# Properties

 Label 1734.2.b.d Level $1734$ Weight $2$ Character orbit 1734.b Analytic conductor $13.846$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1734,2,Mod(577,1734)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1734, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1734.577");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1734 = 2 \cdot 3 \cdot 17^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1734.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$13.8460597105$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 102) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + i q^{3} + q^{4} + 4 i q^{5} + i q^{6} - 2 i q^{7} + q^{8} - q^{9} +O(q^{10})$$ q + q^2 + i * q^3 + q^4 + 4*i * q^5 + i * q^6 - 2*i * q^7 + q^8 - q^9 $$q + q^{2} + i q^{3} + q^{4} + 4 i q^{5} + i q^{6} - 2 i q^{7} + q^{8} - q^{9} + 4 i q^{10} + i q^{12} - 6 q^{13} - 2 i q^{14} - 4 q^{15} + q^{16} - q^{18} - 4 q^{19} + 4 i q^{20} + 2 q^{21} + 6 i q^{23} + i q^{24} - 11 q^{25} - 6 q^{26} - i q^{27} - 2 i q^{28} + 4 i q^{29} - 4 q^{30} + 6 i q^{31} + q^{32} + 8 q^{35} - q^{36} + 4 i q^{37} - 4 q^{38} - 6 i q^{39} + 4 i q^{40} - 10 i q^{41} + 2 q^{42} + 4 q^{43} - 4 i q^{45} + 6 i q^{46} + 4 q^{47} + i q^{48} + 3 q^{49} - 11 q^{50} - 6 q^{52} + 2 q^{53} - i q^{54} - 2 i q^{56} - 4 i q^{57} + 4 i q^{58} - 12 q^{59} - 4 q^{60} - 4 i q^{61} + 6 i q^{62} + 2 i q^{63} + q^{64} - 24 i q^{65} - 12 q^{67} - 6 q^{69} + 8 q^{70} + 6 i q^{71} - q^{72} - 2 i q^{73} + 4 i q^{74} - 11 i q^{75} - 4 q^{76} - 6 i q^{78} + 10 i q^{79} + 4 i q^{80} + q^{81} - 10 i q^{82} + 12 q^{83} + 2 q^{84} + 4 q^{86} - 4 q^{87} - 2 q^{89} - 4 i q^{90} + 12 i q^{91} + 6 i q^{92} - 6 q^{93} + 4 q^{94} - 16 i q^{95} + i q^{96} - 6 i q^{97} + 3 q^{98} +O(q^{100})$$ q + q^2 + i * q^3 + q^4 + 4*i * q^5 + i * q^6 - 2*i * q^7 + q^8 - q^9 + 4*i * q^10 + i * q^12 - 6 * q^13 - 2*i * q^14 - 4 * q^15 + q^16 - q^18 - 4 * q^19 + 4*i * q^20 + 2 * q^21 + 6*i * q^23 + i * q^24 - 11 * q^25 - 6 * q^26 - i * q^27 - 2*i * q^28 + 4*i * q^29 - 4 * q^30 + 6*i * q^31 + q^32 + 8 * q^35 - q^36 + 4*i * q^37 - 4 * q^38 - 6*i * q^39 + 4*i * q^40 - 10*i * q^41 + 2 * q^42 + 4 * q^43 - 4*i * q^45 + 6*i * q^46 + 4 * q^47 + i * q^48 + 3 * q^49 - 11 * q^50 - 6 * q^52 + 2 * q^53 - i * q^54 - 2*i * q^56 - 4*i * q^57 + 4*i * q^58 - 12 * q^59 - 4 * q^60 - 4*i * q^61 + 6*i * q^62 + 2*i * q^63 + q^64 - 24*i * q^65 - 12 * q^67 - 6 * q^69 + 8 * q^70 + 6*i * q^71 - q^72 - 2*i * q^73 + 4*i * q^74 - 11*i * q^75 - 4 * q^76 - 6*i * q^78 + 10*i * q^79 + 4*i * q^80 + q^81 - 10*i * q^82 + 12 * q^83 + 2 * q^84 + 4 * q^86 - 4 * q^87 - 2 * q^89 - 4*i * q^90 + 12*i * q^91 + 6*i * q^92 - 6 * q^93 + 4 * q^94 - 16*i * q^95 + i * q^96 - 6*i * q^97 + 3 * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{9}+O(q^{10})$$ 2 * q + 2 * q^2 + 2 * q^4 + 2 * q^8 - 2 * q^9 $$2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{9} - 12 q^{13} - 8 q^{15} + 2 q^{16} - 2 q^{18} - 8 q^{19} + 4 q^{21} - 22 q^{25} - 12 q^{26} - 8 q^{30} + 2 q^{32} + 16 q^{35} - 2 q^{36} - 8 q^{38} + 4 q^{42} + 8 q^{43} + 8 q^{47} + 6 q^{49} - 22 q^{50} - 12 q^{52} + 4 q^{53} - 24 q^{59} - 8 q^{60} + 2 q^{64} - 24 q^{67} - 12 q^{69} + 16 q^{70} - 2 q^{72} - 8 q^{76} + 2 q^{81} + 24 q^{83} + 4 q^{84} + 8 q^{86} - 8 q^{87} - 4 q^{89} - 12 q^{93} + 8 q^{94} + 6 q^{98}+O(q^{100})$$ 2 * q + 2 * q^2 + 2 * q^4 + 2 * q^8 - 2 * q^9 - 12 * q^13 - 8 * q^15 + 2 * q^16 - 2 * q^18 - 8 * q^19 + 4 * q^21 - 22 * q^25 - 12 * q^26 - 8 * q^30 + 2 * q^32 + 16 * q^35 - 2 * q^36 - 8 * q^38 + 4 * q^42 + 8 * q^43 + 8 * q^47 + 6 * q^49 - 22 * q^50 - 12 * q^52 + 4 * q^53 - 24 * q^59 - 8 * q^60 + 2 * q^64 - 24 * q^67 - 12 * q^69 + 16 * q^70 - 2 * q^72 - 8 * q^76 + 2 * q^81 + 24 * q^83 + 4 * q^84 + 8 * q^86 - 8 * q^87 - 4 * q^89 - 12 * q^93 + 8 * q^94 + 6 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times$$.

