Properties

Label 1734.2
Level 1734
Weight 2
Dimension 20663
Nonzero newspaces 10
Sturm bound 332928
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(332928\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1734))\).

Total New Old
Modular forms 84832 20663 64169
Cusp forms 81633 20663 60970
Eisenstein series 3199 0 3199

Trace form

\( 20663 q - q^{2} - q^{3} - q^{4} - 6 q^{5} - q^{6} - 8 q^{7} - q^{8} - q^{9} + O(q^{10}) \) \( 20663 q - q^{2} - q^{3} - q^{4} - 6 q^{5} - q^{6} - 8 q^{7} - q^{8} - q^{9} + 10 q^{10} + 52 q^{11} + 15 q^{12} + 50 q^{13} + 56 q^{14} + 90 q^{15} + 15 q^{16} + 32 q^{17} + 63 q^{18} + 44 q^{19} + 10 q^{20} + 88 q^{21} + 52 q^{22} + 40 q^{23} + 15 q^{24} + 113 q^{25} + 2 q^{26} - q^{27} - 8 q^{28} + 50 q^{29} - 6 q^{30} + 96 q^{31} - q^{32} + 52 q^{33} + 80 q^{35} - q^{36} + 90 q^{37} - 20 q^{38} - 14 q^{39} - 6 q^{40} + 38 q^{41} - 104 q^{42} + 52 q^{43} - 12 q^{44} - 118 q^{45} - 24 q^{46} - 48 q^{47} - q^{48} - 57 q^{49} - 31 q^{50} - 64 q^{51} - 14 q^{52} - 38 q^{53} - 113 q^{54} - 8 q^{55} - 8 q^{56} - 164 q^{57} - 30 q^{58} + 4 q^{59} - 70 q^{60} + 2 q^{61} - 32 q^{62} - 8 q^{63} - q^{64} - 68 q^{65} - 28 q^{66} - 4 q^{67} + 8 q^{68} + 104 q^{69} + 80 q^{70} + 120 q^{71} + 15 q^{72} + 262 q^{73} + 106 q^{74} + 193 q^{75} - 20 q^{76} + 224 q^{77} + 114 q^{78} + 240 q^{79} + 58 q^{80} + 15 q^{81} + 230 q^{82} + 172 q^{83} + 56 q^{84} + 200 q^{85} + 84 q^{86} + 66 q^{87} + 116 q^{88} + 102 q^{89} + 10 q^{90} + 272 q^{91} + 40 q^{92} - 32 q^{93} + 208 q^{94} + 136 q^{95} - q^{96} + 158 q^{97} + 87 q^{98} - 28 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1734))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1734.2.a \(\chi_{1734}(1, \cdot)\) 1734.2.a.a 1 1
1734.2.a.b 1
1734.2.a.c 1
1734.2.a.d 1
1734.2.a.e 1
1734.2.a.f 1
1734.2.a.g 1
1734.2.a.h 1
1734.2.a.i 1
1734.2.a.j 1
1734.2.a.k 1
1734.2.a.l 1
1734.2.a.m 1
1734.2.a.n 2
1734.2.a.o 2
1734.2.a.p 3
1734.2.a.q 3
1734.2.a.r 3
1734.2.a.s 3
1734.2.a.t 4
1734.2.a.u 4
1734.2.a.v 4
1734.2.a.w 4
1734.2.b \(\chi_{1734}(577, \cdot)\) 1734.2.b.a 2 1
1734.2.b.b 2
1734.2.b.c 2
1734.2.b.d 2
1734.2.b.e 2
1734.2.b.f 2
1734.2.b.g 2
1734.2.b.h 4
1734.2.b.i 6
1734.2.b.j 6
1734.2.b.k 8
1734.2.b.l 8
1734.2.f \(\chi_{1734}(829, \cdot)\) 1734.2.f.a 4 2
1734.2.f.b 4
1734.2.f.c 4
1734.2.f.d 4
1734.2.f.e 4
1734.2.f.f 4
1734.2.f.g 4
1734.2.f.h 4
1734.2.f.i 4
1734.2.f.j 8
1734.2.f.k 8
1734.2.f.l 8
1734.2.f.m 8
1734.2.f.n 12
1734.2.f.o 12
1734.2.h \(\chi_{1734}(733, \cdot)\) n/a 176 4
1734.2.i \(\chi_{1734}(65, \cdot)\) n/a 720 8
1734.2.k \(\chi_{1734}(103, \cdot)\) n/a 800 16
1734.2.n \(\chi_{1734}(67, \cdot)\) n/a 800 16
1734.2.o \(\chi_{1734}(13, \cdot)\) n/a 1600 32
1734.2.q \(\chi_{1734}(19, \cdot)\) n/a 3328 64
1734.2.t \(\chi_{1734}(5, \cdot)\) n/a 13056 128

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1734))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1734)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(578))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(867))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1734))\)\(^{\oplus 1}\)