Properties

Label 1734.2.f.b.1483.1
Level $1734$
Weight $2$
Character 1734.1483
Analytic conductor $13.846$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1734,2,Mod(829,1734)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1734.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,0,0,-8,0,0,4,0,-4,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1483.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1734.1483
Dual form 1734.2.f.b.829.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000 q^{4} +(0.707107 + 0.707107i) q^{6} +(1.41421 + 1.41421i) q^{7} +1.00000i q^{8} -1.00000i q^{9} +(0.707107 - 0.707107i) q^{12} -2.00000 q^{13} +(1.41421 - 1.41421i) q^{14} +1.00000 q^{16} -1.00000 q^{18} -4.00000i q^{19} -2.00000 q^{21} +(4.24264 + 4.24264i) q^{23} +(-0.707107 - 0.707107i) q^{24} +5.00000i q^{25} +2.00000i q^{26} +(0.707107 + 0.707107i) q^{27} +(-1.41421 - 1.41421i) q^{28} +(7.07107 - 7.07107i) q^{31} -1.00000i q^{32} +1.00000i q^{36} +(-5.65685 + 5.65685i) q^{37} -4.00000 q^{38} +(1.41421 - 1.41421i) q^{39} +(4.24264 + 4.24264i) q^{41} +2.00000i q^{42} +4.00000i q^{43} +(4.24264 - 4.24264i) q^{46} -12.0000 q^{47} +(-0.707107 + 0.707107i) q^{48} -3.00000i q^{49} +5.00000 q^{50} +2.00000 q^{52} +6.00000i q^{53} +(0.707107 - 0.707107i) q^{54} +(-1.41421 + 1.41421i) q^{56} +(2.82843 + 2.82843i) q^{57} +12.0000i q^{59} +(5.65685 + 5.65685i) q^{61} +(-7.07107 - 7.07107i) q^{62} +(1.41421 - 1.41421i) q^{63} -1.00000 q^{64} -4.00000 q^{67} -6.00000 q^{69} +(-4.24264 + 4.24264i) q^{71} +1.00000 q^{72} +(1.41421 - 1.41421i) q^{73} +(5.65685 + 5.65685i) q^{74} +(-3.53553 - 3.53553i) q^{75} +4.00000i q^{76} +(-1.41421 - 1.41421i) q^{78} +(7.07107 + 7.07107i) q^{79} -1.00000 q^{81} +(4.24264 - 4.24264i) q^{82} +12.0000i q^{83} +2.00000 q^{84} +4.00000 q^{86} +18.0000 q^{89} +(-2.82843 - 2.82843i) q^{91} +(-4.24264 - 4.24264i) q^{92} +10.0000i q^{93} +12.0000i q^{94} +(0.707107 + 0.707107i) q^{96} +(9.89949 - 9.89949i) q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{13} + 4 q^{16} - 4 q^{18} - 8 q^{21} - 16 q^{38} - 48 q^{47} + 20 q^{50} + 8 q^{52} - 4 q^{64} - 16 q^{67} - 24 q^{69} + 4 q^{72} - 4 q^{81} + 8 q^{84} + 16 q^{86} + 72 q^{89} - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) −1.00000 −0.500000
\(5\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(6\) 0.707107 + 0.707107i 0.288675 + 0.288675i
\(7\) 1.41421 + 1.41421i 0.534522 + 0.534522i 0.921915 0.387392i \(-0.126624\pi\)
−0.387392 + 0.921915i \(0.626624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 1.41421 1.41421i 0.377964 0.377964i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 4.24264 + 4.24264i 0.884652 + 0.884652i 0.994003 0.109351i \(-0.0348774\pi\)
−0.109351 + 0.994003i \(0.534877\pi\)
\(24\) −0.707107 0.707107i −0.144338 0.144338i
\(25\) 5.00000i 1.00000i
\(26\) 2.00000i 0.392232i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) −1.41421 1.41421i −0.267261 0.267261i
\(29\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(30\) 0 0
\(31\) 7.07107 7.07107i 1.27000 1.27000i 0.323915 0.946086i \(-0.395001\pi\)
0.946086 0.323915i \(-0.104999\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) −5.65685 + 5.65685i −0.929981 + 0.929981i −0.997704 0.0677230i \(-0.978427\pi\)
0.0677230 + 0.997704i \(0.478427\pi\)
\(38\) −4.00000 −0.648886
\(39\) 1.41421 1.41421i 0.226455 0.226455i
\(40\) 0 0
\(41\) 4.24264 + 4.24264i 0.662589 + 0.662589i 0.955990 0.293400i \(-0.0947869\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(42\) 2.00000i 0.308607i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 4.24264 4.24264i 0.625543 0.625543i
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) −0.707107 + 0.707107i −0.102062 + 0.102062i
\(49\) 3.00000i 0.428571i
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0.707107 0.707107i 0.0962250 0.0962250i
\(55\) 0 0
\(56\) −1.41421 + 1.41421i −0.188982 + 0.188982i
\(57\) 2.82843 + 2.82843i 0.374634 + 0.374634i
\(58\) 0 0
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 0 0
\(61\) 5.65685 + 5.65685i 0.724286 + 0.724286i 0.969475 0.245189i \(-0.0788501\pi\)
−0.245189 + 0.969475i \(0.578850\pi\)
\(62\) −7.07107 7.07107i −0.898027 0.898027i
\(63\) 1.41421 1.41421i 0.178174 0.178174i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −4.24264 + 4.24264i −0.503509 + 0.503509i −0.912526 0.409018i \(-0.865871\pi\)
0.409018 + 0.912526i \(0.365871\pi\)
\(72\) 1.00000 0.117851
\(73\) 1.41421 1.41421i 0.165521 0.165521i −0.619486 0.785007i \(-0.712659\pi\)
0.785007 + 0.619486i \(0.212659\pi\)
\(74\) 5.65685 + 5.65685i 0.657596 + 0.657596i
\(75\) −3.53553 3.53553i −0.408248 0.408248i
\(76\) 4.00000i 0.458831i
\(77\) 0 0
\(78\) −1.41421 1.41421i −0.160128 0.160128i
\(79\) 7.07107 + 7.07107i 0.795557 + 0.795557i 0.982391 0.186834i \(-0.0598227\pi\)
−0.186834 + 0.982391i \(0.559823\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 4.24264 4.24264i 0.468521 0.468521i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) −2.82843 2.82843i −0.296500 0.296500i
