Properties

Label 1710.4.f.a.341.36
Level $1710$
Weight $4$
Character 1710.341
Analytic conductor $100.893$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(341,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.341"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.36
Character \(\chi\) \(=\) 1710.341
Dual form 1710.4.f.a.341.35

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +5.00000i q^{5} -27.7896 q^{7} -8.00000 q^{8} -10.0000i q^{10} +36.7025i q^{11} +30.3210i q^{13} +55.5793 q^{14} +16.0000 q^{16} +91.9154i q^{17} +(-38.7500 + 73.1945i) q^{19} +20.0000i q^{20} -73.4051i q^{22} +100.326i q^{23} -25.0000 q^{25} -60.6421i q^{26} -111.159 q^{28} +14.9075 q^{29} +114.008i q^{31} -32.0000 q^{32} -183.831i q^{34} -138.948i q^{35} +292.082i q^{37} +(77.5000 - 146.389i) q^{38} -40.0000i q^{40} +159.698 q^{41} +400.192 q^{43} +146.810i q^{44} -200.652i q^{46} -35.0953i q^{47} +429.264 q^{49} +50.0000 q^{50} +121.284i q^{52} +19.3413 q^{53} -183.513 q^{55} +222.317 q^{56} -29.8149 q^{58} -26.1972 q^{59} -25.1304 q^{61} -228.016i q^{62} +64.0000 q^{64} -151.605 q^{65} +617.868i q^{67} +367.662i q^{68} +277.896i q^{70} +831.421 q^{71} -768.355 q^{73} -584.165i q^{74} +(-155.000 + 292.778i) q^{76} -1019.95i q^{77} +270.654i q^{79} +80.0000i q^{80} -319.396 q^{82} -348.171i q^{83} -459.577 q^{85} -800.383 q^{86} -293.620i q^{88} -1274.76 q^{89} -842.610i q^{91} +401.304i q^{92} +70.1905i q^{94} +(-365.973 - 193.750i) q^{95} +1490.22i q^{97} -858.527 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 80 q^{2} + 160 q^{4} - 56 q^{7} - 320 q^{8} + 112 q^{14} + 640 q^{16} - 76 q^{19} - 1000 q^{25} - 224 q^{28} - 120 q^{29} - 1280 q^{32} + 152 q^{38} - 312 q^{41} + 56 q^{43} + 2112 q^{49} + 2000 q^{50}+ \cdots - 4224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) −27.7896 −1.50050 −0.750250 0.661155i \(-0.770067\pi\)
−0.750250 + 0.661155i \(0.770067\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000i 0.316228i
\(11\) 36.7025i 1.00602i 0.864280 + 0.503010i \(0.167774\pi\)
−0.864280 + 0.503010i \(0.832226\pi\)
\(12\) 0 0
\(13\) 30.3210i 0.646888i 0.946247 + 0.323444i \(0.104841\pi\)
−0.946247 + 0.323444i \(0.895159\pi\)
\(14\) 55.5793 1.06101
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 91.9154i 1.31134i 0.755048 + 0.655670i \(0.227614\pi\)
−0.755048 + 0.655670i \(0.772386\pi\)
\(18\) 0 0
\(19\) −38.7500 + 73.1945i −0.467887 + 0.883788i
\(20\) 20.0000i 0.223607i
\(21\) 0 0
\(22\) 73.4051i 0.711364i
\(23\) 100.326i 0.909539i 0.890609 + 0.454769i \(0.150278\pi\)
−0.890609 + 0.454769i \(0.849722\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 60.6421i 0.457419i
\(27\) 0 0
\(28\) −111.159 −0.750250
\(29\) 14.9075 0.0954568 0.0477284 0.998860i \(-0.484802\pi\)
0.0477284 + 0.998860i \(0.484802\pi\)
\(30\) 0 0
\(31\) 114.008i 0.660530i 0.943888 + 0.330265i \(0.107138\pi\)
−0.943888 + 0.330265i \(0.892862\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 183.831i 0.927257i
\(35\) 138.948i 0.671044i
\(36\) 0 0
\(37\) 292.082i 1.29779i 0.760880 + 0.648893i \(0.224768\pi\)
−0.760880 + 0.648893i \(0.775232\pi\)
\(38\) 77.5000 146.389i 0.330846 0.624933i
\(39\) 0 0
\(40\) 40.0000i 0.158114i
\(41\) 159.698 0.608308 0.304154 0.952623i \(-0.401626\pi\)
0.304154 + 0.952623i \(0.401626\pi\)
\(42\) 0 0
\(43\) 400.192 1.41927 0.709636 0.704569i \(-0.248860\pi\)
0.709636 + 0.704569i \(0.248860\pi\)
\(44\) 146.810i 0.503010i
\(45\) 0 0
\(46\) 200.652i 0.643141i
\(47\) 35.0953i 0.108919i −0.998516 0.0544593i \(-0.982656\pi\)
0.998516 0.0544593i \(-0.0173435\pi\)
\(48\) 0 0
\(49\) 429.264 1.25150
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 121.284i 0.323444i
\(53\) 19.3413 0.0501270 0.0250635 0.999686i \(-0.492021\pi\)
0.0250635 + 0.999686i \(0.492021\pi\)
\(54\) 0 0
\(55\) −183.513 −0.449906
\(56\) 222.317 0.530507
\(57\) 0 0
\(58\) −29.8149 −0.0674981
\(59\) −26.1972 −0.0578066 −0.0289033 0.999582i \(-0.509201\pi\)
−0.0289033 + 0.999582i \(0.509201\pi\)
\(60\) 0 0
\(61\) −25.1304 −0.0527478 −0.0263739 0.999652i \(-0.508396\pi\)
−0.0263739 + 0.999652i \(0.508396\pi\)
\(62\) 228.016i 0.467065i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −151.605 −0.289297
\(66\) 0 0
\(67\) 617.868i 1.12664i 0.826240 + 0.563318i \(0.190475\pi\)
−0.826240 + 0.563318i \(0.809525\pi\)
\(68\) 367.662i 0.655670i
\(69\) 0 0
\(70\) 277.896i 0.474499i
\(71\) 831.421 1.38974 0.694870 0.719136i \(-0.255462\pi\)
0.694870 + 0.719136i \(0.255462\pi\)
\(72\) 0 0
\(73\) −768.355 −1.23191 −0.615953 0.787783i \(-0.711229\pi\)
−0.615953 + 0.787783i \(0.711229\pi\)
\(74\) 584.165i 0.917673i
