L(s) = 1 | − i·2-s + (−0.707 + 0.707i)3-s − 4-s + (0.707 + 0.707i)6-s + (1.41 + 1.41i)7-s + i·8-s − 1.00i·9-s + (0.707 − 0.707i)12-s − 2·13-s + (1.41 − 1.41i)14-s + 16-s − 1.00·18-s − 4i·19-s − 2.00·21-s + (4.24 + 4.24i)23-s + (−0.707 − 0.707i)24-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.408 + 0.408i)3-s − 0.5·4-s + (0.288 + 0.288i)6-s + (0.534 + 0.534i)7-s + 0.353i·8-s − 0.333i·9-s + (0.204 − 0.204i)12-s − 0.554·13-s + (0.377 − 0.377i)14-s + 0.250·16-s − 0.235·18-s − 0.917i·19-s − 0.436·21-s + (0.884 + 0.884i)23-s + (−0.144 − 0.144i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.591i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.805 - 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.248567778\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.248567778\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 5 | \( 1 - 5iT^{2} \) |
| 7 | \( 1 + (-1.41 - 1.41i)T + 7iT^{2} \) |
| 11 | \( 1 + 11iT^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + (-4.24 - 4.24i)T + 23iT^{2} \) |
| 29 | \( 1 - 29iT^{2} \) |
| 31 | \( 1 + (-7.07 + 7.07i)T - 31iT^{2} \) |
| 37 | \( 1 + (5.65 - 5.65i)T - 37iT^{2} \) |
| 41 | \( 1 + (-4.24 - 4.24i)T + 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 12T + 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 - 12iT - 59T^{2} \) |
| 61 | \( 1 + (-5.65 - 5.65i)T + 61iT^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (4.24 - 4.24i)T - 71iT^{2} \) |
| 73 | \( 1 + (-1.41 + 1.41i)T - 73iT^{2} \) |
| 79 | \( 1 + (-7.07 - 7.07i)T + 79iT^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 - 18T + 89T^{2} \) |
| 97 | \( 1 + (-9.89 + 9.89i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.502032769849529953880988152407, −8.862225519542818667493172678223, −7.959545497642377253088111400242, −7.03711775319442913621994984932, −5.95334333542040162868209689683, −5.05267202835763243327965553295, −4.58475252298858521661771854950, −3.35724658657812919504985428241, −2.46047872318857943387618632463, −1.15336931777551645630911037085,
0.57793379928984029311764867084, 1.95671592656548890617737327598, 3.41260749672248664449552372753, 4.63251421641082375167313303061, 5.08344423352849282139574048712, 6.22791142417800084409828807417, 6.79404680877315482290870501156, 7.61996036106870334690278271679, 8.236873235017306718546443915655, 9.007864099903387242451776154439