\(92\) −4.24264 4.24264i −0.442326 0.442326i
\(93\) 10.0000i 1.03695i
\(94\) 12.0000i 1.23771i
\(95\) 0 0
\(96\) 0.707107 + 0.707107i 0.0721688 + 0.0721688i
\(97\) 9.89949 9.89949i 1.00514 1.00514i 0.00515471 0.999987i \(-0.498359\pi\)
0.999987 0.00515471i \(-0.00164080\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 5.00000i 0.500000i
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 2.00000i 0.196116i
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) 14.1421 + 14.1421i 1.35457 + 1.35457i 0.880471 + 0.474100i \(0.157226\pi\)
0.474100 + 0.880471i \(0.342774\pi\)
\(110\) 0 0
\(111\) 8.00000i 0.759326i
\(112\) 1.41421 + 1.41421i 0.133631 + 0.133631i
\(113\) 4.24264 + 4.24264i 0.399114 + 0.399114i 0.877920 0.478806i \(-0.158930\pi\)
−0.478806 + 0.877920i \(0.658930\pi\)
\(114\) 2.82843 2.82843i 0.264906 0.264906i
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000i 1.00000i
\(122\) 5.65685 5.65685i 0.512148 0.512148i
\(123\) −6.00000 −0.541002
\(124\) −7.07107 + 7.07107i −0.635001 + 0.635001i
\(125\) 0 0
\(126\) −1.41421 1.41421i −0.125988 0.125988i
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −2.82843 2.82843i −0.249029 0.249029i
\(130\) 0 0
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 5.65685 5.65685i 0.490511 0.490511i
\(134\) 4.00000i 0.345547i
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −5.65685 + 5.65685i −0.479808 + 0.479808i −0.905070 0.425262i \(-0.860182\pi\)
0.425262 + 0.905070i \(0.360182\pi\)
\(140\) 0 0
\(141\) 8.48528 8.48528i 0.714590 0.714590i
\(142\) 4.24264 + 4.24264i 0.356034 + 0.356034i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −1.41421 1.41421i −0.117041 0.117041i
\(147\) 2.12132 + 2.12132i 0.174964 + 0.174964i
\(148\) 5.65685 5.65685i 0.464991 0.464991i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −3.53553 + 3.53553i −0.288675 + 0.288675i
\(151\) 8.00000i 0.651031i 0.945537 + 0.325515i \(0.105538\pi\)
−0.945537 + 0.325515i \(0.894462\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.41421 + 1.41421i −0.113228 + 0.113228i
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 7.07107 7.07107i 0.562544 0.562544i
\(159\) −4.24264 4.24264i −0.336463 0.336463i
\(160\) 0 0
\(161\) 12.0000i 0.945732i
\(162\) 1.00000i 0.0785674i
\(163\) 14.1421 + 14.1421i 1.10770 + 1.10770i 0.993453 + 0.114245i \(0.0364449\pi\)
0.114245 + 0.993453i \(0.463555\pi\)
\(164\) −4.24264 4.24264i −0.331295 0.331295i
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −12.7279 + 12.7279i −0.984916 + 0.984916i −0.999888 0.0149717i \(-0.995234\pi\)
0.0149717 + 0.999888i \(0.495234\pi\)
\(168\) 2.00000i 0.154303i
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 4.00000i 0.304997i
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) −7.07107 + 7.07107i −0.534522 + 0.534522i
\(176\) 0 0
\(177\) −8.48528 8.48528i −0.637793 0.637793i
\(178\) 18.0000i 1.34916i
\(179\) 12.0000i 0.896922i 0.893802 + 0.448461i \(0.148028\pi\)
−0.893802 + 0.448461i \(0.851972\pi\)
\(180\) 0 0
\(181\) −5.65685 5.65685i −0.420471 0.420471i 0.464895 0.885366i \(-0.346092\pi\)
−0.885366 + 0.464895i \(0.846092\pi\)
\(182\) −2.82843 + 2.82843i −0.209657 + 0.209657i
\(183\) −8.00000 −0.591377
\(184\) −4.24264 + 4.24264i −0.312772 + 0.312772i
\(185\) 0 0
\(186\) 10.0000 0.733236
\(187\) 0 0
\(188\) 12.0000 0.875190
\(189\) 2.00000i 0.145479i
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) −9.89949 9.89949i −0.712581 0.712581i 0.254493 0.967075i \(-0.418091\pi\)
−0.967075 + 0.254493i \(0.918091\pi\)
\(194\) −9.89949 9.89949i −0.710742 0.710742i
\(195\) 0 0
\(196\) 3.00000i 0.214286i
\(197\) −8.48528 8.48528i −0.604551 0.604551i 0.336966 0.941517i \(-0.390599\pi\)
−0.941517 + 0.336966i \(0.890599\pi\)
\(198\) 0 0
\(199\) 1.41421 1.41421i 0.100251 0.100251i −0.655202 0.755453i \(-0.727417\pi\)
0.755453 + 0.655202i \(0.227417\pi\)
\(200\) −5.00000 −0.353553
\(201\) 2.82843 2.82843i 0.199502 0.199502i
\(202\) 6.00000i 0.422159i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) 4.24264 4.24264i 0.294884 0.294884i
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 5.65685 + 5.65685i 0.389434 + 0.389434i 0.874486 0.485052i \(-0.161199\pi\)
−0.485052 + 0.874486i \(0.661199\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.707107 + 0.707107i −0.0481125 + 0.0481125i
\(217\) 20.0000 1.35769
\(218\) 14.1421 14.1421i 0.957826 0.957826i
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) 0 0
\(222\) −8.00000 −0.536925
\(223\) 28.0000i 1.87502i −0.347960 0.937509i \(-0.613126\pi\)
0.347960 0.937509i \(-0.386874\pi\)
\(224\) 1.41421 1.41421i 0.0944911 0.0944911i
\(225\) 5.00000 0.333333
\(226\) 4.24264 4.24264i 0.282216 0.282216i
\(227\) −8.48528 8.48528i −0.563188 0.563188i 0.367024 0.930212i \(-0.380377\pi\)
−0.930212 + 0.367024i \(0.880377\pi\)
\(228\) −2.82843 2.82843i −0.187317 0.187317i
