Properties

Label 1710.4
Level 1710
Weight 4
Dimension 56116
Nonzero newspaces 48
Sturm bound 622080
Trace bound 17

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(622080\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1710))\).

Total New Old
Modular forms 235584 56116 179468
Cusp forms 230976 56116 174860
Eisenstein series 4608 0 4608

Trace form

\( 56116 q + 12 q^{2} + 12 q^{3} - 24 q^{4} + 34 q^{5} - 72 q^{6} - 8 q^{7} - 48 q^{8} - 164 q^{9} + 68 q^{10} + 68 q^{11} - 32 q^{12} - 1172 q^{13} - 472 q^{14} - 492 q^{15} - 224 q^{16} - 132 q^{17} + 560 q^{18}+ \cdots + 19420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1710))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1710.4.a \(\chi_{1710}(1, \cdot)\) 1710.4.a.a 1 1
1710.4.a.b 1
1710.4.a.c 1
1710.4.a.d 1
1710.4.a.e 1
1710.4.a.f 1
1710.4.a.g 1
1710.4.a.h 1
1710.4.a.i 1
1710.4.a.j 1
1710.4.a.k 2
1710.4.a.l 2
1710.4.a.m 2
1710.4.a.n 2
1710.4.a.o 2
1710.4.a.p 2
1710.4.a.q 2
1710.4.a.r 2
1710.4.a.s 2
1710.4.a.t 2
1710.4.a.u 2
1710.4.a.v 3
1710.4.a.w 3
1710.4.a.x 3
1710.4.a.y 3
1710.4.a.z 3
1710.4.a.ba 3
1710.4.a.bb 4
1710.4.a.bc 4
1710.4.a.bd 4
1710.4.a.be 4
1710.4.a.bf 4
1710.4.a.bg 5
1710.4.a.bh 5
1710.4.a.bi 5
1710.4.a.bj 5
1710.4.c \(\chi_{1710}(1709, \cdot)\) n/a 120 1
1710.4.d \(\chi_{1710}(1369, \cdot)\) n/a 134 1
1710.4.f \(\chi_{1710}(341, \cdot)\) 1710.4.f.a 40 1
1710.4.f.b 40
1710.4.i \(\chi_{1710}(121, \cdot)\) n/a 480 2
1710.4.j \(\chi_{1710}(571, \cdot)\) n/a 432 2
1710.4.k \(\chi_{1710}(391, \cdot)\) n/a 480 2
1710.4.l \(\chi_{1710}(1261, \cdot)\) n/a 200 2
1710.4.n \(\chi_{1710}(647, \cdot)\) n/a 216 2
1710.4.p \(\chi_{1710}(37, \cdot)\) n/a 300 2
1710.4.q \(\chi_{1710}(179, \cdot)\) n/a 240 2
1710.4.t \(\chi_{1710}(919, \cdot)\) n/a 300 2
1710.4.x \(\chi_{1710}(1361, \cdot)\) n/a 480 2
1710.4.ba \(\chi_{1710}(911, \cdot)\) n/a 480 2
1710.4.bb \(\chi_{1710}(221, \cdot)\) n/a 480 2
1710.4.bd \(\chi_{1710}(49, \cdot)\) n/a 720 2
1710.4.bg \(\chi_{1710}(229, \cdot)\) n/a 648 2
1710.4.bh \(\chi_{1710}(619, \cdot)\) n/a 720 2
1710.4.bk \(\chi_{1710}(749, \cdot)\) n/a 720 2
1710.4.bl \(\chi_{1710}(569, \cdot)\) n/a 720 2
1710.4.bo \(\chi_{1710}(1019, \cdot)\) n/a 720 2
1710.4.bq \(\chi_{1710}(521, \cdot)\) n/a 160 2
1710.4.bs \(\chi_{1710}(271, \cdot)\) n/a 600 6
1710.4.bt \(\chi_{1710}(61, \cdot)\) n/a 1440 6
1710.4.bu \(\chi_{1710}(481, \cdot)\) n/a 1440 6
1710.4.bv \(\chi_{1710}(197, \cdot)\) n/a 480 4
1710.4.by \(\chi_{1710}(493, \cdot)\) n/a 1440 4
1710.4.bz \(\chi_{1710}(103, \cdot)\) n/a 1440 4
1710.4.cc \(\chi_{1710}(373, \cdot)\) n/a 1440 4
1710.4.ce \(\chi_{1710}(77, \cdot)\) n/a 1296 4
1710.4.cf \(\chi_{1710}(83, \cdot)\) n/a 1440 4
1710.4.ci \(\chi_{1710}(353, \cdot)\) n/a 1440 4
1710.4.cj \(\chi_{1710}(217, \cdot)\) n/a 600 4
1710.4.cl \(\chi_{1710}(139, \cdot)\) n/a 2160 6
1710.4.co \(\chi_{1710}(299, \cdot)\) n/a 2160 6
1710.4.cp \(\chi_{1710}(41, \cdot)\) n/a 1440 6
1710.4.ct \(\chi_{1710}(71, \cdot)\) n/a 480 6
1710.4.cv \(\chi_{1710}(29, \cdot)\) n/a 2160 6
1710.4.cx \(\chi_{1710}(199, \cdot)\) n/a 900 6
1710.4.da \(\chi_{1710}(89, \cdot)\) n/a 720 6
1710.4.dc \(\chi_{1710}(499, \cdot)\) n/a 2160 6
1710.4.df \(\chi_{1710}(641, \cdot)\) n/a 1440 6
1710.4.dh \(\chi_{1710}(47, \cdot)\) n/a 4320 12
1710.4.dk \(\chi_{1710}(13, \cdot)\) n/a 4320 12
1710.4.dl \(\chi_{1710}(127, \cdot)\) n/a 1800 12
1710.4.dm \(\chi_{1710}(23, \cdot)\) n/a 4320 12
1710.4.dn \(\chi_{1710}(17, \cdot)\) n/a 1440 12
1710.4.dq \(\chi_{1710}(193, \cdot)\) n/a 4320 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1710))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1710)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(171))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(190))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(285))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(342))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(570))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(855))\)\(^{\oplus 2}\)