Properties

Label 1728.4.a.bu.1.3
Level $1728$
Weight $4$
Character 1728.1
Self dual yes
Analytic conductor $101.955$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-10,0,-19,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.955300490\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2708.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 864)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.716463\) of defining polynomial
Character \(\chi\) \(=\) 1728.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.9734 q^{5} -22.3492 q^{7} +31.7250 q^{11} +68.2426 q^{13} -15.7250 q^{17} -52.8934 q^{19} -178.210 q^{23} -4.58534 q^{25} -294.687 q^{29} -78.2837 q^{31} -245.245 q^{35} +323.628 q^{37} +134.497 q^{41} -144.202 q^{43} +155.590 q^{47} +156.485 q^{49} +232.717 q^{53} +348.130 q^{55} -355.045 q^{59} -463.698 q^{61} +748.851 q^{65} +750.314 q^{67} -299.591 q^{71} +605.426 q^{73} -709.027 q^{77} -1004.10 q^{79} -381.791 q^{83} -172.556 q^{85} +1224.31 q^{89} -1525.17 q^{91} -580.419 q^{95} -895.299 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 10 q^{5} - 19 q^{7} + 42 q^{11} - 15 q^{13} + 6 q^{17} + 13 q^{19} - 42 q^{23} + 213 q^{25} - 328 q^{29} + 88 q^{31} + 90 q^{35} + 99 q^{37} + 424 q^{41} - 316 q^{43} + 534 q^{47} + 30 q^{49} - 692 q^{53}+ \cdots - 1197 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 10.9734 0.981487 0.490744 0.871304i \(-0.336725\pi\)
0.490744 + 0.871304i \(0.336725\pi\)
\(6\) 0 0
\(7\) −22.3492 −1.20674 −0.603371 0.797461i \(-0.706176\pi\)
−0.603371 + 0.797461i \(0.706176\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 31.7250 0.869585 0.434793 0.900531i \(-0.356822\pi\)
0.434793 + 0.900531i \(0.356822\pi\)
\(12\) 0 0
\(13\) 68.2426 1.45593 0.727965 0.685614i \(-0.240466\pi\)
0.727965 + 0.685614i \(0.240466\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.7250 −0.224345 −0.112173 0.993689i \(-0.535781\pi\)
−0.112173 + 0.993689i \(0.535781\pi\)
\(18\) 0 0
\(19\) −52.8934 −0.638663 −0.319331 0.947643i \(-0.603458\pi\)
−0.319331 + 0.947643i \(0.603458\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −178.210 −1.61563 −0.807813 0.589439i \(-0.799349\pi\)
−0.807813 + 0.589439i \(0.799349\pi\)
\(24\) 0 0
\(25\) −4.58534 −0.0366827
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −294.687 −1.88696 −0.943482 0.331424i \(-0.892471\pi\)
−0.943482 + 0.331424i \(0.892471\pi\)
\(30\) 0 0
\(31\) −78.2837 −0.453554 −0.226777 0.973947i \(-0.572819\pi\)
−0.226777 + 0.973947i \(0.572819\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −245.245 −1.18440
\(36\) 0 0
\(37\) 323.628 1.43795 0.718974 0.695037i \(-0.244612\pi\)
0.718974 + 0.695037i \(0.244612\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 134.497 0.512314 0.256157 0.966635i \(-0.417544\pi\)
0.256157 + 0.966635i \(0.417544\pi\)
\(42\) 0 0
\(43\) −144.202 −0.511408 −0.255704 0.966755i \(-0.582307\pi\)
−0.255704 + 0.966755i \(0.582307\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 155.590 0.482874 0.241437 0.970417i \(-0.422381\pi\)
0.241437 + 0.970417i \(0.422381\pi\)
\(48\) 0 0
\(49\) 156.485 0.456225
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 232.717 0.603135 0.301567 0.953445i \(-0.402490\pi\)
0.301567 + 0.953445i \(0.402490\pi\)
\(54\) 0 0
\(55\) 348.130 0.853487
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −355.045 −0.783440 −0.391720 0.920084i \(-0.628120\pi\)
−0.391720 + 0.920084i \(0.628120\pi\)
\(60\) 0 0
\(61\) −463.698 −0.973287 −0.486643 0.873601i \(-0.661779\pi\)
−0.486643 + 0.873601i \(0.661779\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 748.851 1.42898
\(66\) 0 0
\(67\) 750.314 1.36814 0.684071 0.729416i \(-0.260208\pi\)
0.684071 + 0.729416i \(0.260208\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −299.591 −0.500773 −0.250387 0.968146i \(-0.580558\pi\)
−0.250387 + 0.968146i \(0.580558\pi\)
\(72\) 0 0
\(73\) 605.426 0.970682 0.485341 0.874325i \(-0.338696\pi\)
0.485341 + 0.874325i \(0.338696\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −709.027 −1.04936