\(229\) 14.0000i 0.925146i −0.886581 0.462573i \(-0.846926\pi\)
0.886581 0.462573i \(-0.153074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.2132 + 21.2132i −1.38972 + 1.38972i −0.563837 + 0.825886i \(0.690675\pi\)
−0.825886 + 0.563837i \(0.809325\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 12.0000i 0.781133i
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 7.07107 7.07107i 0.455488 0.455488i −0.441683 0.897171i \(-0.645619\pi\)
0.897171 + 0.441683i \(0.145619\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) −5.65685 5.65685i −0.362143 0.362143i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 8.00000i 0.509028i
\(248\) 7.07107 + 7.07107i 0.449013 + 0.449013i
\(249\) −8.48528 8.48528i −0.537733 0.537733i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −1.41421 + 1.41421i −0.0890871 + 0.0890871i
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) −2.82843 + 2.82843i −0.176090 + 0.176090i
\(259\) −16.0000 −0.994192
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5.65685 5.65685i −0.346844 0.346844i
\(267\) −12.7279 + 12.7279i −0.778936 + 0.778936i
\(268\) 4.00000 0.244339
\(269\) −16.9706 + 16.9706i −1.03471 + 1.03471i −0.0353381 + 0.999375i \(0.511251\pi\)
−0.999375 + 0.0353381i \(0.988749\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 6.00000i 0.362473i
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) −2.82843 + 2.82843i −0.169944 + 0.169944i −0.786955 0.617011i \(-0.788343\pi\)
0.617011 + 0.786955i \(0.288343\pi\)
\(278\) 5.65685 + 5.65685i 0.339276 + 0.339276i
\(279\) −7.07107 7.07107i −0.423334 0.423334i
\(280\) 0 0
\(281\) 30.0000i 1.78965i −0.446417 0.894825i \(-0.647300\pi\)
0.446417 0.894825i \(-0.352700\pi\)
\(282\) −8.48528 8.48528i −0.505291 0.505291i
\(283\) 11.3137 + 11.3137i 0.672530 + 0.672530i 0.958299 0.285769i \(-0.0922488\pi\)
−0.285769 + 0.958299i \(0.592249\pi\)
\(284\) 4.24264 4.24264i 0.251754 0.251754i
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000i 0.708338i
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) 0 0
\(291\) 14.0000i 0.820695i
\(292\) −1.41421 + 1.41421i −0.0827606 + 0.0827606i
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 2.12132 2.12132i 0.123718 0.123718i
\(295\) 0 0
\(296\) −5.65685 5.65685i −0.328798 0.328798i
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) −8.48528 8.48528i −0.490716 0.490716i
\(300\) 3.53553 + 3.53553i 0.204124 + 0.204124i
\(301\) −5.65685 + 5.65685i −0.326056 + 0.326056i
\(302\) 8.00000 0.460348
\(303\) −4.24264 + 4.24264i −0.243733 + 0.243733i
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 2.82843 2.82843i 0.160904 0.160904i
\(310\) 0 0
\(311\) 12.7279 12.7279i 0.721734 0.721734i −0.247224 0.968958i \(-0.579518\pi\)
0.968958 + 0.247224i \(0.0795184\pi\)
\(312\) 1.41421 + 1.41421i 0.0800641 + 0.0800641i
\(313\) 9.89949 + 9.89949i 0.559553 + 0.559553i 0.929180 0.369627i \(-0.120515\pi\)
−0.369627 + 0.929180i \(0.620515\pi\)
\(314\) 10.0000i 0.564333i
\(315\) 0 0
\(316\) −7.07107 7.07107i −0.397779 0.397779i
\(317\) −8.48528 8.48528i −0.476581 0.476581i 0.427456 0.904036i \(-0.359410\pi\)
−0.904036 + 0.427456i \(0.859410\pi\)
\(318\) −4.24264 + 4.24264i −0.237915 + 0.237915i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 10.0000i 0.554700i
\(326\) 14.1421 14.1421i 0.783260 0.783260i
\(327\) −20.0000 −1.10600
\(328\) −4.24264 + 4.24264i −0.234261 + 0.234261i
\(329\) −16.9706 16.9706i −0.935617 0.935617i
\(330\) 0 0
\(331\) 20.0000i 1.09930i −0.835395 0.549650i \(-0.814761\pi\)
0.835395 0.549650i \(-0.185239\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 5.65685 + 5.65685i 0.309994 + 0.309994i
\(334\) 12.7279 + 12.7279i 0.696441 + 0.696441i
\(335\) 0 0
\(336\) −2.00000 −0.109109
\(337\) 15.5563 15.5563i 0.847408 0.847408i −0.142401 0.989809i \(-0.545482\pi\)
0.989809 + 0.142401i \(0.0454822\pi\)
\(338\) 9.00000i 0.489535i
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 4.00000i 0.216295i
\(343\) 14.1421 14.1421i 0.763604 0.763604i
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 0 0
\(347\) −8.48528 8.48528i −0.455514 0.455514i 0.441666 0.897180i \(-0.354388\pi\)
−0.897180 + 0.441666i \(0.854388\pi\)
\(348\) 0 0
\(349\) 26.0000i 1.39175i −0.718164 0.695874i \(-0.755017\pi\)
0.718164 0.695874i \(-0.244983\pi\)
\(350\) 7.07107 + 7.07107i 0.377964 + 0.377964i
\(351\) −1.41421 1.41421i −0.0754851 0.0754851i
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) −8.48528 + 8.48528i −0.450988 + 0.450988i
\(355\) 0 0
\(356\) −18.0000 −0.953998
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −5.65685 + 5.65685i −0.297318 + 0.297318i
\(363\) 7.77817 + 7.77817i 0.408248 + 0.408248i
\(364\) 2.82843 + 2.82843i 0.148250 + 0.148250i
\(365\) 0 0
\(366\) 8.00000i 0.418167i
\(367\) −7.07107 7.07107i −0.369107 0.369107i 0.498045 0.867151i \(-0.334052\pi\)
−0.867151 + 0.498045i \(0.834052\pi\)
\(368\) 4.24264 + 4.24264i 0.221163 + 0.221163i