\(75\) 0 0
\(76\) −155.000 + 292.778i −0.233944 + 0.441894i
\(77\) 1019.95i 1.50953i
\(78\) 0 0
\(79\) 270.654i 0.385455i 0.981252 + 0.192728i \(0.0617334\pi\)
−0.981252 + 0.192728i \(0.938267\pi\)
\(80\) 80.0000i 0.111803i
\(81\) 0 0
\(82\) −319.396 −0.430138
\(83\) 348.171i 0.460442i −0.973138 0.230221i \(-0.926055\pi\)
0.973138 0.230221i \(-0.0739449\pi\)
\(84\) 0 0
\(85\) −459.577 −0.586449
\(86\) −800.383 −1.00358
\(87\) 0 0
\(88\) 293.620i 0.355682i
\(89\) −1274.76 −1.51825 −0.759125 0.650944i \(-0.774373\pi\)
−0.759125 + 0.650944i \(0.774373\pi\)
\(90\) 0 0
\(91\) 842.610i 0.970654i
\(92\) 401.304i 0.454769i
\(93\) 0 0
\(94\) 70.1905i 0.0770170i
\(95\) −365.973 193.750i −0.395242 0.209246i
\(96\) 0 0
\(97\) 1490.22i 1.55989i 0.625850 + 0.779944i \(0.284752\pi\)
−0.625850 + 0.779944i \(0.715248\pi\)
\(98\) −858.527 −0.884942
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) 808.241i 0.796267i −0.917327 0.398134i \(-0.869658\pi\)
0.917327 0.398134i \(-0.130342\pi\)
\(102\) 0 0
\(103\) 1236.46i 1.18284i 0.806364 + 0.591420i \(0.201432\pi\)
−0.806364 + 0.591420i \(0.798568\pi\)
\(104\) 242.568i 0.228709i
\(105\) 0 0
\(106\) −38.6826 −0.0354452
\(107\) 11.9236 0.0107729 0.00538646 0.999985i \(-0.498285\pi\)
0.00538646 + 0.999985i \(0.498285\pi\)
\(108\) 0 0
\(109\) 347.569i 0.305423i −0.988271 0.152711i \(-0.951200\pi\)
0.988271 0.152711i \(-0.0488005\pi\)
\(110\) 367.025 0.318132
\(111\) 0 0
\(112\) −444.634 −0.375125
\(113\) 48.5045 0.0403798 0.0201899 0.999796i \(-0.493573\pi\)
0.0201899 + 0.999796i \(0.493573\pi\)
\(114\) 0 0
\(115\) −501.629 −0.406758
\(116\) 59.6298 0.0477284
\(117\) 0 0
\(118\) 52.3944 0.0408754
\(119\) 2554.30i 1.96766i
\(120\) 0 0
\(121\) −16.0761 −0.0120782
\(122\) 50.2608 0.0372984
\(123\) 0 0
\(124\) 456.032i 0.330265i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1783.37i 1.24605i 0.782201 + 0.623027i \(0.214097\pi\)
−0.782201 + 0.623027i \(0.785903\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 303.210 0.204564
\(131\) 499.428i 0.333093i −0.986034 0.166547i \(-0.946738\pi\)
0.986034 0.166547i \(-0.0532616\pi\)
\(132\) 0 0
\(133\) 1076.85 2034.05i 0.702065 1.32612i
\(134\) 1235.74i 0.796651i
\(135\) 0 0
\(136\) 735.323i 0.463628i
\(137\) 1206.85i 0.752613i 0.926495 + 0.376306i \(0.122806\pi\)
−0.926495 + 0.376306i \(0.877194\pi\)
\(138\) 0 0
\(139\) −341.515 −0.208395 −0.104198 0.994557i \(-0.533227\pi\)
−0.104198 + 0.994557i \(0.533227\pi\)
\(140\) 555.793i 0.335522i
\(141\) 0 0
\(142\) −1662.84 −0.982694
\(143\) −1112.86 −0.650783
\(144\) 0 0
\(145\) 74.5373i 0.0426896i
\(146\) 1536.71 0.871089
\(147\) 0 0
\(148\) 1168.33i 0.648893i
\(149\) 506.899i 0.278703i −0.990243 0.139352i \(-0.955498\pi\)
0.990243 0.139352i \(-0.0445019\pi\)
\(150\) 0 0
\(151\) 884.637i 0.476760i 0.971172 + 0.238380i \(0.0766164\pi\)
−0.971172 + 0.238380i \(0.923384\pi\)
\(152\) 310.000 585.556i 0.165423 0.312466i
\(153\) 0 0
\(154\) 2039.90i 1.06740i
\(155\) −570.039 −0.295398
\(156\) 0 0
\(157\) −3372.54 −1.71438 −0.857191 0.514999i \(-0.827792\pi\)
−0.857191 + 0.514999i \(0.827792\pi\)
\(158\) 541.308i 0.272558i
\(159\) 0 0
\(160\) 160.000i 0.0790569i
\(161\) 2788.02i 1.36476i
\(162\) 0 0
\(163\) 1245.55 0.598520 0.299260 0.954172i \(-0.403260\pi\)
0.299260 + 0.954172i \(0.403260\pi\)
\(164\) 638.791 0.304154
\(165\) 0 0
\(166\) 696.341i 0.325582i
\(167\) 141.300 0.0654737 0.0327369 0.999464i \(-0.489578\pi\)
0.0327369 + 0.999464i \(0.489578\pi\)
\(168\) 0 0
\(169\) 1277.64 0.581536
\(170\) 919.154 0.414682
\(171\) 0 0
\(172\) 1600.77 0.709636
\(173\) 2539.60 1.11608 0.558040 0.829814i \(-0.311553\pi\)
0.558040 + 0.829814i \(0.311553\pi\)
\(174\) 0 0
\(175\) 694.741 0.300100
\(176\) 587.241i 0.251505i
\(177\) 0 0
\(178\) 2549.52 1.07357
\(179\) 1201.07 0.501521 0.250761 0.968049i \(-0.419319\pi\)
0.250761 + 0.968049i \(0.419319\pi\)
\(180\) 0 0
\(181\) 1781.99i 0.731793i 0.930656 + 0.365897i \(0.119238\pi\)
−0.930656 + 0.365897i \(0.880762\pi\)
\(182\) 1685.22i 0.686356i
\(183\) 0 0
\(184\) 802.607i 0.321571i
\(185\) −1460.41 −0.580387
\(186\) 0 0
\(187\) −3373.53 −1.31923
\(188\) 140.381i 0.0544593i
\(189\) 0 0
\(190\) 731.945 + 387.500i 0.279478 + 0.147959i
\(191\) 1327.99i 0.503088i −0.967846 0.251544i \(-0.919062\pi\)
0.967846 0.251544i \(-0.0809383\pi\)
\(192\) 0 0
\(193\) 3316.75i 1.23702i −0.785777 0.618510i \(-0.787737\pi\)
0.785777 0.618510i \(-0.212263\pi\)
\(194\) 2980.44i 1.10301i
\(195\) 0 0
\(196\) 1717.05 0.625749
\(197\) 4932.01i 1.78371i 0.452318 + 0.891857i \(0.350597\pi\)
−0.452318 + 0.891857i \(0.649403\pi\)
\(198\) 0 0