\(78\) 0 0
\(79\) −1004.10 −1.43000 −0.715001 0.699123i \(-0.753574\pi\)
−0.715001 + 0.699123i \(0.753574\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −381.791 −0.504904 −0.252452 0.967609i \(-0.581237\pi\)
−0.252452 + 0.967609i \(0.581237\pi\)
\(84\) 0 0
\(85\) −172.556 −0.220192
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1224.31 1.45816 0.729082 0.684427i \(-0.239947\pi\)
0.729082 + 0.684427i \(0.239947\pi\)
\(90\) 0 0
\(91\) −1525.17 −1.75693
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −580.419 −0.626839
\(96\) 0 0
\(97\) −895.299 −0.937153 −0.468577 0.883423i \(-0.655233\pi\)
−0.468577 + 0.883423i \(0.655233\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1976.47 −1.94719 −0.973596 0.228279i \(-0.926690\pi\)
−0.973596 + 0.228279i \(0.926690\pi\)
\(102\) 0 0
\(103\) −77.3991 −0.0740423 −0.0370212 0.999314i \(-0.511787\pi\)
−0.0370212 + 0.999314i \(0.511787\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1478.93 1.33620 0.668099 0.744072i \(-0.267108\pi\)
0.668099 + 0.744072i \(0.267108\pi\)
\(108\) 0 0
\(109\) −1541.75 −1.35480 −0.677401 0.735614i \(-0.736894\pi\)
−0.677401 + 0.735614i \(0.736894\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1333.67 1.11028 0.555138 0.831758i \(-0.312665\pi\)
0.555138 + 0.831758i \(0.312665\pi\)
\(114\) 0 0
\(115\) −1955.56 −1.58572
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 351.440 0.270726
\(120\) 0 0
\(121\) −324.526 −0.243821
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1421.99 −1.01749
\(126\) 0 0
\(127\) −1747.86 −1.22124 −0.610620 0.791924i \(-0.709080\pi\)
−0.610620 + 0.791924i \(0.709080\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1721.94 1.14845 0.574224 0.818698i \(-0.305304\pi\)
0.574224 + 0.818698i \(0.305304\pi\)
\(132\) 0 0
\(133\) 1182.12 0.770701
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1668.02 −1.04021 −0.520104 0.854103i \(-0.674107\pi\)
−0.520104 + 0.854103i \(0.674107\pi\)
\(138\) 0 0
\(139\) −0.0513537 −3.13364e−5 0 −1.56682e−5 1.00000i \(-0.500005\pi\)
−1.56682e−5 1.00000i \(0.500005\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2164.99 1.26606
\(144\) 0 0
\(145\) −3233.70 −1.85203
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −750.148 −0.412447 −0.206223 0.978505i \(-0.566117\pi\)
−0.206223 + 0.978505i \(0.566117\pi\)
\(150\) 0 0
\(151\) −2096.18 −1.12970 −0.564849 0.825194i \(-0.691066\pi\)
−0.564849 + 0.825194i \(0.691066\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −859.035 −0.445157
\(156\) 0 0
\(157\) 732.068 0.372136 0.186068 0.982537i \(-0.440426\pi\)
0.186068 + 0.982537i \(0.440426\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3982.85 1.94964
\(162\) 0 0
\(163\) −881.402 −0.423538 −0.211769 0.977320i \(-0.567922\pi\)
−0.211769 + 0.977320i \(0.567922\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1084.11 −0.502342 −0.251171 0.967943i \(-0.580816\pi\)
−0.251171 + 0.967943i \(0.580816\pi\)
\(168\) 0 0
\(169\) 2460.05 1.11973
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1367.53 −0.600992 −0.300496 0.953783i \(-0.597152\pi\)
−0.300496 + 0.953783i \(0.597152\pi\)
\(174\) 0 0
\(175\) 102.479 0.0442666
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4353.18 −1.81772 −0.908861 0.417100i \(-0.863047\pi\)
−0.908861 + 0.417100i \(0.863047\pi\)
\(180\) 0 0
\(181\) 1221.81 0.501749 0.250874 0.968020i \(-0.419282\pi\)
0.250874 + 0.968020i \(0.419282\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3551.28 1.41133
\(186\) 0 0
\(187\) −498.874 −0.195087
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4893.29 1.85375 0.926874 0.375374i \(-0.122486\pi\)
0.926874 + 0.375374i \(0.122486\pi\)
\(192\) 0 0
\(193\) 1313.07 0.489724 0.244862 0.969558i \(-0.421257\pi\)
0.244862 + 0.969558i \(0.421257\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1433.46 −0.518424 −0.259212 0.965820i \(-0.583463\pi\)
−0.259212 + 0.965820i \(0.583463\pi\)
\(198\) 0 0
