Properties

Label 1734.2.b.d.577.1
Level $1734$
Weight $2$
Character 1734.577
Analytic conductor $13.846$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1734,2,Mod(577,1734)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1734.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,0,0,0,2,-2,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1734.577
Dual form 1734.2.b.d.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000i q^{3} +1.00000 q^{4} -4.00000i q^{5} -1.00000i q^{6} +2.00000i q^{7} +1.00000 q^{8} -1.00000 q^{9} -4.00000i q^{10} -1.00000i q^{12} -6.00000 q^{13} +2.00000i q^{14} -4.00000 q^{15} +1.00000 q^{16} -1.00000 q^{18} -4.00000 q^{19} -4.00000i q^{20} +2.00000 q^{21} -6.00000i q^{23} -1.00000i q^{24} -11.0000 q^{25} -6.00000 q^{26} +1.00000i q^{27} +2.00000i q^{28} -4.00000i q^{29} -4.00000 q^{30} -6.00000i q^{31} +1.00000 q^{32} +8.00000 q^{35} -1.00000 q^{36} -4.00000i q^{37} -4.00000 q^{38} +6.00000i q^{39} -4.00000i q^{40} +10.0000i q^{41} +2.00000 q^{42} +4.00000 q^{43} +4.00000i q^{45} -6.00000i q^{46} +4.00000 q^{47} -1.00000i q^{48} +3.00000 q^{49} -11.0000 q^{50} -6.00000 q^{52} +2.00000 q^{53} +1.00000i q^{54} +2.00000i q^{56} +4.00000i q^{57} -4.00000i q^{58} -12.0000 q^{59} -4.00000 q^{60} +4.00000i q^{61} -6.00000i q^{62} -2.00000i q^{63} +1.00000 q^{64} +24.0000i q^{65} -12.0000 q^{67} -6.00000 q^{69} +8.00000 q^{70} -6.00000i q^{71} -1.00000 q^{72} +2.00000i q^{73} -4.00000i q^{74} +11.0000i q^{75} -4.00000 q^{76} +6.00000i q^{78} -10.0000i q^{79} -4.00000i q^{80} +1.00000 q^{81} +10.0000i q^{82} +12.0000 q^{83} +2.00000 q^{84} +4.00000 q^{86} -4.00000 q^{87} -2.00000 q^{89} +4.00000i q^{90} -12.0000i q^{91} -6.00000i q^{92} -6.00000 q^{93} +4.00000 q^{94} +16.0000i q^{95} -1.00000i q^{96} +6.00000i q^{97} +3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{9} - 12 q^{13} - 8 q^{15} + 2 q^{16} - 2 q^{18} - 8 q^{19} + 4 q^{21} - 22 q^{25} - 12 q^{26} - 8 q^{30} + 2 q^{32} + 16 q^{35} - 2 q^{36} - 8 q^{38} + 4 q^{42}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) − 1.00000i − 0.577350i
\(4\) 1.00000 0.500000
\(5\) − 4.00000i − 1.78885i −0.447214 0.894427i \(-0.647584\pi\)
0.447214 0.894427i \(-0.352416\pi\)
\(6\) − 1.00000i − 0.408248i
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.00000 −0.333333
\(10\) − 4.00000i − 1.26491i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 2.00000i 0.534522i
\(15\) −4.00000 −1.03280
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) − 4.00000i − 0.894427i
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) − 1.00000i − 0.204124i
\(25\) −11.0000 −2.20000
\(26\) −6.00000 −1.17670
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) − 4.00000i − 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) −4.00000 −0.730297
\(31\) − 6.00000i − 1.07763i −0.842424 0.538816i \(-0.818872\pi\)
0.842424 0.538816i \(-0.181128\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) −1.00000 −0.166667
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) −4.00000 −0.648886
\(39\) 6.00000i 0.960769i
\(40\) − 4.00000i − 0.632456i
\(41\) 10.0000i 1.56174i 0.624695 + 0.780869i \(0.285223\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 2.00000 0.308607
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 4.00000i 0.596285i
\(46\) − 6.00000i − 0.884652i
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 3.00000 0.428571
\(50\) −11.0000 −1.55563
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 0 0
\(56\) 2.00000i 0.267261i
\(57\) 4.00000i 0.529813i
\(58\) − 4.00000i − 0.525226i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) −4.00000 −0.516398
\(61\) 4.00000i 0.512148i 0.966657 + 0.256074i \(0.0824290\pi\)
−0.966657 + 0.256074i \(0.917571\pi\)
\(62\) − 6.00000i − 0.762001i
\(63\) − 2.00000i − 0.251976i
\(64\) 1.00000 0.125000
\(65\) 24.0000i 2.97683i
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 8.00000 0.956183
\(71\) − 6.00000i − 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) −1.00000 −0.117851
\(73\) 2.00000i 0.234082i 0.993127 + 0.117041i \(0.0373409\pi\)
−0.993127 + 0.117041i \(0.962659\pi\)
\(74\) − 4.00000i − 0.464991i
\(75\) 11.0000i 1.27017i
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 6.00000i 0.679366i