\(369\) 4.24264 4.24264i 0.220863 0.220863i
\(370\) 0 0
\(371\) −8.48528 + 8.48528i −0.440534 + 0.440534i
\(372\) 10.0000i 0.518476i
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000i 0.618853i
\(377\) 0 0
\(378\) 2.00000 0.102869
\(379\) −19.7990 + 19.7990i −1.01701 + 1.01701i −0.0171529 + 0.999853i \(0.505460\pi\)
−0.999853 + 0.0171529i \(0.994540\pi\)
\(380\) 0 0
\(381\) 5.65685 + 5.65685i 0.289809 + 0.289809i
\(382\) 12.0000i 0.613973i
\(383\) 12.0000i 0.613171i 0.951843 + 0.306586i \(0.0991866\pi\)
−0.951843 + 0.306586i \(0.900813\pi\)
\(384\) −0.707107 0.707107i −0.0360844 0.0360844i
\(385\) 0 0
\(386\) −9.89949 + 9.89949i −0.503871 + 0.503871i
\(387\) 4.00000 0.203331
\(388\) −9.89949 + 9.89949i −0.502571 + 0.502571i
\(389\) 30.0000i 1.52106i −0.649303 0.760530i \(-0.724939\pi\)
0.649303 0.760530i \(-0.275061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −8.48528 + 8.48528i −0.427482 + 0.427482i
\(395\) 0 0
\(396\) 0 0
\(397\) 11.3137 + 11.3137i 0.567819 + 0.567819i 0.931517 0.363698i \(-0.118486\pi\)
−0.363698 + 0.931517i \(0.618486\pi\)
\(398\) −1.41421 1.41421i −0.0708881 0.0708881i
\(399\) 8.00000i 0.400501i
\(400\) 5.00000i 0.250000i
\(401\) −12.7279 12.7279i −0.635602 0.635602i 0.313865 0.949467i \(-0.398376\pi\)
−0.949467 + 0.313865i \(0.898376\pi\)
\(402\) −2.82843 2.82843i −0.141069 0.141069i
\(403\) −14.1421 + 14.1421i −0.704470 + 0.704470i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 4.24264 4.24264i 0.209274 0.209274i
\(412\) 4.00000 0.197066
\(413\) −16.9706 + 16.9706i −0.835067 + 0.835067i
\(414\) −4.24264 4.24264i −0.208514 0.208514i
\(415\) 0 0
\(416\) 2.00000i 0.0980581i
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) 25.4558 + 25.4558i 1.24360 + 1.24360i 0.958497 + 0.285102i \(0.0920276\pi\)
0.285102 + 0.958497i \(0.407972\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 5.65685 5.65685i 0.275371 0.275371i
\(423\) 12.0000i 0.583460i
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 16.0000i 0.774294i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.2132 + 21.2132i 1.02180 + 1.02180i 0.999757 + 0.0220471i \(0.00701839\pi\)
0.0220471 + 0.999757i \(0.492982\pi\)
\(432\) 0.707107 + 0.707107i 0.0340207 + 0.0340207i
\(433\) 14.0000i 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 20.0000i 0.960031i
\(435\) 0 0
\(436\) −14.1421 14.1421i −0.677285 0.677285i
\(437\) 16.9706 16.9706i 0.811812 0.811812i
\(438\) 2.00000 0.0955637
\(439\) −18.3848 + 18.3848i −0.877457 + 0.877457i −0.993271 0.115813i \(-0.963053\pi\)
0.115813 + 0.993271i \(0.463053\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 8.00000i 0.379663i
\(445\) 0 0
\(446\) −28.0000 −1.32584
\(447\) −4.24264 + 4.24264i −0.200670 + 0.200670i
\(448\) −1.41421 1.41421i −0.0668153 0.0668153i
\(449\) 4.24264 + 4.24264i 0.200223 + 0.200223i 0.800095 0.599873i \(-0.204782\pi\)
−0.599873 + 0.800095i \(0.704782\pi\)
\(450\) 5.00000i 0.235702i
\(451\) 0 0
\(452\) −4.24264 4.24264i −0.199557 0.199557i
\(453\) −5.65685 5.65685i −0.265782 0.265782i
\(454\) −8.48528 + 8.48528i −0.398234 + 0.398234i
\(455\) 0 0
\(456\) −2.82843 + 2.82843i −0.132453 + 0.132453i
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) −14.0000 −0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000i 1.39724i 0.715493 + 0.698620i \(0.246202\pi\)
−0.715493 + 0.698620i \(0.753798\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 21.2132 + 21.2132i 0.982683 + 0.982683i
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) −5.65685 5.65685i −0.261209 0.261209i
\(470\) 0 0
\(471\) −7.07107 + 7.07107i −0.325818 + 0.325818i
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) 10.0000i 0.459315i
\(475\) 20.0000 0.917663
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 12.0000i 0.548867i
\(479\) −4.24264 + 4.24264i −0.193851 + 0.193851i −0.797358 0.603507i \(-0.793770\pi\)
0.603507 + 0.797358i \(0.293770\pi\)
\(480\) 0 0
\(481\) 11.3137 11.3137i 0.515861 0.515861i
\(482\) −7.07107 7.07107i −0.322078 0.322078i
\(483\) −8.48528 8.48528i −0.386094 0.386094i
\(484\) 11.0000i 0.500000i
\(485\) 0 0
\(486\) −0.707107 0.707107i −0.0320750 0.0320750i
\(487\) 7.07107 + 7.07107i 0.320421 + 0.320421i 0.848928 0.528508i \(-0.177248\pi\)
−0.528508 + 0.848928i \(0.677248\pi\)
\(488\) −5.65685 + 5.65685i −0.256074 + 0.256074i
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 36.0000i 1.62466i −0.583200 0.812329i \(-0.698200\pi\)
0.583200 0.812329i \(-0.301800\pi\)
\(492\) 6.00000 0.270501
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 7.07107 7.07107i 0.317500 0.317500i
\(497\) −12.0000 −0.538274
\(498\) −8.48528 + 8.48528i −0.380235 + 0.380235i
\(499\) −22.6274 22.6274i −1.01294 1.01294i −0.999915 0.0130272i \(-0.995853\pi\)
−0.0130272 0.999915i \(-0.504147\pi\)
\(500\) 0 0
\(501\) 18.0000i 0.804181i
\(502\) 12.0000i 0.535586i
\(503\) −4.24264 4.24264i −0.189170 0.189170i 0.606167 0.795337i \(-0.292706\pi\)