\(199\) −2195.05 −0.781926 −0.390963 0.920406i \(-0.627858\pi\)
−0.390963 + 0.920406i \(0.627858\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6586.00 2.27708
\(204\) 0 0
\(205\) 1475.88 0.502830
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1678.04 −0.555372
\(210\) 0 0
\(211\) −5087.29 −1.65983 −0.829914 0.557891i \(-0.811611\pi\)
−0.829914 + 0.557891i \(0.811611\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1582.38 −0.501940
\(216\) 0 0
\(217\) 1749.57 0.547322
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1073.11 −0.326631
\(222\) 0 0
\(223\) −259.388 −0.0778918 −0.0389459 0.999241i \(-0.512400\pi\)
−0.0389459 + 0.999241i \(0.512400\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2426.46 −0.709471 −0.354736 0.934967i \(-0.615429\pi\)
−0.354736 + 0.934967i \(0.615429\pi\)
\(228\) 0 0
\(229\) 1531.81 0.442029 0.221014 0.975271i \(-0.429063\pi\)
0.221014 + 0.975271i \(0.429063\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 199.568 0.0561121 0.0280560 0.999606i \(-0.491068\pi\)
0.0280560 + 0.999606i \(0.491068\pi\)
\(234\) 0 0
\(235\) 1707.34 0.473935
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3220.94 −0.871737 −0.435869 0.900010i \(-0.643559\pi\)
−0.435869 + 0.900010i \(0.643559\pi\)
\(240\) 0 0
\(241\) 4118.46 1.10080 0.550401 0.834900i \(-0.314475\pi\)
0.550401 + 0.834900i \(0.314475\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1717.17 0.447779
\(246\) 0 0
\(247\) −3609.59 −0.929848
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2819.39 0.708998 0.354499 0.935056i \(-0.384651\pi\)
0.354499 + 0.935056i \(0.384651\pi\)
\(252\) 0 0
\(253\) −5653.71 −1.40492
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6147.72 −1.49216 −0.746078 0.665859i \(-0.768065\pi\)
−0.746078 + 0.665859i \(0.768065\pi\)
\(258\) 0 0
\(259\) −7232.81 −1.73523
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2733.39 −0.640866 −0.320433 0.947271i \(-0.603828\pi\)
−0.320433 + 0.947271i \(0.603828\pi\)
\(264\) 0 0
\(265\) 2553.69 0.591969
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8246.94 1.86924 0.934619 0.355651i \(-0.115741\pi\)
0.934619 + 0.355651i \(0.115741\pi\)
\(270\) 0 0
\(271\) −7355.03 −1.64866 −0.824329 0.566111i \(-0.808447\pi\)
−0.824329 + 0.566111i \(0.808447\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −145.470 −0.0318988
\(276\) 0 0
\(277\) −2712.26 −0.588317 −0.294159 0.955757i \(-0.595039\pi\)
−0.294159 + 0.955757i \(0.595039\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5128.42 1.08874 0.544370 0.838845i \(-0.316769\pi\)
0.544370 + 0.838845i \(0.316769\pi\)
\(282\) 0 0
\(283\) −9016.16 −1.89383 −0.946917 0.321478i \(-0.895820\pi\)
−0.946917 + 0.321478i \(0.895820\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3005.89 −0.618230
\(288\) 0 0
\(289\) −4665.73 −0.949669
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2784.33 0.555161 0.277580 0.960702i \(-0.410467\pi\)
0.277580 + 0.960702i \(0.410467\pi\)
\(294\) 0 0
\(295\) −3896.04 −0.768936
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12161.5 −2.35224
\(300\) 0 0
\(301\) 3222.78 0.617137
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5088.33 −0.955268
\(306\) 0 0
\(307\) −2805.87 −0.521627 −0.260813 0.965389i \(-0.583991\pi\)
−0.260813 + 0.965389i \(0.583991\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8723.91 −1.59063 −0.795317 0.606193i \(-0.792696\pi\)
−0.795317 + 0.606193i \(0.792696\pi\)
\(312\) 0 0
\(313\) −9203.17 −1.66196 −0.830980 0.556302i \(-0.812220\pi\)
−0.830980 + 0.556302i \(0.812220\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3298.56 −0.584434 −0.292217 0.956352i \(-0.594393\pi\)
−0.292217 + 0.956352i \(0.594393\pi\)
\(318\) 0 0
\(319\) −9348.93 −1.64088
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 831.748 0.143281
\(324\) 0 0
\(325\) −312.916 −0.0534075
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3477.30 −0.582704
\(330\) 0 0
\(331\) 10218.0 1.69677 0.848387 0.529376i \(-0.177574\pi\)