\(79\) − 10.0000i − 1.12509i −0.826767 0.562544i \(-0.809823\pi\)
0.826767 0.562544i \(-0.190177\pi\)
\(80\) − 4.00000i − 0.447214i
\(81\) 1.00000 0.111111
\(82\) 10.0000i 1.10432i
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 4.00000i 0.421637i
\(91\) − 12.0000i − 1.25794i
\(92\) − 6.00000i − 0.625543i
\(93\) −6.00000 −0.622171
\(94\) 4.00000 0.412568
\(95\) 16.0000i 1.64157i
\(96\) − 1.00000i − 0.102062i
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −11.0000 −1.10000
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −6.00000 −0.588348
\(105\) − 8.00000i − 0.780720i
\(106\) 2.00000 0.194257
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) − 16.0000i − 1.53252i −0.642529 0.766261i \(-0.722115\pi\)
0.642529 0.766261i \(-0.277885\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 2.00000i 0.188982i
\(113\) − 2.00000i − 0.188144i −0.995565 0.0940721i \(-0.970012\pi\)
0.995565 0.0940721i \(-0.0299884\pi\)
\(114\) 4.00000i 0.374634i
\(115\) −24.0000 −2.23801
\(116\) − 4.00000i − 0.371391i
\(117\) 6.00000 0.554700
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) 11.0000 1.00000
\(122\) 4.00000i 0.362143i
\(123\) 10.0000 0.901670
\(124\) − 6.00000i − 0.538816i
\(125\) 24.0000i 2.14663i
\(126\) − 2.00000i − 0.178174i
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) − 4.00000i − 0.352180i
\(130\) 24.0000i 2.10494i
\(131\) − 16.0000i − 1.39793i −0.715158 0.698963i \(-0.753645\pi\)
0.715158 0.698963i \(-0.246355\pi\)
\(132\) 0 0
\(133\) − 8.00000i − 0.693688i
\(134\) −12.0000 −1.03664
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −6.00000 −0.510754
\(139\) 8.00000i 0.678551i 0.940687 + 0.339276i \(0.110182\pi\)
−0.940687 + 0.339276i \(0.889818\pi\)
\(140\) 8.00000 0.676123
\(141\) − 4.00000i − 0.336861i
\(142\) − 6.00000i − 0.503509i
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) −16.0000 −1.32873
\(146\) 2.00000i 0.165521i
\(147\) − 3.00000i − 0.247436i
\(148\) − 4.00000i − 0.328798i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 11.0000i 0.898146i
\(151\) 24.0000 1.95309 0.976546 0.215308i \(-0.0690756\pi\)
0.976546 + 0.215308i \(0.0690756\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) −24.0000 −1.92773
\(156\) 6.00000i 0.480384i
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) − 10.0000i − 0.795557i
\(159\) − 2.00000i − 0.158610i
\(160\) − 4.00000i − 0.316228i
\(161\) 12.0000 0.945732
\(162\) 1.00000 0.0785674
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 10.0000i 0.780869i
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) − 2.00000i − 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) 2.00000 0.154303
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 4.00000 0.304997
\(173\) − 4.00000i − 0.304114i −0.988372 0.152057i \(-0.951410\pi\)
0.988372 0.152057i \(-0.0485898\pi\)
\(174\) −4.00000 −0.303239
\(175\) − 22.0000i − 1.66304i
\(176\) 0 0
\(177\) 12.0000i 0.901975i
\(178\) −2.00000 −0.149906
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 4.00000i 0.298142i
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) − 12.0000i − 0.889499i
\(183\) 4.00000 0.295689
\(184\) − 6.00000i − 0.442326i
\(185\) −16.0000 −1.17634
\(186\) −6.00000 −0.439941
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) −2.00000 −0.145479
\(190\) 16.0000i 1.16076i
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) − 6.00000i − 0.431889i −0.976406 0.215945i \(-0.930717\pi\)
0.976406 0.215945i \(-0.0692831\pi\)
\(194\) 6.00000i 0.430775i
\(195\) 24.0000 1.71868
\(196\) 3.00000 0.214286
\(197\) − 8.00000i − 0.569976i −0.958531 0.284988i \(-0.908010\pi\)
0.958531 0.284988i \(-0.0919897\pi\)
\(198\) 0 0
\(199\) 14.0000i 0.992434i 0.868199 + 0.496217i \(0.165278\pi\)
−0.868199 + 0.496217i \(0.834722\pi\)
\(200\) −11.0000 −0.777817
\(201\) 12.0000i 0.846415i
\(202\) 14.0000 0.985037
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) 40.0000 2.79372
\(206\) 4.00000 0.278693
\(207\) 6.00000i 0.417029i
\(208\) −6.00000 −0.416025
\(209\) 0 0
\(210\) − 8.00000i − 0.552052i
\(211\) − 8.00000i − 0.550743i −0.961338 0.275371i \(-0.911199\pi\)
0.961338 0.275371i \(-0.0888008\pi\)
\(212\) 2.00000 0.137361
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) − 16.0000i − 1.09119i
\(216\) 1.00000i 0.0680414i
\(217\) 12.0000 0.814613