\(199\) 2089.34 0.744268 0.372134 0.928179i \(-0.378626\pi\)
0.372134 + 0.928179i \(0.378626\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 1616.48i 0.563046i
\(203\) −414.273 −0.143233
\(204\) 0 0
\(205\) 798.489i 0.272043i
\(206\) 2472.93i 0.836394i
\(207\) 0 0
\(208\) 485.137i 0.161722i
\(209\) −2686.42 1422.22i −0.889109 0.470705i
\(210\) 0 0
\(211\) 3693.55i 1.20509i 0.798084 + 0.602546i \(0.205847\pi\)
−0.798084 + 0.602546i \(0.794153\pi\)
\(212\) 77.3652 0.0250635
\(213\) 0 0
\(214\) −23.8473 −0.00761760
\(215\) 2000.96i 0.634717i
\(216\) 0 0
\(217\) 3168.24i 0.991124i
\(218\) 695.138i 0.215967i
\(219\) 0 0
\(220\) −734.051 −0.224953
\(221\) −2786.97 −0.848289
\(222\) 0 0
\(223\) 1742.01i 0.523112i 0.965188 + 0.261556i \(0.0842355\pi\)
−0.965188 + 0.261556i \(0.915764\pi\)
\(224\) 889.268 0.265253
\(225\) 0 0
\(226\) −97.0089 −0.0285528
\(227\) 3048.20 0.891259 0.445630 0.895217i \(-0.352980\pi\)
0.445630 + 0.895217i \(0.352980\pi\)
\(228\) 0 0
\(229\) −2754.53 −0.794865 −0.397433 0.917631i \(-0.630099\pi\)
−0.397433 + 0.917631i \(0.630099\pi\)
\(230\) 1003.26 0.287621
\(231\) 0 0
\(232\) −119.260 −0.0337491
\(233\) 1913.43i 0.537995i −0.963141 0.268997i \(-0.913308\pi\)
0.963141 0.268997i \(-0.0866923\pi\)
\(234\) 0 0
\(235\) 175.476 0.0487099
\(236\) −104.789 −0.0289033
\(237\) 0 0
\(238\) 5108.59i 1.39135i
\(239\) 569.205i 0.154054i −0.997029 0.0770269i \(-0.975457\pi\)
0.997029 0.0770269i \(-0.0245427\pi\)
\(240\) 0 0
\(241\) 5326.93i 1.42381i −0.702277 0.711904i \(-0.747833\pi\)
0.702277 0.711904i \(-0.252167\pi\)
\(242\) 32.1521 0.00854056
\(243\) 0 0
\(244\) −100.522 −0.0263739
\(245\) 2146.32i 0.559687i
\(246\) 0 0
\(247\) −2219.33 1174.94i −0.571712 0.302671i
\(248\) 912.063i 0.233533i
\(249\) 0 0
\(250\) 250.000i 0.0632456i
\(251\) 975.035i 0.245194i −0.992457 0.122597i \(-0.960878\pi\)
0.992457 0.122597i \(-0.0391223\pi\)
\(252\) 0 0
\(253\) −3682.21 −0.915015
\(254\) 3566.75i 0.881093i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −6200.98 −1.50508 −0.752542 0.658544i \(-0.771173\pi\)
−0.752542 + 0.658544i \(0.771173\pi\)
\(258\) 0 0
\(259\) 8116.86i 1.94733i
\(260\) −606.421 −0.144649
\(261\) 0 0
\(262\) 998.856i 0.235533i
\(263\) 3640.55i 0.853560i −0.904356 0.426780i \(-0.859648\pi\)
0.904356 0.426780i \(-0.140352\pi\)
\(264\) 0 0
\(265\) 96.7065i 0.0224175i
\(266\) −2153.70 + 4068.10i −0.496435 + 0.937711i
\(267\) 0 0
\(268\) 2471.47i 0.563318i
\(269\) −6322.32 −1.43301 −0.716503 0.697584i \(-0.754258\pi\)
−0.716503 + 0.697584i \(0.754258\pi\)
\(270\) 0 0
\(271\) 8259.44 1.85139 0.925693 0.378277i \(-0.123483\pi\)
0.925693 + 0.378277i \(0.123483\pi\)
\(272\) 1470.65i 0.327835i
\(273\) 0 0
\(274\) 2413.69i 0.532178i
\(275\) 917.563i 0.201204i
\(276\) 0 0
\(277\) −364.578 −0.0790807 −0.0395403 0.999218i \(-0.512589\pi\)
−0.0395403 + 0.999218i \(0.512589\pi\)
\(278\) 683.030 0.147358
\(279\) 0 0
\(280\) 1111.59i 0.237250i
\(281\) −1410.01 −0.299339 −0.149669 0.988736i \(-0.547821\pi\)
−0.149669 + 0.988736i \(0.547821\pi\)
\(282\) 0 0
\(283\) −6322.36 −1.32801 −0.664003 0.747730i \(-0.731144\pi\)
−0.664003 + 0.747730i \(0.731144\pi\)
\(284\) 3325.68 0.694870
\(285\) 0 0
\(286\) 2225.72 0.460173
\(287\) −4437.94 −0.912765
\(288\) 0 0
\(289\) −3535.45 −0.719611
\(290\) 149.075i 0.0301861i
\(291\) 0 0
\(292\) −3073.42 −0.615953
\(293\) −1239.75 −0.247191 −0.123595 0.992333i \(-0.539442\pi\)
−0.123595 + 0.992333i \(0.539442\pi\)
\(294\) 0 0
\(295\) 130.986i 0.0258519i
\(296\) 2336.66i 0.458836i
\(297\) 0 0
\(298\) 1013.80i 0.197073i
\(299\) −3041.98 −0.588370
\(300\) 0 0
\(301\) −11121.2 −2.12962
\(302\) 1769.27i 0.337120i
\(303\) 0 0
\(304\) −620.000 + 1171.11i −0.116972 + 0.220947i
\(305\) 125.652i 0.0235896i
\(306\) 0 0
\(307\) 736.196i 0.136863i 0.997656 + 0.0684315i \(0.0217994\pi\)
−0.997656 + 0.0684315i \(0.978201\pi\)
\(308\) 4079.80i 0.754767i
\(309\) 0 0
\(310\) 1140.08 0.208878
\(311\) 6618.80i 1.20681i −0.797435 0.603405i \(-0.793810\pi\)
0.797435 0.603405i \(-0.206190\pi\)
\(312\) 0 0
\(313\) −10467.4 −1.89027 −0.945136 0.326679i \(-0.894071\pi\)
−0.945136 + 0.326679i \(0.894071\pi\)
\(314\) 6745.08 1.21225
\(315\) 0 0
\(316\) 1082.62i 0.192728i
\(317\) 9361.20 1.65860 0.829302 0.558801i \(-0.188738\pi\)
0.829302 + 0.558801i \(0.188738\pi\)
\(318\) 0 0
\(319\) 547.142i 0.0960315i
\(320\) 320.000i 0.0559017i
\(321\) 0 0
\(322\) 5576.04i 0.965032i
\(323\) −6727.71 3561.72i −1.15895 0.613559i
\(324\) 0 0
\(325\) 758.026i 0.129378i
\(326\) −2491.09 −0.423217
\(327\) 0 0
\(328\) −1277.58 −0.215069
\(329\) 975.285i 0.163432i
\(330\) 0 0
\(331\) 920.881i 0.152919i −0.997073 0.0764595i \(-0.975638\pi\)
