L(s) = 1 | + (1.41 + 1.41i)2-s + (−3.92 − 3.39i)3-s + 4.00i·4-s − 1.42·5-s + (−0.750 − 10.3i)6-s + 6.13·7-s + (−5.65 + 5.65i)8-s + (3.88 + 26.7i)9-s + (−2.00 − 2.00i)10-s + (−25.3 − 25.3i)11-s + (13.5 − 15.7i)12-s − 63.0i·13-s + (8.67 + 8.67i)14-s + (5.58 + 4.82i)15-s − 16.0·16-s + (−71.2 − 71.2i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.756 − 0.654i)3-s + 0.500i·4-s − 0.127·5-s + (−0.0510 − 0.705i)6-s + 0.331·7-s + (−0.250 + 0.250i)8-s + (0.144 + 0.989i)9-s + (−0.0635 − 0.0635i)10-s + (−0.694 − 0.694i)11-s + (0.327 − 0.378i)12-s − 1.34i·13-s + (0.165 + 0.165i)14-s + (0.0961 + 0.0831i)15-s − 0.250·16-s + (−1.01 − 1.01i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.498 + 0.866i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 174 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.498 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.364023 - 0.629152i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.364023 - 0.629152i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 1.41i)T \) |
| 3 | \( 1 + (3.92 + 3.39i)T \) |
| 29 | \( 1 + (143. + 61.3i)T \) |
good | 5 | \( 1 + 1.42T + 125T^{2} \) |
| 7 | \( 1 - 6.13T + 343T^{2} \) |
| 11 | \( 1 + (25.3 + 25.3i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + 63.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (71.2 + 71.2i)T + 4.91e3iT^{2} \) |
| 19 | \( 1 + (82.3 - 82.3i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 134. iT - 1.21e4T^{2} \) |
| 31 | \( 1 + (-142. + 142. i)T - 2.97e4iT^{2} \) |
| 37 | \( 1 + (-312. - 312. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + (225. - 225. i)T - 6.89e4iT^{2} \) |
| 43 | \( 1 + (-79.9 + 79.9i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (-361. + 361. i)T - 1.03e5iT^{2} \) |
| 53 | \( 1 - 331. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 215. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + (-341. + 341. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 - 392. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 59.9T + 3.57e5T^{2} \) |
| 73 | \( 1 + (745. + 745. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 + (-76.1 + 76.1i)T - 4.93e5iT^{2} \) |
| 83 | \( 1 - 751. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (-19.0 - 19.0i)T + 7.04e5iT^{2} \) |
| 97 | \( 1 + (291. + 291. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02288179745768543133150355033, −11.17869144443430163809356828135, −10.21419845674508416566812991945, −8.303086428462847492030127727760, −7.77274565623383540679314965845, −6.41758161522278254907303635620, −5.60788785141832102203652614265, −4.46431386874243930057525448881, −2.54921812486399868548488624622, −0.29215598398706022221878387306,
1.99390738496860964443140637838, 3.99711289643843952423567661670, 4.71477050474432860649177755712, 5.97291025936774945546883030316, 7.11838224328976901382328251949, 8.871061091439612052215523962197, 9.815143227398860385248156400042, 10.95337898115882309471194585101, 11.38378030548031899206929115110, 12.49142187657664326512570719069