Properties

Label 2-1710-57.56-c3-0-20
Degree $2$
Conductor $1710$
Sign $-0.892 + 0.451i$
Analytic cond. $100.893$
Root an. cond. $10.0445$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 5i·5-s − 27.7·7-s − 8·8-s − 10i·10-s + 36.7i·11-s + 30.3i·13-s + 55.5·14-s + 16·16-s + 91.9i·17-s + (−38.7 + 73.1i)19-s + 20i·20-s − 73.4i·22-s + 100. i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447i·5-s − 1.50·7-s − 0.353·8-s − 0.316i·10-s + 1.00i·11-s + 0.646i·13-s + 1.06·14-s + 0.250·16-s + 1.31i·17-s + (−0.467 + 0.883i)19-s + 0.223i·20-s − 0.711i·22-s + 0.909i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-0.892 + 0.451i$
Analytic conductor: \(100.893\)
Root analytic conductor: \(10.0445\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1710} (341, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :3/2),\ -0.892 + 0.451i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7583265686\)
\(L(\frac12)\) \(\approx\) \(0.7583265686\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 - 5iT \)
19 \( 1 + (38.7 - 73.1i)T \)
good7 \( 1 + 27.7T + 343T^{2} \)
11 \( 1 - 36.7iT - 1.33e3T^{2} \)
13 \( 1 - 30.3iT - 2.19e3T^{2} \)
17 \( 1 - 91.9iT - 4.91e3T^{2} \)
23 \( 1 - 100. iT - 1.21e4T^{2} \)
29 \( 1 - 14.9T + 2.43e4T^{2} \)
31 \( 1 - 114. iT - 2.97e4T^{2} \)
37 \( 1 - 292. iT - 5.06e4T^{2} \)
41 \( 1 - 159.T + 6.89e4T^{2} \)
43 \( 1 - 400.T + 7.95e4T^{2} \)
47 \( 1 + 35.0iT - 1.03e5T^{2} \)
53 \( 1 - 19.3T + 1.48e5T^{2} \)
59 \( 1 + 26.1T + 2.05e5T^{2} \)
61 \( 1 + 25.1T + 2.26e5T^{2} \)
67 \( 1 - 617. iT - 3.00e5T^{2} \)
71 \( 1 - 831.T + 3.57e5T^{2} \)
73 \( 1 + 768.T + 3.89e5T^{2} \)
79 \( 1 - 270. iT - 4.93e5T^{2} \)
83 \( 1 + 348. iT - 5.71e5T^{2} \)
89 \( 1 + 1.27e3T + 7.04e5T^{2} \)
97 \( 1 - 1.49e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.557698847596823020080198647496, −8.758577066026932429426849548266, −7.81948274034955618470231554512, −6.99428531589024900059908415107, −6.43151794961651864040488892335, −5.73285800011921906967469589134, −4.22249356802301404639874689928, −3.44842946849509637322085748528, −2.39840374487367594116810639513, −1.38096918290404585915482285222, 0.34483363892633715239288367134, 0.62505214805579323064862043145, 2.49371930718001384069696936557, 3.09758226905373137808744829226, 4.23970592014559592171877184460, 5.50312470246583173886943817596, 6.18514014400356126266365128761, 6.97308250558516640096220553259, 7.77793054829208186017205328841, 8.764070777385908679131636738569

Graph of the $Z$-function along the critical line