0.997073 0.0764595i \(-0.0243616\pi\)
\(332\) 1392.68i 0.230221i
\(333\) 0 0
\(334\) −282.600 −0.0462969
\(335\) −3089.34 −0.503847
\(336\) 0 0
\(337\) 8436.13i 1.36364i 0.731522 + 0.681818i \(0.238810\pi\)
−0.731522 + 0.681818i \(0.761190\pi\)
\(338\) −2555.27 −0.411208
\(339\) 0 0
\(340\) −1838.31 −0.293224
\(341\) −4184.38 −0.664507
\(342\) 0 0
\(343\) −2397.23 −0.377371
\(344\) −3201.53 −0.501788
\(345\) 0 0
\(346\) −5079.19 −0.789188
\(347\) 2614.02i 0.404404i −0.979344 0.202202i \(-0.935190\pi\)
0.979344 0.202202i \(-0.0648097\pi\)
\(348\) 0 0
\(349\) 3290.23 0.504647 0.252324 0.967643i \(-0.418805\pi\)
0.252324 + 0.967643i \(0.418805\pi\)
\(350\) −1389.48 −0.212203
\(351\) 0 0
\(352\) 1174.48i 0.177841i
\(353\) 4219.58i 0.636220i −0.948054 0.318110i \(-0.896952\pi\)
0.948054 0.318110i \(-0.103048\pi\)
\(354\) 0 0
\(355\) 4157.10i 0.621510i
\(356\) −5099.04 −0.759125
\(357\) 0 0
\(358\) −2402.14 −0.354629
\(359\) 5533.74i 0.813537i 0.913531 + 0.406769i \(0.133344\pi\)
−0.913531 + 0.406769i \(0.866656\pi\)
\(360\) 0 0
\(361\) −3855.87 5672.58i −0.562163 0.827027i
\(362\) 3563.99i 0.517456i
\(363\) 0 0
\(364\) 3370.44i 0.485327i
\(365\) 3841.77i 0.550925i
\(366\) 0 0
\(367\) −8991.17 −1.27884 −0.639422 0.768856i \(-0.720826\pi\)
−0.639422 + 0.768856i \(0.720826\pi\)
\(368\) 1605.21i 0.227385i
\(369\) 0 0
\(370\) 2920.82 0.410396
\(371\) −537.488 −0.0752156
\(372\) 0 0
\(373\) 5559.77i 0.771780i −0.922545 0.385890i \(-0.873894\pi\)
0.922545 0.385890i \(-0.126106\pi\)
\(374\) 6747.06 0.932840
\(375\) 0 0
\(376\) 280.762i 0.0385085i
\(377\) 452.010i 0.0617498i
\(378\) 0 0
\(379\) 1282.64i 0.173839i 0.996215 + 0.0869194i \(0.0277023\pi\)
−0.996215 + 0.0869194i \(0.972298\pi\)
\(380\) −1463.89 775.000i −0.197621 0.104623i
\(381\) 0 0
\(382\) 2655.98i 0.355737i
\(383\) 10263.6 1.36930 0.684652 0.728871i \(-0.259954\pi\)
0.684652 + 0.728871i \(0.259954\pi\)
\(384\) 0 0
\(385\) 5099.75 0.675084
\(386\) 6633.50i 0.874705i
\(387\) 0 0
\(388\) 5960.89i 0.779944i
\(389\) 4082.19i 0.532070i −0.963963 0.266035i \(-0.914286\pi\)
0.963963 0.266035i \(-0.0857136\pi\)
\(390\) 0 0
\(391\) −9221.50 −1.19271
\(392\) −3434.11 −0.442471
\(393\) 0 0
\(394\) 9864.03i 1.26128i
\(395\) −1353.27 −0.172381
\(396\) 0 0
\(397\) −1208.88 −0.152826 −0.0764128 0.997076i \(-0.524347\pi\)
−0.0764128 + 0.997076i \(0.524347\pi\)
\(398\) −4178.68 −0.526277
\(399\) 0 0
\(400\) −400.000 −0.0500000
\(401\) −12794.7 −1.59336 −0.796681 0.604400i \(-0.793413\pi\)
−0.796681 + 0.604400i \(0.793413\pi\)
\(402\) 0 0
\(403\) −3456.84 −0.427289
\(404\) 3232.96i 0.398134i
\(405\) 0 0
\(406\) 828.546 0.101281
\(407\) −10720.2 −1.30560
\(408\) 0 0
\(409\) 13677.8i 1.65361i 0.562492 + 0.826803i \(0.309843\pi\)
−0.562492 + 0.826803i \(0.690157\pi\)
\(410\) 1596.98i 0.192364i
\(411\) 0 0
\(412\) 4945.86i 0.591420i
\(413\) 728.011 0.0867387
\(414\) 0 0
\(415\) 1740.85 0.205916
\(416\) 970.273i 0.114355i
\(417\) 0 0
\(418\) 5372.85 + 2844.45i 0.628695 + 0.332838i
\(419\) 7137.88i 0.832240i −0.909310 0.416120i \(-0.863390\pi\)
0.909310 0.416120i \(-0.136610\pi\)
\(420\) 0 0
\(421\) 8825.01i 1.02163i −0.859692 0.510813i \(-0.829344\pi\)
0.859692 0.510813i \(-0.170656\pi\)
\(422\) 7387.10i 0.852129i
\(423\) 0 0
\(424\) −154.730 −0.0177226
\(425\) 2297.89i 0.262268i
\(426\) 0 0
\(427\) 698.365 0.0791481
\(428\) 47.6946 0.00538646
\(429\) 0 0
\(430\) 4001.92i 0.448813i
\(431\) 14136.8 1.57992 0.789961 0.613157i \(-0.210101\pi\)
0.789961 + 0.613157i \(0.210101\pi\)
\(432\) 0 0
\(433\) 17162.9i 1.90484i −0.304790 0.952420i \(-0.598586\pi\)
0.304790 0.952420i \(-0.401414\pi\)
\(434\) 6336.47i 0.700831i
\(435\) 0 0
\(436\) 1390.28i 0.152711i
\(437\) −7343.30 3887.63i −0.803839 0.425562i
\(438\) 0 0
\(439\) 2630.03i 0.285933i −0.989728 0.142966i \(-0.954336\pi\)
0.989728 0.142966i \(-0.0456641\pi\)
\(440\) 1468.10 0.159066
\(441\) 0 0
\(442\) 5573.94 0.599831
\(443\) 10271.8i 1.10164i −0.834624 0.550821i \(-0.814315\pi\)
0.834624 0.550821i \(-0.185685\pi\)
\(444\) 0 0
\(445\) 6373.80i 0.678982i
\(446\) 3484.03i 0.369896i
\(447\) 0 0
\(448\) −1778.54 −0.187562
\(449\) 3111.53 0.327043 0.163521 0.986540i \(-0.447715\pi\)
0.163521 + 0.986540i \(0.447715\pi\)
\(450\) 0 0
\(451\) 5861.32i 0.611970i
\(452\) 194.018 0.0201899
\(453\) 0 0
\(454\) −6096.39 −0.630215
\(455\) 4213.05 0.434090
\(456\) 0 0
\(457\) 13897.2 1.42250 0.711251 0.702938i \(-0.248129\pi\)
0.711251 + 0.702938i \(0.248129\pi\)
\(458\) 5509.05 0.562055
\(459\) 0 0
\(460\) −2006.52 −0.203379
\(461\) 1623.62i 0.164034i 0.996631 + 0.0820171i \(0.0261362\pi\)
