Newspace parameters
Level: | \( N \) | \(=\) | \( 174 = 2 \cdot 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 174.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.2663323410\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −1.41421 | − | 1.41421i | −5.15122 | + | 0.681893i | 4.00000i | 7.07450 | 8.24926 | + | 6.32058i | −8.70593 | 5.65685 | − | 5.65685i | 26.0700 | − | 7.02516i | −10.0049 | − | 10.0049i | ||||||
17.2 | −1.41421 | − | 1.41421i | −4.66828 | − | 2.28191i | 4.00000i | −13.1057 | 3.37483 | + | 9.82906i | −22.1141 | 5.65685 | − | 5.65685i | 16.5857 | + | 21.3052i | 18.5343 | + | 18.5343i | ||||||
17.3 | −1.41421 | − | 1.41421i | −3.93655 | + | 3.39169i | 4.00000i | −6.62243 | 10.3637 | + | 0.770544i | 32.6059 | 5.65685 | − | 5.65685i | 3.99284 | − | 26.7031i | 9.36553 | + | 9.36553i | ||||||
17.4 | −1.41421 | − | 1.41421i | −3.68521 | − | 3.66323i | 4.00000i | −8.24792 | 0.0310808 | + | 10.3923i | 32.9047 | 5.65685 | − | 5.65685i | 0.161500 | + | 26.9995i | 11.6643 | + | 11.6643i | ||||||
17.5 | −1.41421 | − | 1.41421i | −2.99175 | − | 4.24846i | 4.00000i | 17.7535 | −1.77727 | + | 10.2392i | −4.74480 | 5.65685 | − | 5.65685i | −9.09890 | + | 25.4207i | −25.1073 | − | 25.1073i | ||||||
17.6 | −1.41421 | − | 1.41421i | −2.48666 | + | 4.56251i | 4.00000i | −1.67768 | 9.96903 | − | 2.93570i | −22.3099 | 5.65685 | − | 5.65685i | −14.6331 | − | 22.6908i | 2.37260 | + | 2.37260i | ||||||
17.7 | −1.41421 | − | 1.41421i | −1.24130 | + | 5.04571i | 4.00000i | 21.0390 | 8.89117 | − | 5.38025i | 17.3129 | 5.65685 | − | 5.65685i | −23.9184 | − | 12.5265i | −29.7537 | − | 29.7537i | ||||||
17.8 | −1.41421 | − | 1.41421i | 0.228143 | − | 5.19114i | 4.00000i | 2.92456 | −7.66403 | + | 7.01874i | 3.24785 | 5.65685 | − | 5.65685i | −26.8959 | − | 2.36865i | −4.13595 | − | 4.13595i | ||||||
17.9 | −1.41421 | − | 1.41421i | 0.762114 | + | 5.13996i | 4.00000i | −8.24082 | 6.19121 | − | 8.34679i | 4.60548 | 5.65685 | − | 5.65685i | −25.8384 | + | 7.83447i | 11.6543 | + | 11.6543i | ||||||
17.10 | −1.41421 | − | 1.41421i | 2.32730 | − | 4.64582i | 4.00000i | −19.3477 | −9.86149 | + | 3.27888i | −0.771607 | 5.65685 | − | 5.65685i | −16.1673 | − | 21.6245i | 27.3618 | + | 27.3618i | ||||||
17.11 | −1.41421 | − | 1.41421i | 3.39930 | + | 3.92999i | 4.00000i | 1.42088 | 0.750511 | − | 10.3652i | 6.13369 | 5.65685 | − | 5.65685i | −3.88959 | + | 26.7184i | −2.00943 | − | 2.00943i | ||||||
17.12 | −1.41421 | − | 1.41421i | 3.52159 | − | 3.82078i | 4.00000i | 14.3966 | −10.3837 | + | 0.423116i | −25.6013 | 5.65685 | − | 5.65685i | −2.19675 | − | 26.9105i | −20.3599 | − | 20.3599i | ||||||
17.13 | −1.41421 | − | 1.41421i | 5.06270 | + | 1.17009i | 4.00000i | 15.7560 | −5.50498 | − | 8.81449i | 15.8294 | 5.65685 | − | 5.65685i | 24.2618 | + | 11.8476i | −22.2824 | − | 22.2824i | ||||||
17.14 | −1.41421 | − | 1.41421i | 5.08519 | + | 1.06812i | 4.00000i | −15.3181 | −5.68099 | − | 8.70209i | 5.90730 | 5.65685 | − | 5.65685i | 24.7183 | + | 10.8631i | 21.6631 | + | 21.6631i | ||||||
17.15 | −1.41421 | − | 1.41421i | 5.18884 | + | 0.275608i | 4.00000i | −3.56208 | −6.94836 | − | 7.72789i | −34.2995 | 5.65685 | − | 5.65685i | 26.8481 | + | 2.86017i | 5.03755 | + | 5.03755i | ||||||
17.16 | 1.41421 | + | 1.41421i | −5.13996 | − | 0.762114i | 4.00000i | 8.24082 | −6.19121 | − | 8.34679i | 4.60548 | −5.65685 | + | 5.65685i | 25.8384 | + | 7.83447i | 11.6543 | + | 11.6543i | ||||||
17.17 | 1.41421 | + | 1.41421i | −5.04571 | + | 1.24130i | 4.00000i | −21.0390 | −8.89117 | − | 5.38025i | 17.3129 | −5.65685 | + | 5.65685i | 23.9184 | − | 12.5265i | −29.7537 | − | 29.7537i | ||||||
17.18 | 1.41421 | + | 1.41421i | −4.56251 | + | 2.48666i | 4.00000i | 1.67768 | −9.96903 | − | 2.93570i | −22.3099 | −5.65685 | + | 5.65685i | 14.6331 | − | 22.6908i | 2.37260 | + | 2.37260i | ||||||
17.19 | 1.41421 | + | 1.41421i | −3.92999 | − | 3.39930i | 4.00000i | −1.42088 | −0.750511 | − | 10.3652i | 6.13369 | −5.65685 | + | 5.65685i | 3.88959 | + | 26.7184i | −2.00943 | − | 2.00943i | ||||||
17.20 | 1.41421 | + | 1.41421i | −3.39169 | + | 3.93655i | 4.00000i | 6.62243 | −10.3637 | + | 0.770544i | 32.6059 | −5.65685 | + | 5.65685i | −3.99284 | − | 26.7031i | 9.36553 | + | 9.36553i | ||||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
29.c | odd | 4 | 1 | inner |
87.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 174.4.f.a | ✓ | 60 |
3.b | odd | 2 | 1 | inner | 174.4.f.a | ✓ | 60 |
29.c | odd | 4 | 1 | inner | 174.4.f.a | ✓ | 60 |
87.f | even | 4 | 1 | inner | 174.4.f.a | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
174.4.f.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
174.4.f.a | ✓ | 60 | 3.b | odd | 2 | 1 | inner |
174.4.f.a | ✓ | 60 | 29.c | odd | 4 | 1 | inner |
174.4.f.a | ✓ | 60 | 87.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(174, [\chi])\).