0.848387 + 0.529376i \(0.177574\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8233.47 1.34281
\(336\) 0 0
\(337\) 5920.21 0.956957 0.478478 0.878099i \(-0.341189\pi\)
0.478478 + 0.878099i \(0.341189\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2483.55 −0.394404
\(342\) 0 0
\(343\) 4168.45 0.656196
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5887.39 0.910812 0.455406 0.890284i \(-0.349494\pi\)
0.455406 + 0.890284i \(0.349494\pi\)
\(348\) 0 0
\(349\) 1594.80 0.244606 0.122303 0.992493i \(-0.460972\pi\)
0.122303 + 0.992493i \(0.460972\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6564.51 −0.989784 −0.494892 0.868955i \(-0.664792\pi\)
−0.494892 + 0.868955i \(0.664792\pi\)
\(354\) 0 0
\(355\) −3287.52 −0.491503
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11386.2 1.67392 0.836961 0.547263i \(-0.184330\pi\)
0.836961 + 0.547263i \(0.184330\pi\)
\(360\) 0 0
\(361\) −4061.28 −0.592110
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6643.56 0.952712
\(366\) 0 0
\(367\) 6432.28 0.914884 0.457442 0.889240i \(-0.348766\pi\)
0.457442 + 0.889240i \(0.348766\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5201.03 −0.727827
\(372\) 0 0
\(373\) 35.4858 0.00492597 0.00246298 0.999997i \(-0.499216\pi\)
0.00246298 + 0.999997i \(0.499216\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20110.2 −2.74729
\(378\) 0 0
\(379\) −10109.0 −1.37009 −0.685046 0.728500i \(-0.740218\pi\)
−0.685046 + 0.728500i \(0.740218\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9441.69 −1.25965 −0.629827 0.776735i \(-0.716874\pi\)
−0.629827 + 0.776735i \(0.716874\pi\)
\(384\) 0 0
\(385\) −7780.41 −1.02994
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9435.27 1.22979 0.614893 0.788610i \(-0.289199\pi\)
0.614893 + 0.788610i \(0.289199\pi\)
\(390\) 0 0
\(391\) 2802.35 0.362458
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11018.4 −1.40353
\(396\) 0 0
\(397\) −2098.74 −0.265321 −0.132661 0.991162i \(-0.542352\pi\)
−0.132661 + 0.991162i \(0.542352\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 73.2567 0.00912285 0.00456143 0.999990i \(-0.498548\pi\)
0.00456143 + 0.999990i \(0.498548\pi\)
\(402\) 0 0
\(403\) −5342.28 −0.660343
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10267.1 1.25042
\(408\) 0 0
\(409\) −8527.41 −1.03094 −0.515469 0.856908i \(-0.672382\pi\)
−0.515469 + 0.856908i \(0.672382\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7934.97 0.945409
\(414\) 0 0
\(415\) −4189.53 −0.495557
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11513.7 1.34243 0.671217 0.741261i \(-0.265772\pi\)
0.671217 + 0.741261i \(0.265772\pi\)
\(420\) 0 0
\(421\) −4825.49 −0.558622 −0.279311 0.960201i \(-0.590106\pi\)
−0.279311 + 0.960201i \(0.590106\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 72.1043 0.00822959
\(426\) 0 0
\(427\) 10363.3 1.17451
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3578.02 −0.399877 −0.199939 0.979808i \(-0.564074\pi\)
−0.199939 + 0.979808i \(0.564074\pi\)
\(432\) 0 0
\(433\) 1611.96 0.178905 0.0894523 0.995991i \(-0.471488\pi\)
0.0894523 + 0.995991i \(0.471488\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9426.15 1.03184
\(438\) 0 0
\(439\) −1062.02 −0.115462 −0.0577308 0.998332i \(-0.518387\pi\)
−0.0577308 + 0.998332i \(0.518387\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8817.39 0.945659 0.472830 0.881154i \(-0.343233\pi\)
0.472830 + 0.881154i \(0.343233\pi\)
\(444\) 0 0
\(445\) 13434.8 1.43117
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8813.53 0.926362 0.463181 0.886264i \(-0.346708\pi\)
0.463181 + 0.886264i \(0.346708\pi\)
\(450\) 0 0
\(451\) 4266.91 0.445501
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −16736.2 −1.72441
\(456\) 0 0
\(457\) 15573.0 1.59404 0.797020 0.603954i \(-0.206409\pi\)
0.797020 + 0.603954i \(0.206409\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19330.8 1.95298 0.976490 0.215564i \(-0.0691591\pi\)
0.976490 + 0.215564i \(0.0691591\pi\)
\(462\) 0 0