−0.795337 + 0.606167i \(0.792706\pi\)
\(504\) 1.41421 + 1.41421i 0.0629941 + 0.0629941i
\(505\) 0 0
\(506\) 0 0
\(507\) 6.36396 6.36396i 0.282633 0.282633i
\(508\) 8.00000i 0.354943i
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 1.00000i 0.0441942i
\(513\) 2.82843 2.82843i 0.124878 0.124878i
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 2.82843 + 2.82843i 0.124515 + 0.124515i
\(517\) 0 0
\(518\) 16.0000i 0.703000i
\(519\) 0 0
\(520\) 0 0
\(521\) −4.24264 4.24264i −0.185873 0.185873i 0.608036 0.793909i \(-0.291958\pi\)
−0.793909 + 0.608036i \(0.791958\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) 10.0000i 0.436436i
\(526\) −12.0000 −0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000i 0.565217i
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) −5.65685 + 5.65685i −0.245256 + 0.245256i
\(533\) −8.48528 8.48528i −0.367538 0.367538i
\(534\) 12.7279 + 12.7279i 0.550791 + 0.550791i
\(535\) 0 0
\(536\) 4.00000i 0.172774i
\(537\) −8.48528 8.48528i −0.366167 0.366167i
\(538\) 16.9706 + 16.9706i 0.731653 + 0.731653i
\(539\) 0 0
\(540\) 0 0
\(541\) 11.3137 11.3137i 0.486414 0.486414i −0.420758 0.907173i \(-0.638236\pi\)
0.907173 + 0.420758i \(0.138236\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 8.00000 0.343313
\(544\) 0 0
\(545\) 0 0
\(546\) 4.00000i 0.171184i
\(547\) −5.65685 + 5.65685i −0.241870 + 0.241870i −0.817623 0.575754i \(-0.804709\pi\)
0.575754 + 0.817623i \(0.304709\pi\)
\(548\) 6.00000 0.256307
\(549\) 5.65685 5.65685i 0.241429 0.241429i
\(550\) 0 0
\(551\) 0 0
\(552\) 6.00000i 0.255377i
\(553\) 20.0000i 0.850487i
\(554\) 2.82843 + 2.82843i 0.120168 + 0.120168i
\(555\) 0 0
\(556\) 5.65685 5.65685i 0.239904 0.239904i
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) −7.07107 + 7.07107i −0.299342 + 0.299342i
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) −30.0000 −1.26547
\(563\) 12.0000i 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) −8.48528 + 8.48528i −0.357295 + 0.357295i
\(565\) 0 0
\(566\) 11.3137 11.3137i 0.475551 0.475551i
\(567\) −1.41421 1.41421i −0.0593914 0.0593914i
\(568\) −4.24264 4.24264i −0.178017 0.178017i
\(569\) 6.00000i 0.251533i 0.992060 + 0.125767i \(0.0401390\pi\)
−0.992060 + 0.125767i \(0.959861\pi\)
\(570\) 0 0
\(571\) 14.1421 + 14.1421i 0.591830 + 0.591830i 0.938125 0.346296i \(-0.112561\pi\)
−0.346296 + 0.938125i \(0.612561\pi\)
\(572\) 0 0
\(573\) −8.48528 + 8.48528i −0.354478 + 0.354478i
\(574\) 12.0000 0.500870
\(575\) −21.2132 + 21.2132i −0.884652 + 0.884652i
\(576\) 1.00000i 0.0416667i
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −16.9706 + 16.9706i −0.704058 + 0.704058i
\(582\) 14.0000 0.580319
\(583\) 0 0
\(584\) 1.41421 + 1.41421i 0.0585206 + 0.0585206i
\(585\) 0 0
\(586\) 18.0000i 0.743573i
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) −2.12132 2.12132i −0.0874818 0.0874818i
\(589\) −28.2843 28.2843i −1.16543 1.16543i
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) −5.65685 + 5.65685i −0.232495 + 0.232495i
\(593\) 18.0000i 0.739171i 0.929197 + 0.369586i \(0.120500\pi\)
−0.929197 + 0.369586i \(0.879500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 2.00000i 0.0818546i
\(598\) −8.48528 + 8.48528i −0.346989 + 0.346989i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 3.53553 3.53553i 0.144338 0.144338i
\(601\) 15.5563 + 15.5563i 0.634557 + 0.634557i 0.949208 0.314651i \(-0.101887\pi\)
−0.314651 + 0.949208i \(0.601887\pi\)
\(602\) 5.65685 + 5.65685i 0.230556 + 0.230556i
\(603\) 4.00000i 0.162893i
\(604\) 8.00000i 0.325515i
\(605\) 0 0
\(606\) 4.24264 + 4.24264i 0.172345 + 0.172345i
\(607\) −7.07107 + 7.07107i −0.287006 + 0.287006i −0.835895 0.548889i \(-0.815051\pi\)
0.548889 + 0.835895i \(0.315051\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 20.0000i 0.807134i
\(615\) 0 0
\(616\) 0 0
\(617\) 12.7279 12.7279i 0.512407 0.512407i −0.402856 0.915263i \(-0.631983\pi\)
0.915263 + 0.402856i \(0.131983\pi\)
\(618\) −2.82843 2.82843i −0.113776 0.113776i
\(619\) −19.7990 19.7990i −0.795789 0.795789i 0.186640 0.982428i \(-0.440240\pi\)
−0.982428 + 0.186640i \(0.940240\pi\)
\(620\) 0 0
\(621\) 6.00000i 0.240772i
\(622\) −12.7279 12.7279i −0.510343 0.510343i
\(623\) 25.4558 + 25.4558i 1.01987 + 1.01987i
\(624\) 1.41421 1.41421i 0.0566139 0.0566139i
\(625\) −25.0000 −1.00000
\(626\) 9.89949 9.89949i 0.395663 0.395663i
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 0 0
\(630\) 0 0
\(631\) 4.00000i 0.159237i −0.996825 0.0796187i \(-0.974630\pi\)
0.996825 0.0796187i \(-0.0253703\pi\)
\(632\) −7.07107 + 7.07107i −0.281272 + 0.281272i
\(633\) −8.00000 −0.317971
\(634\) −8.48528 + 8.48528i −0.336994 + 0.336994i
\(635\) 0 0
\(636\) 4.24264 + 4.24264i 0.168232 + 0.168232i
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 4.24264 + 4.24264i 0.167836 + 0.167836i
\(640\) 0 0
\(641\) 21.2132 21.2132i 0.837871 0.837871i −0.150707 0.988578i \(-0.548155\pi\)
0.988578 + 0.150707i \(0.0481551\pi\)
