0.307898 + 0.266321i
\(940\) −2055.87 2055.87i −0.0713352 0.0713352i
\(941\) −9434.57 −0.326842 −0.163421 0.986556i \(-0.552253\pi\)
−0.163421 + 0.986556i \(0.552253\pi\)
\(942\) −11169.4 + 12913.1i −0.386326 + 0.446638i
\(943\) 30385.2 + 30385.2i 1.04929 + 1.04929i
\(944\) 3455.78i 0.119148i
\(945\) −658.329 + 1030.36i −0.0226619 + 0.0354683i
\(946\) −5725.75 5725.75i −0.196787 0.196787i
\(947\) −3523.55 3523.55i −0.120908 0.120908i 0.644064 0.764972i \(-0.277247\pi\)
−0.764972 + 0.644064i \(0.777247\pi\)
\(948\) −161.666 2232.74i −0.00553868 0.0764937i
\(949\) −47046.4 + 47046.4i −1.60926 + 1.60926i
\(950\) 28658.0 0.978725
\(951\) −6531.73 + 472.943i −0.222719 + 0.0161264i
\(952\) 4946.39 0.168397
\(953\) 30017.4i 1.02031i −0.860082 0.510157i \(-0.829587\pi\)
0.860082 0.510157i \(-0.170413\pi\)
\(954\) −14354.9 10706.5i −0.487167 0.363351i
\(955\) −921.699 921.699i −0.0312309 0.0312309i
\(956\) 5644.72 0.190966
\(957\) 9461.18 27489.1i 0.319578 0.928522i
\(958\) 11082.3 0.373751
\(959\) −10902.8 10902.8i −0.367120 0.367120i
\(960\) 309.120 357.379i 0.0103925 0.0120150i
\(961\) 10856.1i 0.364408i
\(962\) 55715.5 1.86730
\(963\) −24162.0 + 3517.44i −0.808525 + 0.117703i
\(964\) −13886.8 −0.463967
\(965\) −547.662 + 547.662i −0.0182693 + 0.0182693i
\(966\) −8570.90 + 620.593i −0.285470 + 0.0206700i
\(967\) −10532.8 10532.8i −0.350271 0.350271i 0.509939 0.860210i \(-0.329668\pi\)
−0.860210 + 0.509939i \(0.829668\pi\)
\(968\) 268.918 + 268.918i 0.00892909 + 0.00892909i
\(969\) −46157.8 39924.8i −1.53024 1.32360i
\(970\) 1172.74i 0.0388191i
\(971\) −37462.1 37462.1i −1.23812 1.23812i −0.960767 0.277355i \(-0.910542\pi\)
−0.277355 0.960767i \(-0.589458\pi\)
\(972\) −6233.58 + 13810.3i −0.205702 + 0.455727i
\(973\) 19214.1 0.633069
\(974\) −10696.6 10696.6i −0.351890 0.351890i
\(975\) 26366.6 30482.9i 0.866059 1.00127i
\(976\) −5461.46 + 5461.46i −0.179116 + 0.179116i
\(977\) 7270.94i 0.238094i 0.992889 + 0.119047i \(0.0379839\pi\)
−0.992889 + 0.119047i \(0.962016\pi\)
\(978\) −12882.6 + 14893.8i −0.421205 + 0.486963i
\(979\) 963.246i 0.0314458i
\(980\) 1735.62i 0.0565739i
\(981\) 10990.4 1599.95i 0.357692 0.0520719i
\(982\) 24059.1 0.781831
\(983\) −1201.77 + 1201.77i −0.0389933 + 0.0389933i −0.726335 0.687341i \(-0.758778\pi\)
0.687341 + 0.726335i \(0.258778\pi\)
\(984\) −8668.17 + 10021.4i −0.280824 + 0.324666i
\(985\) 313.664i 0.0101464i
\(986\) −12369.8 + 28953.3i −0.399529 + 0.935152i
\(987\) −16261.5 + 1177.45i −0.524427 + 0.0379722i
\(988\) −20785.0 + 20785.0i −0.669290 + 0.669290i
\(989\) −10773.1 10773.1i −0.346374 0.346374i
\(990\) −2720.13 + 395.989i −0.0873246 + 0.0127125i
\(991\) 29098.7i 0.932745i −0.884588 0.466373i \(-0.845561\pi\)
0.884588 0.466373i \(-0.154439\pi\)
\(992\) −6451.56 −0.206489
\(993\) 1652.36 + 22820.4i 0.0528056 + 0.729289i
\(994\) −520.124 520.124i −0.0165969 0.0165969i
\(995\) −2412.87 −0.0768776
\(996\) 11809.9 + 10215.1i 0.375713 + 0.324978i
\(997\) 580.851 580.851i 0.0184511 0.0184511i −0.697821 0.716272i \(-0.745847\pi\)
0.716272 + 0.697821i \(0.245847\pi\)
\(998\) 23839.1 23839.1i 0.756124 0.756124i
\(999\) 60516.4 13332.2i 1.91657 0.422233i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 174.4.f.a.17.19 yes 60
3.2 odd 2 inner 174.4.f.a.17.11 60
29.12 odd 4 inner 174.4.f.a.41.11 yes 60
87.41 even 4 inner 174.4.f.a.41.19 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
174.4.f.a.17.11 60 3.2 odd 2 inner
174.4.f.a.17.19 yes 60 1.1 even 1 trivial
174.4.f.a.41.11 yes 60 29.12 odd 4 inner
174.4.f.a.41.19 yes 60 87.41 even 4 inner