\(463\) −18338.0 −1.84069 −0.920343 0.391113i \(-0.872090\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2681.20 0.265677 0.132838 0.991138i \(-0.457591\pi\)
0.132838 + 0.991138i \(0.457591\pi\)
\(468\) 0 0
\(469\) −16768.9 −1.65099
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4574.79 −0.444713
\(474\) 0 0
\(475\) 242.534 0.0234279
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12846.5 1.22541 0.612703 0.790313i \(-0.290082\pi\)
0.612703 + 0.790313i \(0.290082\pi\)
\(480\) 0 0
\(481\) 22085.2 2.09355
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9824.44 −0.919804
\(486\) 0 0
\(487\) 18380.1 1.71023 0.855114 0.518439i \(-0.173487\pi\)
0.855114 + 0.518439i \(0.173487\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13692.0 1.25847 0.629237 0.777214i \(-0.283368\pi\)
0.629237 + 0.777214i \(0.283368\pi\)
\(492\) 0 0
\(493\) 4633.94 0.423331
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6695.61 0.604304
\(498\) 0 0
\(499\) −2956.17 −0.265203 −0.132601 0.991169i \(-0.542333\pi\)
−0.132601 + 0.991169i \(0.542333\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1778.68 0.157669 0.0788345 0.996888i \(-0.474880\pi\)
0.0788345 + 0.996888i \(0.474880\pi\)
\(504\) 0 0
\(505\) −21688.5 −1.91114
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17954.3 −1.56347 −0.781737 0.623608i \(-0.785666\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(510\) 0 0
\(511\) −13530.8 −1.17136
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −849.328 −0.0726716
\(516\) 0 0
\(517\) 4936.07 0.419900
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −374.174 −0.0314642 −0.0157321 0.999876i \(-0.505008\pi\)
−0.0157321 + 0.999876i \(0.505008\pi\)
\(522\) 0 0
\(523\) −10002.9 −0.836322 −0.418161 0.908373i \(-0.637325\pi\)
−0.418161 + 0.908373i \(0.637325\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1231.01 0.101753
\(528\) 0 0
\(529\) 19591.9 1.61025
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9178.41 0.745893
\(534\) 0 0
\(535\) 16228.8 1.31146
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4964.49 0.396727
\(540\) 0 0
\(541\) −310.732 −0.0246939 −0.0123469 0.999924i \(-0.503930\pi\)
−0.0123469 + 0.999924i \(0.503930\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16918.2 −1.32972
\(546\) 0 0
\(547\) −2801.10 −0.218951 −0.109476 0.993989i \(-0.534917\pi\)
−0.109476 + 0.993989i \(0.534917\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15587.0 1.20513
\(552\) 0 0
\(553\) 22440.8 1.72564
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13842.2 −1.05298 −0.526491 0.850181i \(-0.676493\pi\)
−0.526491 + 0.850181i \(0.676493\pi\)
\(558\) 0 0
\(559\) −9840.69 −0.744574
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 729.262 0.0545910 0.0272955 0.999627i \(-0.491310\pi\)
0.0272955 + 0.999627i \(0.491310\pi\)
\(564\) 0 0
\(565\) 14634.9 1.08972
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10352.2 −0.762719 −0.381359 0.924427i \(-0.624544\pi\)
−0.381359 + 0.924427i \(0.624544\pi\)
\(570\) 0 0
\(571\) 14872.6 1.09002 0.545008 0.838431i \(-0.316527\pi\)
0.545008 + 0.838431i \(0.316527\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 817.154 0.0592656
\(576\) 0 0
\(577\) −19156.0 −1.38211 −0.691053 0.722804i \(-0.742853\pi\)
−0.691053 + 0.722804i \(0.742853\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8532.72 0.609289
\(582\) 0 0
\(583\) 7382.94 0.524477
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25367.2 −1.78368 −0.891838 0.452354i \(-0.850584\pi\)
−0.891838 + 0.452354i \(0.850584\pi\)
\(588\) 0 0
\(589\) 4140.69 0.289668
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4024.03 −0.278663 −0.139331 0.990246i \(-0.544495\pi\)
−0.139331 + 0.990246i \(0.544495\pi\)
\(594\) 0 0
\(595\) 3856.48 0.265715
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16835.3 1.14837 0.574183 0.818727i \(-0.305320\pi\)
0.574183 + 0.818727i \(0.305320\pi\)
\(600\) 0 0
\(601\) 2514.04 0.170632 0.0853159 0.996354i \(-0.472810\pi\)