\(642\) 0 0
\(643\) 2.82843 2.82843i 0.111542 0.111542i −0.649133 0.760675i \(-0.724868\pi\)
0.760675 + 0.649133i \(0.224868\pi\)
\(644\) 12.0000i 0.472866i
\(645\) 0 0
\(646\) 0 0
\(647\) 36.0000 1.41531 0.707653 0.706560i \(-0.249754\pi\)
0.707653 + 0.706560i \(0.249754\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) −10.0000 −0.392232
\(651\) −14.1421 + 14.1421i −0.554274 + 0.554274i
\(652\) −14.1421 14.1421i −0.553849 0.553849i
\(653\) −16.9706 16.9706i −0.664109 0.664109i 0.292237 0.956346i \(-0.405601\pi\)
−0.956346 + 0.292237i \(0.905601\pi\)
\(654\) 20.0000i 0.782062i
\(655\) 0 0
\(656\) 4.24264 + 4.24264i 0.165647 + 0.165647i
\(657\) −1.41421 1.41421i −0.0551737 0.0551737i
\(658\) −16.9706 + 16.9706i −0.661581 + 0.661581i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 22.0000i 0.855701i −0.903850 0.427850i \(-0.859271\pi\)
0.903850 0.427850i \(-0.140729\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 5.65685 5.65685i 0.219199 0.219199i
\(667\) 0 0
\(668\) 12.7279 12.7279i 0.492458 0.492458i
\(669\) 19.7990 + 19.7990i 0.765473 + 0.765473i
\(670\) 0 0
\(671\) 0 0
\(672\) 2.00000i 0.0771517i
\(673\) −24.0416 24.0416i −0.926737 0.926737i 0.0707568 0.997494i \(-0.477459\pi\)
−0.997494 + 0.0707568i \(0.977459\pi\)
\(674\) −15.5563 15.5563i −0.599208 0.599208i
\(675\) −3.53553 + 3.53553i −0.136083 + 0.136083i
\(676\) 9.00000 0.346154
\(677\) 8.48528 8.48528i 0.326116 0.326116i −0.524992 0.851107i \(-0.675932\pi\)
0.851107 + 0.524992i \(0.175932\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 28.0000 1.07454
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 8.48528 8.48528i 0.324680 0.324680i −0.525879 0.850559i \(-0.676264\pi\)
0.850559 + 0.525879i \(0.176264\pi\)
\(684\) 4.00000 0.152944
\(685\) 0 0
\(686\) −14.1421 14.1421i −0.539949 0.539949i
\(687\) 9.89949 + 9.89949i 0.377689 + 0.377689i
\(688\) 4.00000i 0.152499i
\(689\) 12.0000i 0.457164i
\(690\) 0 0
\(691\) −22.6274 22.6274i −0.860788 0.860788i 0.130642 0.991430i \(-0.458296\pi\)
−0.991430 + 0.130642i \(0.958296\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −8.48528 + 8.48528i −0.322097 + 0.322097i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −26.0000 −0.984115
\(699\) 30.0000i 1.13470i
\(700\) 7.07107 7.07107i 0.267261 0.267261i
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −1.41421 + 1.41421i −0.0533761 + 0.0533761i
\(703\) 22.6274 + 22.6274i 0.853409 + 0.853409i
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000i 0.677439i
\(707\) 8.48528 + 8.48528i 0.319122 + 0.319122i
\(708\) 8.48528 + 8.48528i 0.318896 + 0.318896i
\(709\) 14.1421 14.1421i 0.531119 0.531119i −0.389786 0.920905i \(-0.627451\pi\)
0.920905 + 0.389786i \(0.127451\pi\)
\(710\) 0 0
\(711\) 7.07107 7.07107i 0.265186 0.265186i
\(712\) 18.0000i 0.674579i
\(713\) 60.0000 2.24702
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000i 0.448461i
\(717\) 8.48528 8.48528i 0.316889 0.316889i
\(718\) 0 0
\(719\) 4.24264 4.24264i 0.158224 0.158224i −0.623555 0.781779i \(-0.714312\pi\)
0.781779 + 0.623555i \(0.214312\pi\)
\(720\) 0 0
\(721\) −5.65685 5.65685i −0.210672 0.210672i
\(722\) 3.00000i 0.111648i
\(723\) 10.0000i 0.371904i
\(724\) 5.65685 + 5.65685i 0.210235 + 0.210235i
\(725\) 0 0
\(726\) 7.77817 7.77817i 0.288675 0.288675i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 2.82843 2.82843i 0.104828 0.104828i
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 0 0
\(732\) 8.00000 0.295689
\(733\) 26.0000i 0.960332i 0.877178 + 0.480166i \(0.159424\pi\)
−0.877178 + 0.480166i \(0.840576\pi\)
\(734\) −7.07107 + 7.07107i −0.260998 + 0.260998i
\(735\) 0 0
\(736\) 4.24264 4.24264i 0.156386 0.156386i
\(737\) 0 0
\(738\) −4.24264 4.24264i −0.156174 0.156174i
\(739\) 4.00000i 0.147142i 0.997290 + 0.0735712i \(0.0234396\pi\)
−0.997290 + 0.0735712i \(0.976560\pi\)
\(740\) 0 0
\(741\) −5.65685 5.65685i −0.207810 0.207810i
\(742\) 8.48528 + 8.48528i 0.311504 + 0.311504i
\(743\) 29.6985 29.6985i 1.08953 1.08953i 0.0939553 0.995576i \(-0.470049\pi\)
0.995576 0.0939553i \(-0.0299511\pi\)
\(744\) −10.0000 −0.366618
\(745\) 0 0
\(746\) 22.0000i 0.805477i
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.41421 + 1.41421i −0.0516054 + 0.0516054i −0.732439 0.680833i \(-0.761618\pi\)
0.680833 + 0.732439i \(0.261618\pi\)
\(752\) −12.0000 −0.437595
\(753\) 8.48528 8.48528i 0.309221 0.309221i
\(754\) 0 0
\(755\) 0 0
\(756\) 2.00000i 0.0727393i
\(757\) 34.0000i 1.23575i 0.786276 + 0.617876i \(0.212006\pi\)
−0.786276 + 0.617876i \(0.787994\pi\)
\(758\) 19.7990 + 19.7990i 0.719132 + 0.719132i
\(759\) 0 0
\(760\) 0 0
\(761\) 54.0000 1.95750 0.978749 0.205061i \(-0.0657392\pi\)
0.978749 + 0.205061i \(0.0657392\pi\)
\(762\) 5.65685 5.65685i 0.204926 0.204926i
\(763\) 40.0000i 1.44810i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 12.0000 0.433578
\(767\) 24.0000i 0.866590i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −12.7279 12.7279i −0.458385 0.458385i