 $$n$$ $$1157$$ $$1159$$ $$\chi(n)$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 − 1.00000i 1.00000i
1.00000 1.00000i 1.00000 4.00000i 1.00000i 2.00000i 1.00000 −1.00000 4.00000i
577.2 1.00000 1.00000i 1.00000 4.00000i 1.00000i 2.00000i 1.00000 −1.00000 4.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.2.b.d 2
17.b even 2 1 inner 1734.2.b.d 2
17.c even 4 1 102.2.a.a 1
17.c even 4 1 1734.2.a.h 1
17.d even 8 4 1734.2.f.g 4
51.f odd 4 1 306.2.a.d 1
51.f odd 4 1 5202.2.a.g 1
68.f odd 4 1 816.2.a.h 1
85.f odd 4 1 2550.2.d.q 2
85.i odd 4 1 2550.2.d.q 2
85.j even 4 1 2550.2.a.be 1
119.f odd 4 1 4998.2.a.x 1
136.i even 4 1 3264.2.a.bf 1
136.j odd 4 1 3264.2.a.p 1
204.l even 4 1 2448.2.a.t 1
255.i odd 4 1 7650.2.a.z 1
408.q even 4 1 9792.2.a.b 1
408.t odd 4 1 9792.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.a.a 1 17.c even 4 1
306.2.a.d 1 51.f odd 4 1
816.2.a.h 1 68.f odd 4 1
1734.2.a.h 1 17.c even 4 1
1734.2.b.d 2 1.a even 1 1 trivial
1734.2.b.d 2 17.b even 2 1 inner
1734.2.f.g 4 17.d even 8 4
2448.2.a.t 1 204.l even 4 1
2550.2.a.be 1 85.j even 4 1
2550.2.d.q 2 85.f odd 4 1
2550.2.d.q 2 85.i odd 4 1
3264.2.a.p 1 136.j odd 4 1
3264.2.a.bf 1 136.i even 4 1
4998.2.a.x 1 119.f odd 4 1
5202.2.a.g 1 51.f odd 4 1
7650.2.a.z 1 255.i odd 4 1
9792.2.a.a 1 408.t odd 4 1
9792.2.a.b 1 408.q even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1734, [\chi])$$:

 $$T_{5}^{2} + 16$$ T5^2 + 16 $$T_{7}^{2} + 4$$ T7^2 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2} + 16$$
$7$ $$T^{2} + 4$$
$11$ $$T^{2}$$
$13$ $$(T + 6)^{2}$$
$17$ $$T^{2}$$
$19$ $$(T + 4)^{2}$$
$23$ $$T^{2} + 36$$
$29$ $$T^{2} + 16$$
$31$ $$T^{2} + 36$$
$37$ $$T^{2} + 16$$
$41$ $$T^{2} + 100$$
$43$ $$(T - 4)^{2}$$
$47$ $$(T - 4)^{2}$$
$53$ $$(T - 2)^{2}$$
$59$ $$(T + 12)^{2}$$
$61$ $$T^{2} + 16$$
$67$ $$(T + 12)^{2}$$
$71$ $$T^{2} + 36$$
$73$ $$T^{2} + 4$$
$79$ $$T^{2} + 100$$
$83$ $$(T - 12)^{2}$$
$89$ $$(T + 2)^{2}$$
$97$ $$T^{2} + 36$$