0.0853159 + 0.996354i \(0.472810\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3561.14 −0.239308
\(606\) 0 0
\(607\) 18994.0 1.27009 0.635045 0.772475i \(-0.280982\pi\)
0.635045 + 0.772475i \(0.280982\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10617.8 0.703031
\(612\) 0 0
\(613\) −28340.0 −1.86728 −0.933639 0.358215i \(-0.883386\pi\)
−0.933639 + 0.358215i \(0.883386\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27125.7 1.76992 0.884958 0.465671i \(-0.154187\pi\)
0.884958 + 0.465671i \(0.154187\pi\)
\(618\) 0 0
\(619\) 15468.5 1.00441 0.502207 0.864748i \(-0.332522\pi\)
0.502207 + 0.864748i \(0.332522\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −27362.3 −1.75963
\(624\) 0 0
\(625\) −15030.8 −0.961972
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5089.04 −0.322596
\(630\) 0 0
\(631\) 18445.8 1.16374 0.581868 0.813283i \(-0.302322\pi\)
0.581868 + 0.813283i \(0.302322\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19179.9 −1.19863
\(636\) 0 0
\(637\) 10679.0 0.664232
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11750.4 0.724045 0.362023 0.932169i \(-0.382086\pi\)
0.362023 + 0.932169i \(0.382086\pi\)
\(642\) 0 0
\(643\) 7999.11 0.490598 0.245299 0.969448i \(-0.421114\pi\)
0.245299 + 0.969448i \(0.421114\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2713.51 0.164883 0.0824414 0.996596i \(-0.473728\pi\)
0.0824414 + 0.996596i \(0.473728\pi\)
\(648\) 0 0
\(649\) −11263.8 −0.681268
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20082.2 −1.20349 −0.601745 0.798688i \(-0.705528\pi\)
−0.601745 + 0.798688i \(0.705528\pi\)
\(654\) 0 0
\(655\) 18895.5 1.12719
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11656.6 −0.689038 −0.344519 0.938779i \(-0.611958\pi\)
−0.344519 + 0.938779i \(0.611958\pi\)
\(660\) 0 0
\(661\) 32515.7 1.91334 0.956668 0.291181i \(-0.0940481\pi\)
0.956668 + 0.291181i \(0.0940481\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12971.9 0.756433
\(666\) 0 0
\(667\) 52516.2 3.04863
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −14710.8 −0.846356
\(672\) 0 0
\(673\) −25249.0 −1.44618 −0.723089 0.690755i \(-0.757278\pi\)
−0.723089 + 0.690755i \(0.757278\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27184.3 −1.54324 −0.771622 0.636081i \(-0.780554\pi\)
−0.771622 + 0.636081i \(0.780554\pi\)
\(678\) 0 0
\(679\) 20009.2 1.13090
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10884.0 −0.609758 −0.304879 0.952391i \(-0.598616\pi\)
−0.304879 + 0.952391i \(0.598616\pi\)
\(684\) 0 0
\(685\) −18303.8 −1.02095
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15881.2 0.878122
\(690\) 0 0
\(691\) −24807.1 −1.36571 −0.682856 0.730553i \(-0.739262\pi\)
−0.682856 + 0.730553i \(0.739262\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.563522 −3.07563e−5 0
\(696\) 0 0
\(697\) −2114.96 −0.114935
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2863.18 0.154266 0.0771331 0.997021i \(-0.475423\pi\)
0.0771331 + 0.997021i \(0.475423\pi\)
\(702\) 0 0
\(703\) −17117.8 −0.918363
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 44172.5 2.34976
\(708\) 0 0
\(709\) −4449.63 −0.235697 −0.117849 0.993032i \(-0.537600\pi\)
−0.117849 + 0.993032i \(0.537600\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13950.9 0.732773
\(714\) 0 0
\(715\) 23757.3 1.24262
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 676.876 0.0351088 0.0175544 0.999846i \(-0.494412\pi\)
0.0175544 + 0.999846i \(0.494412\pi\)
\(720\) 0 0
\(721\) 1729.81 0.0893500
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1351.24 0.0692190
\(726\) 0 0
\(727\) −9843.01 −0.502142 −0.251071 0.967969i \(-0.580783\pi\)
−0.251071 + 0.967969i \(0.580783\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2267.57 0.114732
\(732\) 0 0
\(733\) −27638.2 −1.39269 −0.696344 0.717708i \(-0.745191\pi\)
−0.696344 + 0.717708i \(0.745191\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23803.7 1.18972
\(738\) 0 0
\(739\) −14257.1 −0.709684 −0.354842 0.934926i \(-0.615465\pi\)
