Properties

Label 1728.4.a
Level $1728$
Weight $4$
Character orbit 1728.a
Rep. character $\chi_{1728}(1,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $58$
Sturm bound $1152$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 58 \)
Sturm bound: \(1152\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1728))\).

Total New Old
Modular forms 900 96 804
Cusp forms 828 96 732
Eisenstein series 72 0 72

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(+\)\(+\)\(+\)\(25\)
\(+\)\(-\)\(-\)\(23\)
\(-\)\(+\)\(-\)\(23\)
\(-\)\(-\)\(+\)\(25\)
Plus space\(+\)\(50\)
Minus space\(-\)\(46\)

Trace form

\( 96 q + O(q^{10}) \) \( 96 q + 72 q^{13} + 2400 q^{25} - 504 q^{37} + 4704 q^{49} - 1992 q^{61} + 240 q^{85} - 1488 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1728))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
1728.4.a.a 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-19\) \(-13\) $+$ $-$ $\mathrm{SU}(2)$ \(q-19q^{5}-13q^{7}-65q^{11}+56q^{13}+\cdots\)
1728.4.a.b 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-19\) \(13\) $+$ $+$ $\mathrm{SU}(2)$ \(q-19q^{5}+13q^{7}+65q^{11}+56q^{13}+\cdots\)
1728.4.a.c 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-15\) \(-25\) $+$ $-$ $\mathrm{SU}(2)$ \(q-15q^{5}-5^{2}q^{7}+15q^{11}-20q^{13}+\cdots\)
1728.4.a.d 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-15\) \(25\) $-$ $+$ $\mathrm{SU}(2)$ \(q-15q^{5}+5^{2}q^{7}-15q^{11}-20q^{13}+\cdots\)
1728.4.a.e 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-12\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q-12q^{5}-7q^{7}-60q^{11}+79q^{13}+\cdots\)
1728.4.a.f 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-12\) \(7\) $-$ $-$ $\mathrm{SU}(2)$ \(q-12q^{5}+7q^{7}+60q^{11}+79q^{13}+\cdots\)
1728.4.a.g 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-9\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{5}-q^{7}-63q^{11}+28q^{13}+72q^{17}+\cdots\)
1728.4.a.h 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-9\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-9q^{5}+q^{7}+63q^{11}+28q^{13}+72q^{17}+\cdots\)
1728.4.a.i 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-4\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{5}-3q^{7}+28q^{11}+11q^{13}+\cdots\)
1728.4.a.j 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-4\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}+3q^{7}-28q^{11}+11q^{13}+\cdots\)
1728.4.a.k 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-3\) \(-29\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{5}-29q^{7}-57q^{11}-20q^{13}+\cdots\)
1728.4.a.l 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-3\) \(29\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{5}+29q^{7}+57q^{11}-20q^{13}+\cdots\)
1728.4.a.m 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-1\) \(-9\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-9q^{7}+17q^{11}+44q^{13}+56q^{17}+\cdots\)
1728.4.a.n 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(-1\) \(9\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+9q^{7}-17q^{11}+44q^{13}+56q^{17}+\cdots\)
1728.4.a.o 1728.a 1.a $1$ $101.955$ \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(-37\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-37q^{7}+19q^{13}+163q^{19}-5^{3}q^{25}+\cdots\)
1728.4.a.p 1728.a 1.a $1$ $101.955$ \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(-17\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-17q^{7}-89q^{13}+107q^{19}-5^{3}q^{25}+\cdots\)
1728.4.a.q 1728.a 1.a $1$ $101.955$ \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(17\) $+$ $+$ $N(\mathrm{U}(1))$ \(q+17q^{7}-89q^{13}-107q^{19}-5^{3}q^{25}+\cdots\)
1728.4.a.r 1728.a 1.a $1$ $101.955$ \(\Q\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(37\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+37q^{7}+19q^{13}-163q^{19}-5^{3}q^{25}+\cdots\)
1728.4.a.s 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(1\) \(-9\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-9q^{7}-17q^{11}+44q^{13}-56q^{17}+\cdots\)
1728.4.a.t 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(1\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+9q^{7}+17q^{11}+44q^{13}-56q^{17}+\cdots\)
1728.4.a.u 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(3\) \(-29\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{5}-29q^{7}+57q^{11}-20q^{13}+\cdots\)
1728.4.a.v 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(3\) \(29\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}+29q^{7}-57q^{11}-20q^{13}+\cdots\)
1728.4.a.w 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(4\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{5}-3q^{7}-28q^{11}+11q^{13}+\cdots\)
1728.4.a.x 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(4\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}+3q^{7}+28q^{11}+11q^{13}+\cdots\)
1728.4.a.y 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(9\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+9q^{5}-q^{7}+63q^{11}+28q^{13}-72q^{17}+\cdots\)
1728.4.a.z 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(9\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{5}+q^{7}-63q^{11}+28q^{13}-72q^{17}+\cdots\)
1728.4.a.ba 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(12\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q+12q^{5}-7q^{7}+60q^{11}+79q^{13}+\cdots\)
1728.4.a.bb 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(12\) \(7\) $-$ $-$ $\mathrm{SU}(2)$ \(q+12q^{5}+7q^{7}-60q^{11}+79q^{13}+\cdots\)
