Properties

Label 1728.4.a.bu
Level $1728$
Weight $4$
Character orbit 1728.a
Self dual yes
Analytic conductor $101.955$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-10,0,-19,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.955300490\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2708.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 864)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 3) q^{5} + ( - \beta_{2} - 6) q^{7} + (2 \beta_{2} + \beta_1 + 13) q^{11} + (\beta_{2} - 4 \beta_1 - 4) q^{13} + ( - 2 \beta_{2} - \beta_1 + 3) q^{17} + (4 \beta_1 + 3) q^{19} + ( - 4 \beta_{2} + 7 \beta_1 - 15) q^{23}+ \cdots + ( - 56 \beta_{2} - 28 \beta_1 - 371) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 10 q^{5} - 19 q^{7} + 42 q^{11} - 15 q^{13} + 6 q^{17} + 13 q^{19} - 42 q^{23} + 213 q^{25} - 328 q^{29} + 88 q^{31} + 90 q^{35} + 99 q^{37} + 424 q^{41} - 316 q^{43} + 534 q^{47} + 30 q^{49} - 692 q^{53}+ \cdots - 1197 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 11x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu^{2} - 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -4\nu^{2} + 12\nu + 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 3 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta _1 + 15 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.09965
−2.38318
−0.716463
0 0 0 −21.6142 0 −14.9673 0 0 0
1.2 0 0 0 0.640862 0 18.3165 0 0 0
1.3 0 0 0 10.9734 0 −22.3492 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.4.a.bu 3
3.b odd 2 1 1728.4.a.ce 3
4.b odd 2 1 1728.4.a.bv 3
8.b even 2 1 864.4.a.s yes 3
8.d odd 2 1 864.4.a.t yes 3
12.b even 2 1 1728.4.a.cf 3
24.f even 2 1 864.4.a.j yes 3
24.h odd 2 1 864.4.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
864.4.a.i 3 24.h odd 2 1
864.4.a.j yes 3 24.f even 2 1
864.4.a.s yes 3 8.b even 2 1
864.4.a.t yes 3 8.d odd 2 1
1728.4.a.bu 3 1.a even 1 1 trivial
1728.4.a.bv 3 4.b odd 2 1
1728.4.a.ce 3 3.b odd 2 1
1728.4.a.cf 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1728))\):

\( T_{5}^{3} + 10T_{5}^{2} - 244T_{5} + 152 \) Copy content Toggle raw display
\( T_{7}^{3} + 19T_{7}^{2} - 349T_{7} - 6127 \) Copy content Toggle raw display
\( T_{11}^{3} - 42T_{11}^{2} - 1620T_{11} + 61736 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 10 T^{2} + \cdots + 152 \) Copy content Toggle raw display
$7$ \( T^{3} + 19 T^{2} + \cdots - 6127 \) Copy content Toggle raw display
$11$ \( T^{3} - 42 T^{2} + \cdots + 61736 \) Copy content Toggle raw display
$13$ \( T^{3} + 15 T^{2} + \cdots - 65219 \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} + \cdots - 29160 \) Copy content Toggle raw display
$19$ \( T^{3} - 13 T^{2} + \cdots - 47375 \) Copy content Toggle raw display
$23$ \( T^{3} + 42 T^{2} + \cdots + 803736 \) Copy content Toggle raw display
$29$ \( T^{3} + 328 T^{2} + \cdots - 2232832 \) Copy content Toggle raw display
$31$ \( T^{3} - 88 T^{2} + \cdots - 2593280 \) Copy content Toggle raw display
$37$ \( T^{3} - 99 T^{2} + \cdots - 1220321 \) Copy content Toggle raw display
$41$ \( T^{3} - 424 T^{2} + \cdots - 1158656 \) Copy content Toggle raw display
$43$ \( T^{3} + 316 T^{2} + \cdots - 1941184 \) Copy content Toggle raw display
$47$ \( T^{3} - 534 T^{2} + \cdots + 15342488 \) Copy content Toggle raw display
$53$ \( T^{3} + 692 T^{2} + \cdots - 38325056 \) Copy content Toggle raw display
$59$ \( T^{3} - 186 T^{2} + \cdots + 11865448 \) Copy content Toggle raw display
$61$ \( T^{3} - 147 T^{2} + \cdots + 25588143 \) Copy content Toggle raw display
$67$ \( T^{3} + 619 T^{2} + \cdots - 350147287 \) Copy content Toggle raw display
$71$ \( T^{3} - 540 T^{2} + \cdots - 18963520 \) Copy content Toggle raw display
$73$ \( T^{3} + 381 T^{2} + \cdots - 100255617 \) Copy content Toggle raw display
$79$ \( T^{3} + 1241 T^{2} + \cdots + 5282347 \) Copy content Toggle raw display
$83$ \( T^{3} + 132 T^{2} + \cdots - 266462784 \) Copy content Toggle raw display
$89$ \( T^{3} - 2222 T^{2} + \cdots + 240275576 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 1364061265 \) Copy content Toggle raw display
show more
show less