\(218\) − 16.0000i − 1.08366i
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) −4.00000 −0.268462
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 2.00000i 0.133631i
\(225\) 11.0000 0.733333
\(226\) − 2.00000i − 0.133038i
\(227\) − 4.00000i − 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) −24.0000 −1.58251
\(231\) 0 0
\(232\) − 4.00000i − 0.262613i
\(233\) − 6.00000i − 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 6.00000 0.392232
\(235\) − 16.0000i − 1.04372i
\(236\) −12.0000 −0.781133
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) −4.00000 −0.258199
\(241\) − 18.0000i − 1.15948i −0.814801 0.579741i \(-0.803154\pi\)
0.814801 0.579741i \(-0.196846\pi\)
\(242\) 11.0000 0.707107
\(243\) − 1.00000i − 0.0641500i
\(244\) 4.00000i 0.256074i
\(245\) − 12.0000i − 0.766652i
\(246\) 10.0000 0.637577
\(247\) 24.0000 1.52708
\(248\) − 6.00000i − 0.381000i
\(249\) − 12.0000i − 0.760469i
\(250\) 24.0000i 1.51789i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) − 2.00000i − 0.125988i
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) − 4.00000i − 0.249029i
\(259\) 8.00000 0.497096
\(260\) 24.0000i 1.48842i
\(261\) 4.00000i 0.247594i
\(262\) − 16.0000i − 0.988483i
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) − 8.00000i − 0.491436i
\(266\) − 8.00000i − 0.490511i
\(267\) 2.00000i 0.122398i
\(268\) −12.0000 −0.733017
\(269\) − 12.0000i − 0.731653i −0.930683 0.365826i \(-0.880786\pi\)
0.930683 0.365826i \(-0.119214\pi\)
\(270\) 4.00000 0.243432
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) −12.0000 −0.726273
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) − 8.00000i − 0.480673i −0.970690 0.240337i \(-0.922742\pi\)
0.970690 0.240337i \(-0.0772579\pi\)
\(278\) 8.00000i 0.479808i
\(279\) 6.00000i 0.359211i
\(280\) 8.00000 0.478091
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) − 4.00000i − 0.238197i
\(283\) − 32.0000i − 1.90220i −0.308879 0.951101i \(-0.599954\pi\)
0.308879 0.951101i \(-0.400046\pi\)
\(284\) − 6.00000i − 0.356034i
\(285\) 16.0000 0.947758
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) −16.0000 −0.939552
\(291\) 6.00000 0.351726
\(292\) 2.00000i 0.117041i
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) − 3.00000i − 0.174964i
\(295\) 48.0000i 2.79467i
\(296\) − 4.00000i − 0.232495i
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 36.0000i 2.08193i
\(300\) 11.0000i 0.635085i
\(301\) 8.00000i 0.461112i
\(302\) 24.0000 1.38104
\(303\) − 14.0000i − 0.804279i
\(304\) −4.00000 −0.229416
\(305\) 16.0000 0.916157
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) − 4.00000i − 0.227552i
\(310\) −24.0000 −1.36311
\(311\) 30.0000i 1.70114i 0.525859 + 0.850572i \(0.323744\pi\)
−0.525859 + 0.850572i \(0.676256\pi\)
\(312\) 6.00000i 0.339683i
\(313\) 26.0000i 1.46961i 0.678280 + 0.734803i \(0.262726\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 6.00000 0.338600
\(315\) −8.00000 −0.450749
\(316\) − 10.0000i − 0.562544i
\(317\) 16.0000i 0.898650i 0.893368 + 0.449325i \(0.148335\pi\)
−0.893368 + 0.449325i \(0.851665\pi\)
\(318\) − 2.00000i − 0.112154i
\(319\) 0 0
\(320\) − 4.00000i − 0.223607i
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 66.0000 3.66102
\(326\) − 12.0000i − 0.664619i
\(327\) −16.0000 −0.884802
\(328\) 10.0000i 0.552158i
\(329\) 8.00000i 0.441054i
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 12.0000 0.658586
\(333\) 4.00000i 0.219199i
\(334\) − 2.00000i − 0.109435i
\(335\) 48.0000i 2.62252i
\(336\) 2.00000 0.109109
\(337\) − 6.00000i − 0.326841i −0.986557 0.163420i \(-0.947747\pi\)
0.986557 0.163420i \(-0.0522527\pi\)
\(338\) 23.0000 1.25104
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 0 0
\(342\) 4.00000 0.216295
\(343\) 20.0000i 1.07990i
\(344\) 4.00000 0.215666
\(345\) 24.0000i 1.29212i
\(346\) − 4.00000i − 0.215041i
\(347\) 4.00000i 0.214731i 0.994220 + 0.107366i \(0.0342415\pi\)
−0.994220 + 0.107366i \(0.965758\pi\)
\(348\) −4.00000 −0.214423
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) − 22.0000i − 1.17595i
\(351\) − 6.00000i − 0.320256i
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 12.0000i 0.637793i
\(355\) −24.0000 −1.27379
\(356\) −2.00000 −0.106000
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 4.00000i 0.210819i