1728.4.a.bc 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(15\) \(-25\) $+$ $+$ $\mathrm{SU}(2)$ \(q+15q^{5}-5^{2}q^{7}-15q^{11}-20q^{13}+\cdots\)
1728.4.a.bd 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(15\) \(25\) $-$ $-$ $\mathrm{SU}(2)$ \(q+15q^{5}+5^{2}q^{7}+15q^{11}-20q^{13}+\cdots\)
1728.4.a.be 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(19\) \(-13\) $+$ $+$ $\mathrm{SU}(2)$ \(q+19q^{5}-13q^{7}+65q^{11}+56q^{13}+\cdots\)
1728.4.a.bf 1728.a 1.a $1$ $101.955$ \(\Q\) None \(0\) \(0\) \(19\) \(13\) $+$ $-$ $\mathrm{SU}(2)$ \(q+19q^{5}+13q^{7}-65q^{11}+56q^{13}+\cdots\)
1728.4.a.bg 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{33}) \) None \(0\) \(0\) \(-8\) \(-24\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{5}+(-12-\beta )q^{7}+q^{11}+\cdots\)
1728.4.a.bh 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{33}) \) None \(0\) \(0\) \(-8\) \(24\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{5}+(12+\beta )q^{7}-q^{11}+\cdots\)
1728.4.a.bi 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-4\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{5}+(-3+2\beta )q^{7}+(-26+\cdots)q^{11}+\cdots\)
1728.4.a.bj 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(-4\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{5}+(3-2\beta )q^{7}+(26-3\beta )q^{11}+\cdots\)
1728.4.a.bk 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(-22\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-11q^{7}+\beta q^{11}-29q^{13}+\cdots\)
1728.4.a.bl 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{37}) \) None \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{5}-5\beta q^{7}-43q^{11}-52q^{13}+\cdots\)
1728.4.a.bm 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{73}) \) None \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+\beta q^{7}-q^{11}+8q^{13}-12\beta q^{17}+\cdots\)
1728.4.a.bn 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{73}) \) None \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{5}-\beta q^{7}+q^{11}+8q^{13}-12\beta q^{17}+\cdots\)
1728.4.a.bo 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{37}) \) None \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+5\beta q^{7}+43q^{11}-52q^{13}+\cdots\)
1728.4.a.bp 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(22\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+11q^{7}-\beta q^{11}-29q^{13}+\cdots\)
1728.4.a.bq 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(4\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{5}+(-3+2\beta )q^{7}+(26-3\beta )q^{11}+\cdots\)
1728.4.a.br 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{5}) \) None \(0\) \(0\) \(4\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{5}+(3-2\beta )q^{7}+(-26+3\beta )q^{11}+\cdots\)
1728.4.a.bs 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{33}) \) None \(0\) \(0\) \(8\) \(-24\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{5}+(-12-\beta )q^{7}-q^{11}+\cdots\)
1728.4.a.bt 1728.a 1.a $2$ $101.955$ \(\Q(\sqrt{33}) \) None \(0\) \(0\) \(8\) \(24\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{5}+(12+\beta )q^{7}+q^{11}+(-2^{4}+\cdots)q^{13}+\cdots\)
1728.4.a.bu 1728.a 1.a $3$ $101.955$ 3.3.2708.1 None \(0\) \(0\) \(-10\) \(-19\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{5}+(-6-\beta _{2})q^{7}+(13+\cdots)q^{11}+\cdots\)
1728.4.a.bv 1728.a 1.a $3$ $101.955$ 3.3.2708.1 None \(0\) \(0\) \(-10\) \(19\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{5}+(6+\beta _{2})q^{7}+(-13+\cdots)q^{11}+\cdots\)
1728.4.a.bw 1728.a 1.a $3$ $101.955$ 3.3.148.1 None \(0\) \(0\) \(-6\) \(-9\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{2})q^{5}+(-3-\beta _{1}+\beta _{2})q^{7}+\cdots\)
1728.4.a.bx 1728.a 1.a $3$ $101.955$ 3.3.148.1 None \(0\) \(0\) \(-6\) \(9\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{2})q^{5}+(3+\beta _{1}-\beta _{2})q^{7}+\cdots\)
1728.4.a.by 1728.a 1.a $3$ $101.955$ 3.3.229.1 None \(0\) \(0\) \(-3\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+(-1+\beta _{2})q^{7}+(-7+\cdots)q^{11}+\cdots\)
1728.4.a.bz 1728.a 1.a $3$ $101.955$ 3.3.229.1 None \(0\) \(0\) \(-3\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+(1-\beta _{2})q^{7}+(7-3\beta _{1}+\cdots)q^{11}+\cdots\)
1728.4.a.ca 1728.a 1.a $3$ $101.955$ 3.3.229.1 None \(0\) \(0\) \(3\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{5}+(-1+\beta _{2})q^{7}+(7-3\beta _{1}+\cdots)q^{11}+\cdots\)
1728.4.a.cb 1728.a 1.a $3$ $101.955$ 3.3.229.1 None \(0\) \(0\) \(3\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{5}+(1-\beta _{2})q^{7}+(-7+3\beta _{1}+\cdots)q^{11}+\cdots\)
1728.4.a.cc 1728.a 1.a $3$ $101.955$ 3.3.148.1 None \(0\) \(0\) \(6\) \(-9\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{2})q^{5}+(-3-\beta _{1}+\beta _{2})q^{7}+\cdots\)
1728.4.a.cd 1728.a 1.a $3$ $101.955$ 3.3.148.1 None \(0\) \(0\) \(6\) \(9\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{2})q^{5}+(3+\beta _{1}-\beta _{2})q^{7}+(6+\cdots)q^{11}+\cdots\)
1728.4.a.ce 1728.a 1.a $3$ $101.955$ 3.3.2708.1 None \(0\) \(0\) \(10\) \(-19\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{5}+(-6-\beta _{2})q^{7}+(-13+\cdots)q^{11}+\cdots\)
1728.4.a.cf 1728.a 1.a $3$ $101.955$ 3.3.2708.1 None \(0\) \(0\) \(10\) \(19\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{5}+(6+\beta _{2})q^{7}+(13+\beta _{1}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1728))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1728)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(432))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(576))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(864))\)\(^{\oplus 2}\)