\(772\) 9.89949 + 9.89949i 0.356291 + 0.356291i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 4.00000i 0.143777i
\(775\) 35.3553 + 35.3553i 1.27000 + 1.27000i
\(776\) 9.89949 + 9.89949i 0.355371 + 0.355371i
\(777\) 11.3137 11.3137i 0.405877 0.405877i
\(778\) −30.0000 −1.07555
\(779\) 16.9706 16.9706i 0.608034 0.608034i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 3.00000i 0.107143i
\(785\) 0 0
\(786\) 0 0
\(787\) 22.6274 22.6274i 0.806580 0.806580i −0.177534 0.984115i \(-0.556812\pi\)
0.984115 + 0.177534i \(0.0568121\pi\)
\(788\) 8.48528 + 8.48528i 0.302276 + 0.302276i
\(789\) 8.48528 + 8.48528i 0.302084 + 0.302084i
\(790\) 0 0
\(791\) 12.0000i 0.426671i
\(792\) 0 0
\(793\) −11.3137 11.3137i −0.401762 0.401762i
\(794\) 11.3137 11.3137i 0.401508 0.401508i
\(795\) 0 0
\(796\) −1.41421 + 1.41421i −0.0501255 + 0.0501255i
\(797\) 6.00000i 0.212531i 0.994338 + 0.106265i \(0.0338893\pi\)
−0.994338 + 0.106265i \(0.966111\pi\)
\(798\) 8.00000 0.283197
\(799\) 0 0
\(800\) 5.00000 0.176777
\(801\) 18.0000i 0.635999i
\(802\) −12.7279 + 12.7279i −0.449439 + 0.449439i
\(803\) 0 0
\(804\) −2.82843 + 2.82843i −0.0997509 + 0.0997509i
\(805\) 0 0
\(806\) 14.1421 + 14.1421i 0.498135 + 0.498135i
\(807\) 24.0000i 0.844840i
\(808\) 6.00000i 0.211079i
\(809\) 4.24264 + 4.24264i 0.149163 + 0.149163i 0.777744 0.628581i \(-0.216364\pi\)
−0.628581 + 0.777744i \(0.716364\pi\)
\(810\) 0 0
\(811\) −2.82843 + 2.82843i −0.0993195 + 0.0993195i −0.755021 0.655701i \(-0.772373\pi\)
0.655701 + 0.755021i \(0.272373\pi\)
\(812\) 0 0
\(813\) 11.3137 11.3137i 0.396789 0.396789i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 38.0000i 1.32864i
\(819\) −2.82843 + 2.82843i −0.0988332 + 0.0988332i
\(820\) 0 0
\(821\) −25.4558 + 25.4558i −0.888415 + 0.888415i −0.994371 0.105956i \(-0.966210\pi\)
0.105956 + 0.994371i \(0.466210\pi\)
\(822\) −4.24264 4.24264i −0.147979 0.147979i
\(823\) −24.0416 24.0416i −0.838039 0.838039i 0.150562 0.988601i \(-0.451892\pi\)
−0.988601 + 0.150562i \(0.951892\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 16.9706 + 16.9706i 0.590481 + 0.590481i
\(827\) −33.9411 33.9411i −1.18025 1.18025i −0.979680 0.200569i \(-0.935721\pi\)
−0.200569 0.979680i \(-0.564279\pi\)
\(828\) −4.24264 + 4.24264i −0.147442 + 0.147442i
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 4.00000i 0.138758i
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) 0 0
\(837\) 10.0000 0.345651
\(838\) 25.4558 25.4558i 0.879358 0.879358i
\(839\) 12.7279 + 12.7279i 0.439417 + 0.439417i 0.891816 0.452399i \(-0.149432\pi\)
−0.452399 + 0.891816i \(0.649432\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 22.0000i 0.758170i
\(843\) 21.2132 + 21.2132i 0.730622 + 0.730622i
\(844\) −5.65685 5.65685i −0.194717 0.194717i
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 15.5563 15.5563i 0.534522 0.534522i
\(848\) 6.00000i 0.206041i
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 6.00000i 0.205557i
\(853\) 19.7990 19.7990i 0.677905 0.677905i −0.281621 0.959526i \(-0.590872\pi\)
0.959526 + 0.281621i \(0.0908721\pi\)
\(854\) 16.0000 0.547509
\(855\) 0 0
\(856\) 0 0
\(857\) 4.24264 + 4.24264i 0.144926 + 0.144926i 0.775847 0.630921i \(-0.217323\pi\)
−0.630921 + 0.775847i \(0.717323\pi\)
\(858\) 0 0
\(859\) 28.0000i 0.955348i 0.878537 + 0.477674i \(0.158520\pi\)
−0.878537 + 0.477674i \(0.841480\pi\)
\(860\) 0 0
\(861\) −8.48528 8.48528i −0.289178 0.289178i
\(862\) 21.2132 21.2132i 0.722525 0.722525i
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0.707107 0.707107i 0.0240563 0.0240563i
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) −20.0000 −0.678844
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −14.1421 + 14.1421i −0.478913 + 0.478913i
\(873\) −9.89949 9.89949i −0.335047 0.335047i
\(874\) −16.9706 16.9706i −0.574038 0.574038i
\(875\) 0 0
\(876\) 2.00000i 0.0675737i
\(877\) −2.82843 2.82843i −0.0955092 0.0955092i 0.657738 0.753247i \(-0.271513\pi\)
−0.753247 + 0.657738i \(0.771513\pi\)
\(878\) 18.3848 + 18.3848i 0.620456 + 0.620456i
\(879\) 12.7279 12.7279i 0.429302 0.429302i
\(880\) 0 0
\(881\) 38.1838 38.1838i 1.28644 1.28644i 0.349512 0.936932i \(-0.386347\pi\)
0.936932 0.349512i \(-0.113653\pi\)
\(882\) 3.00000i 0.101015i
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 36.0000i 1.20944i
\(887\) 12.7279 12.7279i 0.427362 0.427362i −0.460367 0.887729i \(-0.652282\pi\)
0.887729 + 0.460367i \(0.152282\pi\)
\(888\) 8.00000 0.268462
\(889\) 11.3137 11.3137i 0.379450 0.379450i
\(890\) 0 0
\(891\) 0 0
\(892\) 28.0000i 0.937509i
\(893\) 48.0000i 1.60626i
\(894\) 4.24264 + 4.24264i 0.141895 + 0.141895i
\(895\) 0 0
\(896\) −1.41421 + 1.41421i −0.0472456 + 0.0472456i
\(897\) 12.0000 0.400668
\(898\) 4.24264 4.24264i 0.141579 0.141579i
\(899\) 0 0
\(900\) −5.00000 −0.166667
\(901\) 0 0
\(902\) 0 0
\(903\) 8.00000i 0.266223i
\(904\) −4.24264 + 4.24264i −0.141108 + 0.141108i
\(905\) 0 0