\(361\) −3.00000 −0.157895
\(362\) 20.0000i 1.05118i
\(363\) − 11.0000i − 0.577350i
\(364\) − 12.0000i − 0.628971i
\(365\) 8.00000 0.418739
\(366\) 4.00000 0.209083
\(367\) − 10.0000i − 0.521996i −0.965339 0.260998i \(-0.915948\pi\)
0.965339 0.260998i \(-0.0840516\pi\)
\(368\) − 6.00000i − 0.312772i
\(369\) − 10.0000i − 0.520579i
\(370\) −16.0000 −0.831800
\(371\) 4.00000i 0.207670i
\(372\) −6.00000 −0.311086
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 4.00000 0.206284
\(377\) 24.0000i 1.23606i
\(378\) −2.00000 −0.102869
\(379\) − 4.00000i − 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 16.0000i 0.820783i
\(381\) 8.00000i 0.409852i
\(382\) −4.00000 −0.204658
\(383\) −28.0000 −1.43073 −0.715367 0.698749i \(-0.753740\pi\)
−0.715367 + 0.698749i \(0.753740\pi\)
\(384\) − 1.00000i − 0.0510310i
\(385\) 0 0
\(386\) − 6.00000i − 0.305392i
\(387\) −4.00000 −0.203331
\(388\) 6.00000i 0.304604i
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 24.0000 1.21529
\(391\) 0 0
\(392\) 3.00000 0.151523
\(393\) −16.0000 −0.807093
\(394\) − 8.00000i − 0.403034i
\(395\) −40.0000 −2.01262
\(396\) 0 0
\(397\) − 20.0000i − 1.00377i −0.864934 0.501886i \(-0.832640\pi\)
0.864934 0.501886i \(-0.167360\pi\)
\(398\) 14.0000i 0.701757i
\(399\) −8.00000 −0.400501
\(400\) −11.0000 −0.550000
\(401\) − 30.0000i − 1.49813i −0.662497 0.749064i \(-0.730503\pi\)
0.662497 0.749064i \(-0.269497\pi\)
\(402\) 12.0000i 0.598506i
\(403\) 36.0000i 1.79329i
\(404\) 14.0000 0.696526
\(405\) − 4.00000i − 0.198762i
\(406\) 8.00000 0.397033
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 40.0000 1.97546
\(411\) 6.00000i 0.295958i
\(412\) 4.00000 0.197066
\(413\) − 24.0000i − 1.18096i
\(414\) 6.00000i 0.294884i
\(415\) − 48.0000i − 2.35623i
\(416\) −6.00000 −0.294174
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 12.0000i 0.586238i 0.956076 + 0.293119i \(0.0946933\pi\)
−0.956076 + 0.293119i \(0.905307\pi\)
\(420\) − 8.00000i − 0.390360i
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) − 8.00000i − 0.389434i
\(423\) −4.00000 −0.194487
\(424\) 2.00000 0.0971286
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) −8.00000 −0.387147
\(428\) 0 0
\(429\) 0 0
\(430\) − 16.0000i − 0.771589i
\(431\) − 14.0000i − 0.674356i −0.941441 0.337178i \(-0.890528\pi\)
0.941441 0.337178i \(-0.109472\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 12.0000 0.576018
\(435\) 16.0000i 0.767141i
\(436\) − 16.0000i − 0.766261i
\(437\) 24.0000i 1.14808i
\(438\) 2.00000 0.0955637
\(439\) − 10.0000i − 0.477274i −0.971109 0.238637i \(-0.923299\pi\)
0.971109 0.238637i \(-0.0767006\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) −4.00000 −0.189832
\(445\) 8.00000i 0.379236i
\(446\) 4.00000 0.189405
\(447\) 6.00000i 0.283790i
\(448\) 2.00000i 0.0944911i
\(449\) 26.0000i 1.22702i 0.789689 + 0.613508i \(0.210242\pi\)
−0.789689 + 0.613508i \(0.789758\pi\)
\(450\) 11.0000 0.518545
\(451\) 0 0
\(452\) − 2.00000i − 0.0940721i
\(453\) − 24.0000i − 1.12762i
\(454\) − 4.00000i − 0.187729i
\(455\) −48.0000 −2.25027
\(456\) 4.00000i 0.187317i
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) − 4.00000i − 0.185695i
\(465\) 24.0000i 1.11297i
\(466\) − 6.00000i − 0.277945i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 6.00000 0.277350
\(469\) − 24.0000i − 1.10822i
\(470\) − 16.0000i − 0.738025i
\(471\) − 6.00000i − 0.276465i
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) −10.0000 −0.459315
\(475\) 44.0000 2.01886
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) −20.0000 −0.914779
\(479\) 10.0000i 0.456912i 0.973554 + 0.228456i \(0.0733677\pi\)
−0.973554 + 0.228456i \(0.926632\pi\)
\(480\) −4.00000 −0.182574
\(481\) 24.0000i 1.09431i
\(482\) − 18.0000i − 0.819878i
\(483\) − 12.0000i − 0.546019i
\(484\) 11.0000 0.500000
\(485\) 24.0000 1.08978
\(486\) − 1.00000i − 0.0453609i
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 4.00000i 0.181071i
\(489\) −12.0000 −0.542659
\(490\) − 12.0000i − 0.542105i
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 10.0000 0.450835
\(493\) 0 0
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) − 6.00000i − 0.269408i
\(497\) 12.0000 0.538274
\(498\) − 12.0000i − 0.537733i
\(499\) − 32.0000i − 1.43252i −0.697835 0.716258i \(-0.745853\pi\)