−0.996631 + 0.0820171i \(0.973864\pi\)
\(462\) 0 0
\(463\) −5800.06 −0.582185 −0.291092 0.956695i \(-0.594019\pi\)
−0.291092 + 0.956695i \(0.594019\pi\)
\(464\) 238.519 0.0238642
\(465\) 0 0
\(466\) 3826.85i 0.380420i
\(467\) 1945.62i 0.192789i 0.995343 + 0.0963945i \(0.0307310\pi\)
−0.995343 + 0.0963945i \(0.969269\pi\)
\(468\) 0 0
\(469\) 17170.3i 1.69051i
\(470\) −350.953 −0.0344431
\(471\) 0 0
\(472\) 209.578 0.0204377
\(473\) 14688.1i 1.42782i
\(474\) 0 0
\(475\) 968.750 1829.86i 0.0935775 0.176758i
\(476\) 10217.2i 0.983832i
\(477\) 0 0
\(478\) 1138.41i 0.108932i
\(479\) 4187.24i 0.399415i −0.979856 0.199708i \(-0.936001\pi\)
0.979856 0.199708i \(-0.0639992\pi\)
\(480\) 0 0
\(481\) −8856.24 −0.839521
\(482\) 10653.9i 1.00678i
\(483\) 0 0
\(484\) −64.3042 −0.00603909
\(485\) −7451.11 −0.697603
\(486\) 0 0
\(487\) 8199.09i 0.762908i −0.924388 0.381454i \(-0.875423\pi\)
0.924388 0.381454i \(-0.124577\pi\)
\(488\) 201.043 0.0186492
\(489\) 0 0
\(490\) 4292.64i 0.395758i
\(491\) 16187.9i 1.48788i 0.668246 + 0.743941i \(0.267046\pi\)
−0.668246 + 0.743941i \(0.732954\pi\)
\(492\) 0 0
\(493\) 1370.23i 0.125176i
\(494\) 4438.67 + 2349.88i 0.404261 + 0.214021i
\(495\) 0 0
\(496\) 1824.13i 0.165132i
\(497\) −23104.9 −2.08530
\(498\) 0 0
\(499\) 10973.4 0.984447 0.492223 0.870469i \(-0.336184\pi\)
0.492223 + 0.870469i \(0.336184\pi\)
\(500\) 500.000i 0.0447214i
\(501\) 0 0
\(502\) 1950.07i 0.173378i
\(503\) 11195.2i 0.992380i 0.868214 + 0.496190i \(0.165268\pi\)
−0.868214 + 0.496190i \(0.834732\pi\)
\(504\) 0 0
\(505\) 4041.20 0.356102
\(506\) 7364.43 0.647013
\(507\) 0 0
\(508\) 7133.49i 0.623027i
\(509\) 6726.65 0.585763 0.292882 0.956149i \(-0.405386\pi\)
0.292882 + 0.956149i \(0.405386\pi\)
\(510\) 0 0
\(511\) 21352.3 1.84847
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 12402.0 1.06426
\(515\) −6182.32 −0.528982
\(516\) 0 0
\(517\) 1288.09 0.109574
\(518\) 16233.7i 1.37697i
\(519\) 0 0
\(520\) 1212.84 0.102282
\(521\) 7521.63 0.632493 0.316246 0.948677i \(-0.397577\pi\)
0.316246 + 0.948677i \(0.397577\pi\)
\(522\) 0 0
\(523\) 843.506i 0.0705238i 0.999378 + 0.0352619i \(0.0112265\pi\)
−0.999378 + 0.0352619i \(0.988773\pi\)
\(524\) 1997.71i 0.166547i
\(525\) 0 0
\(526\) 7281.11i 0.603558i
\(527\) −10479.1 −0.866179
\(528\) 0 0
\(529\) 2101.72 0.172739
\(530\) 193.413i 0.0158516i
\(531\) 0 0
\(532\) 4307.39 8136.19i 0.351032 0.663062i
\(533\) 4842.20i 0.393507i
\(534\) 0 0
\(535\) 59.6182i 0.00481779i
\(536\) 4942.94i 0.398326i
\(537\) 0 0
\(538\) 12644.6 1.01329
\(539\) 15755.1i 1.25903i
\(540\) 0 0
\(541\) 5585.32 0.443866 0.221933 0.975062i \(-0.428763\pi\)
0.221933 + 0.975062i \(0.428763\pi\)
\(542\) −16518.9 −1.30913
\(543\) 0 0
\(544\) 2941.29i 0.231814i
\(545\) 1737.85 0.136589
\(546\) 0 0
\(547\) 5559.39i 0.434556i −0.976110 0.217278i \(-0.930282\pi\)
0.976110 0.217278i \(-0.0697178\pi\)
\(548\) 4827.39i 0.376306i
\(549\) 0 0
\(550\) 1835.13i 0.142273i
\(551\) −577.664 + 1091.14i −0.0446630 + 0.0843635i
\(552\) 0 0
\(553\) 7521.38i 0.578375i
\(554\) 729.155 0.0559185
\(555\) 0 0
\(556\) −1366.06 −0.104198
\(557\) 2447.26i 0.186165i 0.995658 + 0.0930825i \(0.0296720\pi\)
−0.995658 + 0.0930825i \(0.970328\pi\)
\(558\) 0 0
\(559\) 12134.2i 0.918109i
\(560\) 2223.17i 0.167761i
\(561\) 0 0
\(562\) 2820.02 0.211664
\(563\) 26016.1 1.94751 0.973756 0.227593i \(-0.0730855\pi\)
0.973756 + 0.227593i \(0.0730855\pi\)
\(564\) 0 0
\(565\) 242.522i 0.0180584i
\(566\) 12644.7 0.939041
\(567\) 0 0
\(568\) −6651.37 −0.491347
\(569\) 2588.82 0.190736 0.0953682 0.995442i \(-0.469597\pi\)
0.0953682 + 0.995442i \(0.469597\pi\)
\(570\) 0 0
\(571\) −9015.39 −0.660740 −0.330370 0.943852i \(-0.607173\pi\)
−0.330370 + 0.943852i \(0.607173\pi\)
\(572\) −4451.43 −0.325391
\(573\) 0 0
\(574\) 8875.89 0.645422
\(575\) 2508.15i 0.181908i
\(576\) 0 0
\(577\) 21709.3 1.56633 0.783163 0.621817i \(-0.213605\pi\)
0.783163 + 0.621817i \(0.213605\pi\)
\(578\) 7070.89 0.508842
\(579\) 0 0
\(580\) 298.149i 0.0213448i
\(581\) 9675.53i 0.690893i
\(582\) 0 0
\(583\) 709.875i 0.0504289i
\(584\) 6146.84 0.435544
\(585\) 0 0
\(586\) 2479.50 0.174790
\(587\) 8448.39i 0.594042i 0.954871 + 0.297021i \(0.0959931\pi\)
−0.954871 + 0.297021i \(0.904007\pi\)
\(588\) 0 0
\(589\) −8344.75 4417.81i −0.583768 0.309054i
\(590\) 261.972i 0.0182800i
\(591\) 0 0
\(592\) 4673.32i 0.324446i
\(593\) 17978.4i 1.24500i 0.782620 + 0.622499i \(0.213883\pi\)
−0.782620 + 0.622499i \(0.786117\pi\)
\(594\) 0 0
\(595\) 12771.5 0.879966
\(596\) 2027.60i 0.139352i
\(597\) 0 0
\(598\) 6083.97 0.416040
\(599\) −72.4662 −0.00494305 −0.00247153 0.999997i \(-0.500787\pi\)