−0.354842 + 0.934926i \(0.615465\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1294.05 0.0638953 0.0319476 0.999490i \(-0.489829\pi\)
0.0319476 + 0.999490i \(0.489829\pi\)
\(744\) 0 0
\(745\) −8231.65 −0.404811
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −33052.8 −1.61245
\(750\) 0 0
\(751\) 24664.1 1.19841 0.599204 0.800596i \(-0.295484\pi\)
0.599204 + 0.800596i \(0.295484\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −23002.1 −1.10878
\(756\) 0 0
\(757\) −11814.1 −0.567226 −0.283613 0.958939i \(-0.591533\pi\)
−0.283613 + 0.958939i \(0.591533\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4637.92 0.220926 0.110463 0.993880i \(-0.464767\pi\)
0.110463 + 0.993880i \(0.464767\pi\)
\(762\) 0 0
\(763\) 34456.9 1.63489
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24229.2 −1.14063
\(768\) 0 0
\(769\) 24182.7 1.13400 0.567002 0.823717i \(-0.308103\pi\)
0.567002 + 0.823717i \(0.308103\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2881.48 0.134075 0.0670373 0.997750i \(-0.478645\pi\)
0.0670373 + 0.997750i \(0.478645\pi\)
\(774\) 0 0
\(775\) 358.957 0.0166376
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7114.00 −0.327196
\(780\) 0 0
\(781\) −9504.52 −0.435465
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8033.24 0.365247
\(786\) 0 0
\(787\) −14695.4 −0.665610 −0.332805 0.942996i \(-0.607995\pi\)
−0.332805 + 0.942996i \(0.607995\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −29806.5 −1.33982
\(792\) 0 0
\(793\) −31644.0 −1.41704
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9344.68 0.415315 0.207657 0.978202i \(-0.433416\pi\)
0.207657 + 0.978202i \(0.433416\pi\)
\(798\) 0 0
\(799\) −2446.64 −0.108330
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 19207.1 0.844091
\(804\) 0 0
\(805\) 43705.2 1.91355
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15747.4 −0.684360 −0.342180 0.939634i \(-0.611165\pi\)
−0.342180 + 0.939634i \(0.611165\pi\)
\(810\) 0 0
\(811\) −1830.55 −0.0792595 −0.0396297 0.999214i \(-0.512618\pi\)
−0.0396297 + 0.999214i \(0.512618\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9671.94 −0.415697
\(816\) 0 0
\(817\) 7627.32 0.326617
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23333.2 −0.991881 −0.495941 0.868356i \(-0.665177\pi\)
−0.495941 + 0.868356i \(0.665177\pi\)
\(822\) 0 0
\(823\) 35007.3 1.48272 0.741360 0.671107i \(-0.234181\pi\)
0.741360 + 0.671107i \(0.234181\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7201.59 −0.302810 −0.151405 0.988472i \(-0.548380\pi\)
−0.151405 + 0.988472i \(0.548380\pi\)
\(828\) 0 0
\(829\) −6531.90 −0.273658 −0.136829 0.990595i \(-0.543691\pi\)
−0.136829 + 0.990595i \(0.543691\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2460.73 −0.102352
\(834\) 0 0
\(835\) −11896.3 −0.493042
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4500.83 −0.185204 −0.0926019 0.995703i \(-0.529518\pi\)
−0.0926019 + 0.995703i \(0.529518\pi\)
\(840\) 0 0
\(841\) 62451.3 2.56063
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 26995.1 1.09900
\(846\) 0 0
\(847\) 7252.89 0.294229
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −57673.8 −2.32319
\(852\) 0 0
\(853\) −25904.8 −1.03982 −0.519909 0.854222i \(-0.674034\pi\)
−0.519909 + 0.854222i \(0.674034\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29705.0 1.18402 0.592009 0.805931i \(-0.298335\pi\)
0.592009 + 0.805931i \(0.298335\pi\)
\(858\) 0 0
\(859\) 16569.3 0.658135 0.329068 0.944306i \(-0.393266\pi\)
0.329068 + 0.944306i \(0.393266\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28469.9 1.12297 0.561486 0.827486i \(-0.310230\pi\)
0.561486 + 0.827486i \(0.310230\pi\)
\(864\) 0 0
\(865\) −15006.4 −0.589866
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −31855.1 −1.24351
\(870\) 0 0
\(871\) 51203.4 1.99192
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 31780.2 1.22785
\(876\) 0 0
\(877\) −2050.79 −0.0789626 −0.0394813 0.999220i \(-0.512571\pi\)