0.697835 0.716258i \(-0.254147\pi\)
\(500\) 24.0000i 1.07331i
\(501\) −2.00000 −0.0893534
\(502\) 12.0000 0.535586
\(503\) 26.0000i 1.15928i 0.814872 + 0.579641i \(0.196807\pi\)
−0.814872 + 0.579641i \(0.803193\pi\)
\(504\) − 2.00000i − 0.0890871i
\(505\) − 56.0000i − 2.49197i
\(506\) 0 0
\(507\) − 23.0000i − 1.02147i
\(508\) −8.00000 −0.354943
\(509\) 26.0000 1.15243 0.576215 0.817298i \(-0.304529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 1.00000 0.0441942
\(513\) − 4.00000i − 0.176604i
\(514\) −18.0000 −0.793946
\(515\) − 16.0000i − 0.705044i
\(516\) − 4.00000i − 0.176090i
\(517\) 0 0
\(518\) 8.00000 0.351500
\(519\) −4.00000 −0.175581
\(520\) 24.0000i 1.05247i
\(521\) 10.0000i 0.438108i 0.975713 + 0.219054i \(0.0702971\pi\)
−0.975713 + 0.219054i \(0.929703\pi\)
\(522\) 4.00000i 0.175075i
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) − 16.0000i − 0.698963i
\(525\) −22.0000 −0.960159
\(526\) 12.0000 0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) − 8.00000i − 0.347498i
\(531\) 12.0000 0.520756
\(532\) − 8.00000i − 0.346844i
\(533\) − 60.0000i − 2.59889i
\(534\) 2.00000i 0.0865485i
\(535\) 0 0
\(536\) −12.0000 −0.518321
\(537\) − 12.0000i − 0.517838i
\(538\) − 12.0000i − 0.517357i
\(539\) 0 0
\(540\) 4.00000 0.172133
\(541\) − 12.0000i − 0.515920i −0.966156 0.257960i \(-0.916950\pi\)
0.966156 0.257960i \(-0.0830503\pi\)
\(542\) −16.0000 −0.687259
\(543\) 20.0000 0.858282
\(544\) 0 0
\(545\) −64.0000 −2.74146
\(546\) −12.0000 −0.513553
\(547\) − 8.00000i − 0.342055i −0.985266 0.171028i \(-0.945291\pi\)
0.985266 0.171028i \(-0.0547087\pi\)
\(548\) −6.00000 −0.256307
\(549\) − 4.00000i − 0.170716i
\(550\) 0 0
\(551\) 16.0000i 0.681623i
\(552\) −6.00000 −0.255377
\(553\) 20.0000 0.850487
\(554\) − 8.00000i − 0.339887i
\(555\) 16.0000i 0.679162i
\(556\) 8.00000i 0.339276i
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 6.00000i 0.254000i
\(559\) −24.0000 −1.01509
\(560\) 8.00000 0.338062
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) − 4.00000i − 0.168430i
\(565\) −8.00000 −0.336563
\(566\) − 32.0000i − 1.34506i
\(567\) 2.00000i 0.0839921i
\(568\) − 6.00000i − 0.251754i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 16.0000 0.670166
\(571\) − 44.0000i − 1.84134i −0.390339 0.920671i \(-0.627642\pi\)
0.390339 0.920671i \(-0.372358\pi\)
\(572\) 0 0
\(573\) 4.00000i 0.167102i
\(574\) −20.0000 −0.834784
\(575\) 66.0000i 2.75239i
\(576\) −1.00000 −0.0416667
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 0 0
\(579\) −6.00000 −0.249351
\(580\) −16.0000 −0.664364
\(581\) 24.0000i 0.995688i
\(582\) 6.00000 0.248708
\(583\) 0 0
\(584\) 2.00000i 0.0827606i
\(585\) − 24.0000i − 0.992278i
\(586\) 2.00000 0.0826192
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) − 3.00000i − 0.123718i
\(589\) 24.0000i 0.988903i
\(590\) 48.0000i 1.97613i
\(591\) −8.00000 −0.329076
\(592\) − 4.00000i − 0.164399i
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 14.0000 0.572982
\(598\) 36.0000i 1.47215i
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 11.0000i 0.449073i
\(601\) 38.0000i 1.55005i 0.631929 + 0.775026i \(0.282263\pi\)
−0.631929 + 0.775026i \(0.717737\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 12.0000 0.488678
\(604\) 24.0000 0.976546
\(605\) − 44.0000i − 1.78885i
\(606\) − 14.0000i − 0.568711i
\(607\) − 38.0000i − 1.54237i −0.636610 0.771186i \(-0.719664\pi\)
0.636610 0.771186i \(-0.280336\pi\)
\(608\) −4.00000 −0.162221
\(609\) − 8.00000i − 0.324176i
\(610\) 16.0000 0.647821
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) −12.0000 −0.484281
\(615\) − 40.0000i − 1.61296i
\(616\) 0 0
\(617\) − 6.00000i − 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) − 4.00000i − 0.160904i
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) −24.0000 −0.963863
\(621\) 6.00000 0.240772
\(622\) 30.0000i 1.20289i
\(623\) − 4.00000i − 0.160257i
\(624\) 6.00000i 0.240192i
\(625\) 41.0000 1.64000
\(626\) 26.0000i 1.03917i
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 0 0
\(630\) −8.00000 −0.318728
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) − 10.0000i − 0.397779i
\(633\) −8.00000 −0.317971
\(634\) 16.0000i 0.635441i
\(635\) 32.0000i 1.26988i
\(636\) − 2.00000i − 0.0793052i