\(906\) −5.65685 + 5.65685i −0.187936 + 0.187936i
\(907\) 28.2843 + 28.2843i 0.939164 + 0.939164i 0.998253 0.0590889i \(-0.0188195\pi\)
−0.0590889 + 0.998253i \(0.518820\pi\)
\(908\) 8.48528 + 8.48528i 0.281594 + 0.281594i
\(909\) 6.00000i 0.199007i
\(910\) 0 0
\(911\) 4.24264 + 4.24264i 0.140565 + 0.140565i 0.773888 0.633323i \(-0.218309\pi\)
−0.633323 + 0.773888i \(0.718309\pi\)
\(912\) 2.82843 + 2.82843i 0.0936586 + 0.0936586i
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 14.0000i 0.462573i
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −14.1421 + 14.1421i −0.465999 + 0.465999i
\(922\) 30.0000 0.987997
\(923\) 8.48528 8.48528i 0.279296 0.279296i
\(924\) 0 0
\(925\) −28.2843 28.2843i −0.929981 0.929981i
\(926\) 20.0000i 0.657241i
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) 12.7279 + 12.7279i 0.417590 + 0.417590i 0.884372 0.466783i \(-0.154587\pi\)
−0.466783 + 0.884372i \(0.654587\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 21.2132 21.2132i 0.694862 0.694862i
\(933\) 18.0000i 0.589294i
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) 10.0000i 0.326686i −0.986569 0.163343i \(-0.947772\pi\)
0.986569 0.163343i \(-0.0522277\pi\)
\(938\) −5.65685 + 5.65685i −0.184703 + 0.184703i
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) −8.48528 8.48528i −0.276612 0.276612i 0.555143 0.831755i \(-0.312664\pi\)
−0.831755 + 0.555143i \(0.812664\pi\)
\(942\) 7.07107 + 7.07107i 0.230388 + 0.230388i
\(943\) 36.0000i 1.17232i
\(944\) 12.0000i 0.390567i
\(945\) 0 0
\(946\) 0 0
\(947\) 16.9706 16.9706i 0.551469 0.551469i −0.375396 0.926865i \(-0.622493\pi\)
0.926865 + 0.375396i \(0.122493\pi\)
\(948\) 10.0000 0.324785
\(949\) −2.82843 + 2.82843i −0.0918146 + 0.0918146i
\(950\) 20.0000i 0.648886i
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 6.00000i 0.194257i
\(955\) 0 0
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 4.24264 + 4.24264i 0.137073 + 0.137073i
\(959\) −8.48528 8.48528i −0.274004 0.274004i
\(960\) 0 0
\(961\) 69.0000i 2.22581i
\(962\) −11.3137 11.3137i −0.364769 0.364769i
\(963\) 0 0
\(964\) −7.07107 + 7.07107i −0.227744 + 0.227744i
\(965\) 0 0
\(966\) −8.48528 + 8.48528i −0.273009 + 0.273009i
\(967\) 4.00000i 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000i 0.385098i 0.981287 + 0.192549i \(0.0616755\pi\)
−0.981287 + 0.192549i \(0.938325\pi\)
\(972\) −0.707107 + 0.707107i −0.0226805 + 0.0226805i
\(973\) −16.0000 −0.512936
\(974\) 7.07107 7.07107i 0.226572 0.226572i
\(975\) 7.07107 + 7.07107i 0.226455 + 0.226455i
\(976\) 5.65685 + 5.65685i 0.181071 + 0.181071i
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) 20.0000i 0.639529i
\(979\) 0 0
\(980\) 0 0
\(981\) 14.1421 14.1421i 0.451524 0.451524i
\(982\) −36.0000 −1.14881
\(983\) −4.24264 + 4.24264i −0.135319 + 0.135319i −0.771522 0.636203i \(-0.780504\pi\)
0.636203 + 0.771522i \(0.280504\pi\)
\(984\) 6.00000i 0.191273i
\(985\) 0 0
\(986\) 0 0
\(987\) 24.0000 0.763928
\(988\) 8.00000i 0.254514i
\(989\) −16.9706 + 16.9706i −0.539633 + 0.539633i
\(990\) 0 0
\(991\) 1.41421 1.41421i 0.0449240 0.0449240i −0.684288 0.729212i \(-0.739887\pi\)
0.729212 + 0.684288i \(0.239887\pi\)
\(992\) −7.07107 7.07107i −0.224507 0.224507i
\(993\) 14.1421 + 14.1421i 0.448787 + 0.448787i
\(994\) 12.0000i 0.380617i
\(995\) 0 0
\(996\) 8.48528 + 8.48528i 0.268866 + 0.268866i
\(997\) −5.65685 5.65685i −0.179154 0.179154i 0.611833 0.790987i \(-0.290433\pi\)
−0.790987 + 0.611833i \(0.790433\pi\)
\(998\) −22.6274 + 22.6274i −0.716258 + 0.716258i
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.f.b.1483.1 4
17.2 even 8 1734.2.b.f.577.2 2
17.4 even 4 inner 1734.2.f.b.829.2 4
17.8 even 8 102.2.a.b.1.1 1
17.9 even 8 1734.2.a.b.1.1 1
17.13 even 4 inner 1734.2.f.b.829.1 4
17.15 even 8 1734.2.b.f.577.1 2
17.16 even 2 inner 1734.2.f.b.1483.2 4
51.8 odd 8 306.2.a.c.1.1 1
51.26 odd 8 5202.2.a.j.1.1 1
68.59 odd 8 816.2.a.d.1.1 1
85.8 odd 8 2550.2.d.g.2449.2 2
85.42 odd 8 2550.2.d.g.2449.1 2
85.59 even 8 2550.2.a.u.1.1 1
119.76 odd 8 4998.2.a.d.1.1 1
136.59 odd 8 3264.2.a.w.1.1 1
136.93 even 8 3264.2.a.i.1.1 1
204.59 even 8 2448.2.a.i.1.1 1
255.59 odd 8 7650.2.a.j.1.1 1
408.59 even 8 9792.2.a.ba.1.1 1
408.365 odd 8 9792.2.a.bg.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.a.b.1.1 1 17.8 even 8
306.2.a.c.1.1 1 51.8 odd 8
816.2.a.d.1.1 1 68.59 odd 8
1734.2.a.b.1.1 1 17.9 even 8
1734.2.b.f.577.1 2 17.15 even 8
1734.2.b.f.577.2 2 17.2 even 8
1734.2.f.b.829.1 4 17.13 even 4 inner
1734.2.f.b.829.2 4 17.4 even 4 inner
1734.2.f.b.1483.1 4 1.1 even 1 trivial
1734.2.f.b.1483.2 4 17.16 even 2 inner
2448.2.a.i.1.1 1 204.59 even 8
2550.2.a.u.1.1 1 85.59 even 8
2550.2.d.g.2449.1 2 85.42 odd 8
2550.2.d.g.2449.2 2 85.8 odd 8
3264.2.a.i.1.1 1 136.93 even 8
3264.2.a.w.1.1 1 136.59 odd 8
4998.2.a.d.1.1 1 119.76 odd 8
5202.2.a.j.1.1 1 51.26 odd 8
7650.2.a.j.1.1 1 255.59 odd 8
9792.2.a.ba.1.1 1 408.59 even 8
9792.2.a.bg.1.1 1 408.365 odd 8