−0.00247153 + 0.999997i \(0.500787\pi\)
\(600\) 0 0
\(601\) 4061.23i 0.275642i −0.990457 0.137821i \(-0.955990\pi\)
0.990457 0.137821i \(-0.0440099\pi\)
\(602\) 22242.4 1.50587
\(603\) 0 0
\(604\) 3538.55i 0.238380i
\(605\) 80.3803i 0.00540153i
\(606\) 0 0
\(607\) 8611.24i 0.575814i −0.957658 0.287907i \(-0.907041\pi\)
0.957658 0.287907i \(-0.0929595\pi\)
\(608\) 1240.00 2342.22i 0.0827116 0.156233i
\(609\) 0 0
\(610\) 251.304i 0.0166803i
\(611\) 1064.12 0.0704581
\(612\) 0 0
\(613\) −23161.2 −1.52606 −0.763029 0.646364i \(-0.776289\pi\)
−0.763029 + 0.646364i \(0.776289\pi\)
\(614\) 1472.39i 0.0967767i
\(615\) 0 0
\(616\) 8159.60i 0.533701i
\(617\) 13082.7i 0.853632i 0.904338 + 0.426816i \(0.140365\pi\)
−0.904338 + 0.426816i \(0.859635\pi\)
\(618\) 0 0
\(619\) −15969.7 −1.03696 −0.518479 0.855090i \(-0.673502\pi\)
−0.518479 + 0.855090i \(0.673502\pi\)
\(620\) −2280.16 −0.147699
\(621\) 0 0
\(622\) 13237.6i 0.853344i
\(623\) 35425.1 2.27813
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 20934.9 1.33662
\(627\) 0 0
\(628\) −13490.2 −0.857191
\(629\) −26846.9 −1.70184
\(630\) 0 0
\(631\) −3928.27 −0.247832 −0.123916 0.992293i \(-0.539545\pi\)
−0.123916 + 0.992293i \(0.539545\pi\)
\(632\) 2165.23i 0.136279i
\(633\) 0 0
\(634\) −18722.4 −1.17281
\(635\) −8916.87 −0.557252
\(636\) 0 0
\(637\) 13015.7i 0.809578i
\(638\) 1094.28i 0.0679045i
\(639\) 0 0
\(640\) 640.000i 0.0395285i
\(641\) −1116.93 −0.0688235 −0.0344118 0.999408i \(-0.510956\pi\)
−0.0344118 + 0.999408i \(0.510956\pi\)
\(642\) 0 0
\(643\) −21477.2 −1.31723 −0.658616 0.752480i \(-0.728858\pi\)
−0.658616 + 0.752480i \(0.728858\pi\)
\(644\) 11152.1i 0.682381i
\(645\) 0 0
\(646\) 13455.4 + 7123.45i 0.819499 + 0.433852i
\(647\) 3654.77i 0.222077i −0.993816 0.111039i \(-0.964582\pi\)
0.993816 0.111039i \(-0.0354177\pi\)
\(648\) 0 0
\(649\) 961.504i 0.0581546i
\(650\) 1516.05i 0.0914837i
\(651\) 0 0
\(652\) 4982.19 0.299260
\(653\) 11757.9i 0.704630i 0.935882 + 0.352315i \(0.114605\pi\)
−0.935882 + 0.352315i \(0.885395\pi\)
\(654\) 0 0
\(655\) 2497.14 0.148964
\(656\) 2555.17 0.152077
\(657\) 0 0
\(658\) 1950.57i 0.115564i
\(659\) 15340.2 0.906783 0.453392 0.891311i \(-0.350214\pi\)
0.453392 + 0.891311i \(0.350214\pi\)
\(660\) 0 0
\(661\) 11520.2i 0.677890i −0.940806 0.338945i \(-0.889930\pi\)
0.940806 0.338945i \(-0.110070\pi\)
\(662\) 1841.76i 0.108130i
\(663\) 0 0
\(664\) 2785.36i 0.162791i
\(665\) 10170.2 + 5384.24i 0.593060 + 0.313973i
\(666\) 0 0
\(667\) 1495.60i 0.0868216i
\(668\) 565.199 0.0327369
\(669\) 0 0
\(670\) 6178.68 0.356273
\(671\) 922.349i 0.0530654i
\(672\) 0 0
\(673\) 25295.2i 1.44882i 0.689368 + 0.724412i \(0.257889\pi\)
−0.689368 + 0.724412i \(0.742111\pi\)
\(674\) 16872.3i 0.964236i
\(675\) 0 0
\(676\) 5110.54 0.290768
\(677\) 6669.71 0.378638 0.189319 0.981916i \(-0.439372\pi\)
0.189319 + 0.981916i \(0.439372\pi\)
\(678\) 0 0
\(679\) 41412.7i 2.34061i
\(680\) 3676.62 0.207341
\(681\) 0 0
\(682\) 8368.76 0.469877
\(683\) −14015.5 −0.785192 −0.392596 0.919711i \(-0.628423\pi\)
−0.392596 + 0.919711i \(0.628423\pi\)
\(684\) 0 0
\(685\) −6034.24 −0.336579
\(686\) 4794.47 0.266842
\(687\) 0 0
\(688\) 6403.07 0.354818
\(689\) 586.448i 0.0324266i
\(690\) 0 0
\(691\) 5813.29 0.320040 0.160020 0.987114i \(-0.448844\pi\)
0.160020 + 0.987114i \(0.448844\pi\)
\(692\) 10158.4 0.558040
\(693\) 0 0
\(694\) 5228.04i 0.285957i
\(695\) 1707.57i 0.0931971i
\(696\) 0 0
\(697\) 14678.7i 0.797698i
\(698\) −6580.45 −0.356839
\(699\) 0 0
\(700\) 2778.96 0.150050
\(701\) 22840.9i 1.23066i −0.788271 0.615328i \(-0.789023\pi\)
0.788271 0.615328i \(-0.210977\pi\)
\(702\) 0 0
\(703\) −21378.8 11318.2i −1.14697 0.607217i
\(704\) 2348.96i 0.125753i
\(705\) 0 0
\(706\) 8439.16i 0.449875i
\(707\) 22460.7i 1.19480i
\(708\) 0 0
\(709\) 10102.3 0.535118 0.267559 0.963542i \(-0.413783\pi\)
0.267559 + 0.963542i \(0.413783\pi\)
\(710\) 8314.21i 0.439474i
\(711\) 0 0
\(712\) 10198.1 0.536783
\(713\) −11437.9 −0.600777
\(714\) 0 0
\(715\) 5564.29i 0.291039i
\(716\) 4804.29 0.250761
\(717\) 0 0
\(718\) 11067.5i 0.575258i
\(719\) 32602.7i 1.69106i −0.533925 0.845532i \(-0.679284\pi\)
0.533925 0.845532i \(-0.320716\pi\)
\(720\) 0 0
\(721\) 34360.9i 1.77485i
\(722\) 7711.75 + 11345.2i 0.397509 + 0.584796i
\(723\) 0 0
\(724\) 7127.97i 0.365897i
\(725\) −372.687 −0.0190914
\(726\) 0 0
\(727\) 25142.1 1.28262 0.641312 0.767280i \(-0.278391\pi\)
0.641312 + 0.767280i \(0.278391\pi\)
\(728\) 6740.88i 0.343178i
\(729\) 0 0
\(730\) 7683.55i 0.389563i
\(731\) 36783.8i 1.86115i
\(732\) 0 0
\(733\) 31303.5 1.57738 0.788691 0.614790i \(-0.210759\pi\)