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 6.00000i 0.237356i
\(640\) − 4.00000i − 0.158114i
\(641\) − 2.00000i − 0.0789953i −0.999220 0.0394976i \(-0.987424\pi\)
0.999220 0.0394976i \(-0.0125758\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 12.0000 0.472866
\(645\) −16.0000 −0.629999
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 66.0000 2.58873
\(651\) − 12.0000i − 0.470317i
\(652\) − 12.0000i − 0.469956i
\(653\) − 20.0000i − 0.782660i −0.920250 0.391330i \(-0.872015\pi\)
0.920250 0.391330i \(-0.127985\pi\)
\(654\) −16.0000 −0.625650
\(655\) −64.0000 −2.50069
\(656\) 10.0000i 0.390434i
\(657\) − 2.00000i − 0.0780274i
\(658\) 8.00000i 0.311872i
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) −32.0000 −1.24091
\(666\) 4.00000i 0.154997i
\(667\) −24.0000 −0.929284
\(668\) − 2.00000i − 0.0773823i
\(669\) − 4.00000i − 0.154649i
\(670\) 48.0000i 1.85440i
\(671\) 0 0
\(672\) 2.00000 0.0771517
\(673\) 26.0000i 1.00223i 0.865382 + 0.501113i \(0.167076\pi\)
−0.865382 + 0.501113i \(0.832924\pi\)
\(674\) − 6.00000i − 0.231111i
\(675\) − 11.0000i − 0.423390i
\(676\) 23.0000 0.884615
\(677\) 8.00000i 0.307465i 0.988113 + 0.153732i \(0.0491294\pi\)
−0.988113 + 0.153732i \(0.950871\pi\)
\(678\) −2.00000 −0.0768095
\(679\) −12.0000 −0.460518
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 4.00000 0.152944
\(685\) 24.0000i 0.916993i
\(686\) 20.0000i 0.763604i
\(687\) − 2.00000i − 0.0763048i
\(688\) 4.00000 0.152499
\(689\) −12.0000 −0.457164
\(690\) 24.0000i 0.913664i
\(691\) − 16.0000i − 0.608669i −0.952565 0.304334i \(-0.901566\pi\)
0.952565 0.304334i \(-0.0984340\pi\)
\(692\) − 4.00000i − 0.152057i
\(693\) 0 0
\(694\) 4.00000i 0.151838i
\(695\) 32.0000 1.21383
\(696\) −4.00000 −0.151620
\(697\) 0 0
\(698\) 30.0000 1.13552
\(699\) −6.00000 −0.226941
\(700\) − 22.0000i − 0.831522i
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) − 6.00000i − 0.226455i
\(703\) 16.0000i 0.603451i
\(704\) 0 0
\(705\) −16.0000 −0.602595
\(706\) 14.0000 0.526897
\(707\) 28.0000i 1.05305i
\(708\) 12.0000i 0.450988i
\(709\) − 16.0000i − 0.600893i −0.953799 0.300446i \(-0.902864\pi\)
0.953799 0.300446i \(-0.0971356\pi\)
\(710\) −24.0000 −0.900704
\(711\) 10.0000i 0.375029i
\(712\) −2.00000 −0.0749532
\(713\) −36.0000 −1.34821
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 20.0000i 0.746914i
\(718\) 0 0
\(719\) 42.0000i 1.56634i 0.621810 + 0.783168i \(0.286397\pi\)
−0.621810 + 0.783168i \(0.713603\pi\)
\(720\) 4.00000i 0.149071i
\(721\) 8.00000i 0.297936i
\(722\) −3.00000 −0.111648
\(723\) −18.0000 −0.669427
\(724\) 20.0000i 0.743294i
\(725\) 44.0000i 1.63412i
\(726\) − 11.0000i − 0.408248i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) − 12.0000i − 0.444750i
\(729\) −1.00000 −0.0370370
\(730\) 8.00000 0.296093
\(731\) 0 0
\(732\) 4.00000 0.147844
\(733\) −18.0000 −0.664845 −0.332423 0.943131i \(-0.607866\pi\)
−0.332423 + 0.943131i \(0.607866\pi\)
\(734\) − 10.0000i − 0.369107i
\(735\) −12.0000 −0.442627
\(736\) − 6.00000i − 0.221163i
\(737\) 0 0
\(738\) − 10.0000i − 0.368105i
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) −16.0000 −0.588172
\(741\) − 24.0000i − 0.881662i
\(742\) 4.00000i 0.146845i
\(743\) 38.0000i 1.39408i 0.717030 + 0.697042i \(0.245501\pi\)
−0.717030 + 0.697042i \(0.754499\pi\)
\(744\) −6.00000 −0.219971
\(745\) 24.0000i 0.879292i
\(746\) −14.0000 −0.512576
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 24.0000 0.876356
\(751\) − 34.0000i − 1.24068i −0.784334 0.620339i \(-0.786995\pi\)
0.784334 0.620339i \(-0.213005\pi\)
\(752\) 4.00000 0.145865
\(753\) − 12.0000i − 0.437304i
\(754\) 24.0000i 0.874028i
\(755\) − 96.0000i − 3.49380i
\(756\) −2.00000 −0.0727393
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) − 4.00000i − 0.145287i
\(759\) 0 0
\(760\) 16.0000i 0.580381i
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 8.00000i 0.289809i
\(763\) 32.0000 1.15848
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 72.0000 2.59977
\(768\) − 1.00000i − 0.0360844i
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) 18.0000i 0.648254i
\(772\) − 6.00000i − 0.215945i
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) −4.00000 −0.143777
\(775\) 66.0000i 2.37079i
\(776\) 6.00000i 0.215387i
\(777\) − 8.00000i − 0.286998i