−0.0394813 + 0.999220i \(0.512571\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28166.2 1.07712 0.538561 0.842587i \(-0.318968\pi\)
0.538561 + 0.842587i \(0.318968\pi\)
\(882\) 0 0
\(883\) 22424.3 0.854631 0.427316 0.904103i \(-0.359459\pi\)
0.427316 + 0.904103i \(0.359459\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37071.4 1.40331 0.701654 0.712518i \(-0.252445\pi\)
0.701654 + 0.712518i \(0.252445\pi\)
\(888\) 0 0
\(889\) 39063.2 1.47372
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8229.67 −0.308393
\(894\) 0 0
\(895\) −47769.0 −1.78407
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 23069.2 0.855839
\(900\) 0 0
\(901\) −3659.47 −0.135310
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13407.4 0.492460
\(906\) 0 0
\(907\) 19603.1 0.717651 0.358826 0.933405i \(-0.383177\pi\)
0.358826 + 0.933405i \(0.383177\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 43459.1 1.58053 0.790267 0.612763i \(-0.209942\pi\)
0.790267 + 0.612763i \(0.209942\pi\)
\(912\) 0 0
\(913\) −12112.3 −0.439057
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38483.9 −1.38588
\(918\) 0 0
\(919\) 12670.6 0.454804 0.227402 0.973801i \(-0.426977\pi\)
0.227402 + 0.973801i \(0.426977\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20444.9 −0.729091
\(924\) 0 0
\(925\) −1483.94 −0.0527478
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −20800.7 −0.734606 −0.367303 0.930101i \(-0.619719\pi\)
−0.367303 + 0.930101i \(0.619719\pi\)
\(930\) 0 0
\(931\) −8277.04 −0.291374
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5474.33 −0.191476
\(936\) 0 0
\(937\) 15332.7 0.534574 0.267287 0.963617i \(-0.413873\pi\)
0.267287 + 0.963617i \(0.413873\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3646.38 −0.126321 −0.0631607 0.998003i \(-0.520118\pi\)
−0.0631607 + 0.998003i \(0.520118\pi\)
\(942\) 0 0
\(943\) −23968.7 −0.827708
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6052.46 0.207686 0.103843 0.994594i \(-0.466886\pi\)
0.103843 + 0.994594i \(0.466886\pi\)
\(948\) 0 0
\(949\) 41315.9 1.41325
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15214.3 0.517145 0.258573 0.965992i \(-0.416748\pi\)
0.258573 + 0.965992i \(0.416748\pi\)
\(954\) 0 0
\(955\) 53695.8 1.81943
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 37278.8 1.25526
\(960\) 0 0
\(961\) −23662.7 −0.794289
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14408.8 0.480658
\(966\) 0 0
\(967\) 4933.04 0.164049 0.0820247 0.996630i \(-0.473861\pi\)
0.0820247 + 0.996630i \(0.473861\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 37446.1 1.23759 0.618796 0.785552i \(-0.287621\pi\)
0.618796 + 0.785552i \(0.287621\pi\)
\(972\) 0 0
\(973\) 1.14771 3.78150e−5 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19752.7 −0.646822 −0.323411 0.946259i \(-0.604830\pi\)
−0.323411 + 0.946259i \(0.604830\pi\)
\(978\) 0 0
\(979\) 38841.2 1.26800
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16074.6 −0.521567 −0.260783 0.965397i \(-0.583981\pi\)
−0.260783 + 0.965397i \(0.583981\pi\)
\(984\) 0 0
\(985\) −15729.8 −0.508826
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 25698.2 0.826243
\(990\) 0 0
\(991\) 31583.2 1.01239 0.506193 0.862420i \(-0.331052\pi\)
0.506193 + 0.862420i \(0.331052\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24087.1 −0.767451
\(996\) 0 0
\(997\) 31340.6 0.995554 0.497777 0.867305i \(-0.334150\pi\)
0.497777 + 0.867305i \(0.334150\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.a.bu.1.3 3
3.2 odd 2 1728.4.a.ce.1.1 3
4.3 odd 2 1728.4.a.bv.1.3 3
8.3 odd 2 864.4.a.t.1.1 yes 3
8.5 even 2 864.4.a.s.1.1 yes 3
12.11 even 2 1728.4.a.cf.1.1 3
24.5 odd 2 864.4.a.i.1.3 3
24.11 even 2 864.4.a.j.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.a.i.1.3 3 24.5 odd 2
864.4.a.j.1.3 yes 3 24.11 even 2
864.4.a.s.1.1 yes 3 8.5 even 2
864.4.a.t.1.1 yes 3 8.3 odd 2
1728.4.a.bu.1.3 3 1.1 even 1 trivial
1728.4.a.bv.1.3 3 4.3 odd 2
1728.4.a.ce.1.1 3 3.2 odd 2
1728.4.a.cf.1.1 3 12.11 even 2