0.788691 + 0.614790i \(0.210759\pi\)
\(734\) 17982.3 0.904279
\(735\) 0 0
\(736\) 3210.43i 0.160785i
\(737\) −22677.3 −1.13342
\(738\) 0 0
\(739\) 4518.25 0.224907 0.112454 0.993657i \(-0.464129\pi\)
0.112454 + 0.993657i \(0.464129\pi\)
\(740\) −5841.65 −0.290194
\(741\) 0 0
\(742\) 1074.98 0.0531854
\(743\) −25941.7 −1.28090 −0.640451 0.767999i \(-0.721252\pi\)
−0.640451 + 0.767999i \(0.721252\pi\)
\(744\) 0 0
\(745\) 2534.50 0.124640
\(746\) 11119.5i 0.545731i
\(747\) 0 0
\(748\) −13494.1 −0.659617
\(749\) −331.353 −0.0161647
\(750\) 0 0
\(751\) 27387.3i 1.33073i 0.746520 + 0.665363i \(0.231723\pi\)
−0.746520 + 0.665363i \(0.768277\pi\)
\(752\) 561.524i 0.0272296i
\(753\) 0 0
\(754\) 904.019i 0.0436637i
\(755\) −4423.19 −0.213214
\(756\) 0 0
\(757\) 7927.73 0.380632 0.190316 0.981723i \(-0.439049\pi\)
0.190316 + 0.981723i \(0.439049\pi\)
\(758\) 2565.29i 0.122923i
\(759\) 0 0
\(760\) 2927.78 + 1550.00i 0.139739 + 0.0739795i
\(761\) 16884.6i 0.804291i 0.915576 + 0.402146i \(0.131735\pi\)
−0.915576 + 0.402146i \(0.868265\pi\)
\(762\) 0 0
\(763\) 9658.82i 0.458287i
\(764\) 5311.95i 0.251544i
\(765\) 0 0
\(766\) −20527.1 −0.968244
\(767\) 794.327i 0.0373944i
\(768\) 0 0
\(769\) 23745.4 1.11350 0.556751 0.830680i \(-0.312048\pi\)
0.556751 + 0.830680i \(0.312048\pi\)
\(770\) −10199.5 −0.477356
\(771\) 0 0
\(772\) 13267.0i 0.618510i
\(773\) 35255.4 1.64042 0.820212 0.572060i \(-0.193856\pi\)
0.820212 + 0.572060i \(0.193856\pi\)
\(774\) 0 0
\(775\) 2850.20i 0.132106i
\(776\) 11921.8i 0.551504i
\(777\) 0 0
\(778\) 8164.37i 0.376230i
\(779\) −6188.29 + 11689.0i −0.284620 + 0.537615i
\(780\) 0 0
\(781\) 30515.2i 1.39811i
\(782\) 18443.0 0.843376
\(783\) 0 0
\(784\) 6868.22 0.312874
\(785\) 16862.7i 0.766695i
\(786\) 0 0
\(787\) 38401.6i 1.73935i −0.493625 0.869675i \(-0.664328\pi\)
0.493625 0.869675i \(-0.335672\pi\)
\(788\) 19728.1i 0.891857i
\(789\) 0 0
\(790\) 2706.54 0.121892
\(791\) −1347.92 −0.0605898
\(792\) 0 0
\(793\) 761.980i 0.0341219i
\(794\) 2417.75 0.108064
\(795\) 0 0
\(796\) 8357.36 0.372134
\(797\) −7919.12 −0.351957 −0.175979 0.984394i \(-0.556309\pi\)
−0.175979 + 0.984394i \(0.556309\pi\)
\(798\) 0 0
\(799\) 3225.80 0.142829
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) 25589.5 1.12668
\(803\) 28200.6i 1.23932i
\(804\) 0 0
\(805\) 13940.1 0.610340
\(806\) 6913.67 0.302139
\(807\) 0 0
\(808\) 6465.93i 0.281523i
\(809\) 26165.6i 1.13713i −0.822640 0.568563i \(-0.807500\pi\)
0.822640 0.568563i \(-0.192500\pi\)
\(810\) 0 0
\(811\) 9246.19i 0.400342i −0.979761 0.200171i \(-0.935850\pi\)
0.979761 0.200171i \(-0.0641498\pi\)
\(812\) −1657.09 −0.0716164
\(813\) 0 0
\(814\) 21440.3 0.923198
\(815\) 6227.73i 0.267666i
\(816\) 0 0
\(817\) −15507.4 + 29291.8i −0.664059 + 1.25434i
\(818\) 27355.6i 1.16928i
\(819\) 0 0
\(820\) 3193.96i 0.136022i
\(821\) 43130.6i 1.83346i 0.399509 + 0.916729i \(0.369180\pi\)
−0.399509 + 0.916729i \(0.630820\pi\)
\(822\) 0 0
\(823\) 32441.5 1.37405 0.687023 0.726636i \(-0.258917\pi\)
0.687023 + 0.726636i \(0.258917\pi\)
\(824\) 9891.71i 0.418197i
\(825\) 0 0
\(826\) −1456.02 −0.0613335
\(827\) −5433.35 −0.228459 −0.114230 0.993454i \(-0.536440\pi\)
−0.114230 + 0.993454i \(0.536440\pi\)
\(828\) 0 0
\(829\) 8293.44i 0.347459i −0.984793 0.173729i \(-0.944418\pi\)
0.984793 0.173729i \(-0.0555818\pi\)
\(830\) −3481.71 −0.145605
\(831\) 0 0
\(832\) 1940.55i 0.0808610i
\(833\) 39455.9i 1.64114i
\(834\) 0 0
\(835\) 706.499i 0.0292807i
\(836\) −10745.7 5688.89i −0.444555 0.235352i
\(837\) 0 0
\(838\) 14275.8i 0.588482i
\(839\) 45464.3 1.87080 0.935400 0.353592i \(-0.115040\pi\)
0.935400 + 0.353592i \(0.115040\pi\)
\(840\) 0 0
\(841\) −24166.8 −0.990888
\(842\) 17650.0i 0.722399i
\(843\) 0 0
\(844\) 14774.2i 0.602546i
\(845\) 6388.18i 0.260071i
\(846\) 0 0
\(847\) 446.748 0.0181233
\(848\) 309.461 0.0125318
\(849\) 0 0
\(850\) 4595.77i 0.185451i
\(851\) −29303.4 −1.18039
\(852\) 0 0
\(853\) −8816.65 −0.353899 −0.176950 0.984220i \(-0.556623\pi\)
−0.176950 + 0.984220i \(0.556623\pi\)
\(854\) −1396.73 −0.0559661
\(855\) 0 0
\(856\) −95.3891 −0.00380880
\(857\) 11609.5 0.462747 0.231373 0.972865i \(-0.425678\pi\)
0.231373 + 0.972865i \(0.425678\pi\)
\(858\) 0 0
\(859\) 25640.6 1.01845 0.509223 0.860635i \(-0.329933\pi\)
0.509223 + 0.860635i \(0.329933\pi\)
\(860\) 8003.83i 0.317359i
\(861\) 0 0
\(862\) −28273.6 −1.11717
\(863\) 31502.5 1.24259 0.621296 0.783576i \(-0.286606\pi\)
0.621296 + 0.783576i \(0.286606\pi\)
\(864\) 0 0
\(865\) 12698.0i 0.499127i
\(866\) 34325.8i 1.34692i
\(867\) 0 0
\(868\) 12672.9i 0.495562i
\(869\) −9933.69 −0.387776
\(870\) 0 0
\(871\) −18734.4 −0.728806