\(778\) 14.0000 0.501924
\(779\) − 40.0000i − 1.43315i
\(780\) 24.0000 0.859338
\(781\) 0 0
\(782\) 0 0
\(783\) 4.00000 0.142948
\(784\) 3.00000 0.107143
\(785\) − 24.0000i − 0.856597i
\(786\) −16.0000 −0.570701
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) − 8.00000i − 0.284988i
\(789\) − 12.0000i − 0.427211i
\(790\) −40.0000 −1.42314
\(791\) 4.00000 0.142224
\(792\) 0 0
\(793\) − 24.0000i − 0.852265i
\(794\) − 20.0000i − 0.709773i
\(795\) −8.00000 −0.283731
\(796\) 14.0000i 0.496217i
\(797\) −46.0000 −1.62940 −0.814702 0.579880i \(-0.803099\pi\)
−0.814702 + 0.579880i \(0.803099\pi\)
\(798\) −8.00000 −0.283197
\(799\) 0 0
\(800\) −11.0000 −0.388909
\(801\) 2.00000 0.0706665
\(802\) − 30.0000i − 1.05934i
\(803\) 0 0
\(804\) 12.0000i 0.423207i
\(805\) − 48.0000i − 1.69178i
\(806\) 36.0000i 1.26805i
\(807\) −12.0000 −0.422420
\(808\) 14.0000 0.492518
\(809\) 26.0000i 0.914111i 0.889438 + 0.457056i \(0.151096\pi\)
−0.889438 + 0.457056i \(0.848904\pi\)
\(810\) − 4.00000i − 0.140546i
\(811\) − 12.0000i − 0.421377i −0.977553 0.210688i \(-0.932429\pi\)
0.977553 0.210688i \(-0.0675706\pi\)
\(812\) 8.00000 0.280745
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) −48.0000 −1.68137
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) −26.0000 −0.909069
\(819\) 12.0000i 0.419314i
\(820\) 40.0000 1.39686
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 6.00000i 0.209274i
\(823\) − 18.0000i − 0.627441i −0.949515 0.313720i \(-0.898425\pi\)
0.949515 0.313720i \(-0.101575\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) − 24.0000i − 0.835067i
\(827\) − 16.0000i − 0.556375i −0.960527 0.278187i \(-0.910266\pi\)
0.960527 0.278187i \(-0.0897336\pi\)
\(828\) 6.00000i 0.208514i
\(829\) 6.00000 0.208389 0.104194 0.994557i \(-0.466774\pi\)
0.104194 + 0.994557i \(0.466774\pi\)
\(830\) − 48.0000i − 1.66610i
\(831\) −8.00000 −0.277517
\(832\) −6.00000 −0.208013
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 6.00000 0.207390
\(838\) 12.0000i 0.414533i
\(839\) 30.0000i 1.03572i 0.855467 + 0.517858i \(0.173270\pi\)
−0.855467 + 0.517858i \(0.826730\pi\)
\(840\) − 8.00000i − 0.276026i
\(841\) 13.0000 0.448276
\(842\) 34.0000 1.17172
\(843\) − 18.0000i − 0.619953i
\(844\) − 8.00000i − 0.275371i
\(845\) − 92.0000i − 3.16490i
\(846\) −4.00000 −0.137523
\(847\) 22.0000i 0.755929i
\(848\) 2.00000 0.0686803
\(849\) −32.0000 −1.09824
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) −6.00000 −0.205557
\(853\) − 16.0000i − 0.547830i −0.961754 0.273915i \(-0.911681\pi\)
0.961754 0.273915i \(-0.0883186\pi\)
\(854\) −8.00000 −0.273754
\(855\) − 16.0000i − 0.547188i
\(856\) 0 0
\(857\) 10.0000i 0.341593i 0.985306 + 0.170797i \(0.0546341\pi\)
−0.985306 + 0.170797i \(0.945366\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) − 16.0000i − 0.545595i
\(861\) 20.0000i 0.681598i
\(862\) − 14.0000i − 0.476842i
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) −16.0000 −0.544016
\(866\) 18.0000 0.611665
\(867\) 0 0
\(868\) 12.0000 0.407307
\(869\) 0 0
\(870\) 16.0000i 0.542451i
\(871\) 72.0000 2.43963
\(872\) − 16.0000i − 0.541828i
\(873\) − 6.00000i − 0.203069i
\(874\) 24.0000i 0.811812i
\(875\) −48.0000 −1.62270
\(876\) 2.00000 0.0675737
\(877\) 24.0000i 0.810422i 0.914223 + 0.405211i \(0.132802\pi\)
−0.914223 + 0.405211i \(0.867198\pi\)
\(878\) − 10.0000i − 0.337484i
\(879\) − 2.00000i − 0.0674583i
\(880\) 0 0
\(881\) 50.0000i 1.68454i 0.539054 + 0.842271i \(0.318782\pi\)
−0.539054 + 0.842271i \(0.681218\pi\)
\(882\) −3.00000 −0.101015
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 0 0
\(885\) 48.0000 1.61350
\(886\) 12.0000 0.403148
\(887\) 18.0000i 0.604381i 0.953248 + 0.302190i \(0.0977178\pi\)
−0.953248 + 0.302190i \(0.902282\pi\)
\(888\) −4.00000 −0.134231
\(889\) − 16.0000i − 0.536623i
\(890\) 8.00000i 0.268161i
\(891\) 0 0
\(892\) 4.00000 0.133930
\(893\) −16.0000 −0.535420
\(894\) 6.00000i 0.200670i
\(895\) − 48.0000i − 1.60446i
\(896\) 2.00000i 0.0668153i
\(897\) 36.0000 1.20201
\(898\) 26.0000i 0.867631i
\(899\) −24.0000 −0.800445
\(900\) 11.0000 0.366667
\(901\) 0 0
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) − 2.00000i − 0.0665190i
\(905\) 80.0000 2.65929
\(906\) − 24.0000i − 0.797347i
\(907\) − 24.0000i − 0.796907i −0.917189 0.398453i \(-0.869547\pi\)
0.917189 0.398453i \(-0.130453\pi\)
\(908\) − 4.00000i − 0.132745i
\(909\) −14.0000 −0.464351
\(910\) −48.0000 −1.59118
\(911\) − 26.0000i − 0.861418i −0.902491 0.430709i \(-0.858263\pi\)
0.902491 0.430709i \(-0.141737\pi\)
\(912\) 4.00000i 0.132453i
\(913\) 0 0
\(914\) −22.0000 −0.727695
\(915\) − 16.0000i − 0.528944i
\(916\) 2.00000 0.0660819
\(917\) 32.0000 1.05673
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) −24.0000 −0.791257
\(921\) 12.0000i 0.395413i
\(922\) 10.0000 0.329332
\(923\) 36.0000i 1.18495i
\(924\) 0 0
\(925\) 44.0000i 1.44671i
\(926\) −4.00000 −0.131448
\(927\) −4.00000 −0.131377
\(928\) − 4.00000i − 0.131306i
\(929\) 34.0000i 1.11550i 0.830008 + 0.557752i \(0.188336\pi\)
−0.830008 + 0.557752i \(0.811664\pi\)
\(930\) 24.0000i 0.786991i
\(931\) −12.0000 −0.393284
\(932\) − 6.00000i − 0.196537i
\(933\) 30.0000 0.982156
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) − 24.0000i − 0.783628i
\(939\) 26.0000 0.848478
\(940\) − 16.0000i − 0.521862i
\(941\) − 48.0000i − 1.56476i −0.622804 0.782378i \(-0.714007\pi\)
0.622804 0.782378i \(-0.285993\pi\)
\(942\) − 6.00000i − 0.195491i
\(943\) 60.0000 1.95387
\(944\) −12.0000 −0.390567
\(945\) 8.00000i 0.260240i
\(946\) 0 0
\(947\) − 24.0000i − 0.779895i −0.920837 0.389948i \(-0.872493\pi\)
0.920837 0.389948i \(-0.127507\pi\)
\(948\) −10.0000 −0.324785
\(949\) − 12.0000i − 0.389536i
\(950\) 44.0000 1.42755
\(951\) 16.0000 0.518836
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) −2.00000 −0.0647524
\(955\) 16.0000i 0.517748i
\(956\) −20.0000 −0.646846
\(957\) 0 0
\(958\) 10.0000i 0.323085i
\(959\) − 12.0000i − 0.387500i
\(960\) −4.00000 −0.129099
\(961\) −5.00000 −0.161290
\(962\) 24.0000i 0.773791i
\(963\) 0 0
\(964\) − 18.0000i − 0.579741i
\(965\) −24.0000 −0.772587
\(966\) − 12.0000i − 0.386094i
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) 24.0000 0.770594
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) −16.0000 −0.512936
\(974\) 38.0000i 1.21760i
\(975\) − 66.0000i − 2.11369i
\(976\) 4.00000i 0.128037i
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) −12.0000 −0.383718
\(979\) 0 0
\(980\) − 12.0000i − 0.383326i
\(981\) 16.0000i 0.510841i
\(982\) 20.0000 0.638226
\(983\) − 38.0000i − 1.21201i −0.795460 0.606006i \(-0.792771\pi\)
0.795460 0.606006i \(-0.207229\pi\)
\(984\) 10.0000 0.318788
\(985\) −32.0000 −1.01960
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 24.0000 0.763542
\(989\) − 24.0000i − 0.763156i
\(990\) 0 0
\(991\) − 34.0000i − 1.08005i −0.841650 0.540023i \(-0.818416\pi\)
0.841650 0.540023i \(-0.181584\pi\)
\(992\) − 6.00000i − 0.190500i
\(993\) 20.0000i 0.634681i
\(994\) 12.0000 0.380617
\(995\) 56.0000 1.77532
\(996\) − 12.0000i − 0.380235i
\(997\) 20.0000i 0.633406i 0.948525 + 0.316703i \(0.102576\pi\)
−0.948525 + 0.316703i \(0.897424\pi\)
\(998\) − 32.0000i − 1.01294i
\(999\) 4.00000 0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.b.d.577.1 2
17.2 even 8 1734.2.f.g.829.1 4
17.4 even 4 102.2.a.a.1.1 1
17.8 even 8 1734.2.f.g.1483.1 4
17.9 even 8 1734.2.f.g.1483.2 4
17.13 even 4 1734.2.a.h.1.1 1
17.15 even 8 1734.2.f.g.829.2 4
17.16 even 2 inner 1734.2.b.d.577.2 2
51.38 odd 4 306.2.a.d.1.1 1
51.47 odd 4 5202.2.a.g.1.1 1
68.55 odd 4 816.2.a.h.1.1 1
85.4 even 4 2550.2.a.be.1.1 1
85.38 odd 4 2550.2.d.q.2449.2 2
85.72 odd 4 2550.2.d.q.2449.1 2
119.55 odd 4 4998.2.a.x.1.1 1
136.21 even 4 3264.2.a.bf.1.1 1
136.123 odd 4 3264.2.a.p.1.1 1
204.191 even 4 2448.2.a.t.1.1 1
255.89 odd 4 7650.2.a.z.1.1 1
408.293 odd 4 9792.2.a.a.1.1 1
408.395 even 4 9792.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.a.a.1.1 1 17.4 even 4
306.2.a.d.1.1 1 51.38 odd 4
816.2.a.h.1.1 1 68.55 odd 4
1734.2.a.h.1.1 1 17.13 even 4
1734.2.b.d.577.1 2 1.1 even 1 trivial
1734.2.b.d.577.2 2 17.16 even 2 inner
1734.2.f.g.829.1 4 17.2 even 8
1734.2.f.g.829.2 4 17.15 even 8
1734.2.f.g.1483.1 4 17.8 even 8
1734.2.f.g.1483.2 4 17.9 even 8
2448.2.a.t.1.1 1 204.191 even 4
2550.2.a.be.1.1 1 85.4 even 4
2550.2.d.q.2449.1 2 85.72 odd 4
2550.2.d.q.2449.2 2 85.38 odd 4
3264.2.a.p.1.1 1 136.123 odd 4
3264.2.a.bf.1.1 1 136.21 even 4
4998.2.a.x.1.1 1 119.55 odd 4
5202.2.a.g.1.1 1 51.47 odd 4
7650.2.a.z.1.1 1 255.89 odd 4
9792.2.a.a.1.1 1 408.293 odd 4
9792.2.a.b.1.1 1 408.395 even 4