\(872\) 2780.55i 0.107983i
\(873\) 0 0
\(874\) 14686.6 + 7775.26i 0.568400 + 0.300918i
\(875\) 3473.70i 0.134209i
\(876\) 0 0
\(877\) 27873.1i 1.07321i 0.843833 + 0.536606i \(0.180294\pi\)
−0.843833 + 0.536606i \(0.819706\pi\)
\(878\) 5260.06i 0.202185i
\(879\) 0 0
\(880\) −2936.20 −0.112477
\(881\) 24632.8i 0.941998i 0.882134 + 0.470999i \(0.156106\pi\)
−0.882134 + 0.470999i \(0.843894\pi\)
\(882\) 0 0
\(883\) −11130.4 −0.424199 −0.212100 0.977248i \(-0.568030\pi\)
−0.212100 + 0.977248i \(0.568030\pi\)
\(884\) −11147.9 −0.424145
\(885\) 0 0
\(886\) 20543.6i 0.778978i
\(887\) 36072.2 1.36549 0.682744 0.730658i \(-0.260787\pi\)
0.682744 + 0.730658i \(0.260787\pi\)
\(888\) 0 0
\(889\) 49559.3i 1.86970i
\(890\) 12747.6i 0.480113i
\(891\) 0 0
\(892\) 6968.06i 0.261556i
\(893\) 2568.78 + 1359.94i 0.0962609 + 0.0509616i
\(894\) 0 0
\(895\) 6005.36i 0.224287i
\(896\) 3557.07 0.132627
\(897\) 0 0
\(898\) −6223.06 −0.231254
\(899\) 1699.57i 0.0630520i
\(900\) 0 0
\(901\) 1777.76i 0.0657336i
\(902\) 11722.6i 0.432728i
\(903\) 0 0
\(904\) −388.036 −0.0142764
\(905\) −8909.97 −0.327268
\(906\) 0 0
\(907\) 3019.26i 0.110532i −0.998472 0.0552662i \(-0.982399\pi\)
0.998472 0.0552662i \(-0.0176007\pi\)
\(908\) 12192.8 0.445630
\(909\) 0 0
\(910\) −8426.10 −0.306948
\(911\) 40590.3 1.47620 0.738099 0.674692i \(-0.235724\pi\)
0.738099 + 0.674692i \(0.235724\pi\)
\(912\) 0 0
\(913\) 12778.7 0.463214
\(914\) −27794.4 −1.00586
\(915\) 0 0
\(916\) −11018.1 −0.397433
\(917\) 13878.9i 0.499806i
\(918\) 0 0
\(919\) 40269.5 1.44545 0.722725 0.691135i \(-0.242889\pi\)
0.722725 + 0.691135i \(0.242889\pi\)
\(920\) 4013.04 0.143811
\(921\) 0 0
\(922\) 3247.25i 0.115990i
\(923\) 25209.5i 0.899005i
\(924\) 0 0
\(925\) 7302.06i 0.259557i
\(926\) 11600.1 0.411667
\(927\) 0 0
\(928\) −477.039 −0.0168745
\(929\) 43791.3i 1.54655i −0.634070 0.773275i \(-0.718617\pi\)
0.634070 0.773275i \(-0.281383\pi\)
\(930\) 0 0
\(931\) −16634.0 + 31419.7i −0.585560 + 1.10606i
\(932\) 7653.71i 0.268997i
\(933\) 0 0
\(934\) 3891.24i 0.136322i
\(935\) 16867.6i 0.589980i
\(936\) 0 0
\(937\) −6593.17 −0.229871 −0.114936 0.993373i \(-0.536666\pi\)
−0.114936 + 0.993373i \(0.536666\pi\)
\(938\) 34340.6i 1.19537i
\(939\) 0 0
\(940\) 701.905 0.0243549
\(941\) 26947.0 0.933525 0.466762 0.884383i \(-0.345420\pi\)
0.466762 + 0.884383i \(0.345420\pi\)
\(942\) 0 0
\(943\) 16021.8i 0.553279i
\(944\) −419.155 −0.0144516
\(945\) 0 0
\(946\) 29376.1i 1.00962i
\(947\) 12761.7i 0.437909i 0.975735 + 0.218955i \(0.0702647\pi\)
−0.975735 + 0.218955i \(0.929735\pi\)
\(948\) 0 0
\(949\) 23297.3i 0.796905i
\(950\) −1937.50 + 3659.73i −0.0661693 + 0.124987i
\(951\) 0 0
\(952\) 20434.4i 0.695674i
\(953\) 57227.2 1.94519 0.972597 0.232498i \(-0.0746899\pi\)
0.972597 + 0.232498i \(0.0746899\pi\)
\(954\) 0 0
\(955\) 6639.94 0.224988
\(956\) 2276.82i 0.0770269i
\(957\) 0 0
\(958\) 8374.48i 0.282429i
\(959\) 33537.8i 1.12929i
\(960\) 0 0
\(961\) 16793.2 0.563700
\(962\) 17712.5 0.593631
\(963\) 0 0
\(964\) 21307.7i 0.711904i
\(965\) 16583.7 0.553212
\(966\) 0 0
\(967\) 29661.3 0.986393 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(968\) 128.608 0.00427028
\(969\) 0 0
\(970\) 14902.2 0.493280
\(971\) −46586.2 −1.53967 −0.769837 0.638241i \(-0.779662\pi\)
−0.769837 + 0.638241i \(0.779662\pi\)
\(972\) 0 0
\(973\) 9490.57 0.312697
\(974\) 16398.2i 0.539457i
\(975\) 0 0
\(976\) −402.086 −0.0131870
\(977\) −6435.36 −0.210732 −0.105366 0.994433i \(-0.533601\pi\)
−0.105366 + 0.994433i \(0.533601\pi\)
\(978\) 0 0
\(979\) 46786.9i 1.52739i
\(980\) 8585.27i 0.279843i
\(981\) 0 0
\(982\) 32375.8i 1.05209i
\(983\) 10380.3 0.336805 0.168403 0.985718i \(-0.446139\pi\)
0.168403 + 0.985718i \(0.446139\pi\)
\(984\) 0 0
\(985\) −24660.1 −0.797701
\(986\) 2740.45i 0.0885129i
\(987\) 0 0
\(988\) −8877.33 4699.76i −0.285856 0.151335i
\(989\) 40149.6i 1.29088i
\(990\) 0 0
\(991\) 18846.9i 0.604127i 0.953288 + 0.302064i \(0.0976755\pi\)
−0.953288 + 0.302064i \(0.902324\pi\)
\(992\) 3648.25i 0.116766i
\(993\) 0 0
\(994\) 46209.7 1.47453
\(995\) 10446.7i 0.332847i
\(996\) 0 0
\(997\) −26913.9 −0.854936 −0.427468 0.904031i \(-0.640594\pi\)
−0.427468 + 0.904031i \(0.640594\pi\)
\(998\) −21946.9 −0.696109
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.f.a.341.36 yes 40
3.2 odd 2 1710.4.f.b.341.35 yes 40
19.18 odd 2 1710.4.f.b.341.36 yes 40
57.56 even 2 inner 1710.4.f.a.341.35 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.4.f.a.341.35 40 57.56 even 2 inner
1710.4.f.a.341.36 yes 40 1.1 even 1 trivial
1710.4.f.b.341.35 yes 40 3.2 odd 2
1710.4.f.b.341.36 yes 40 19.18 odd 2