Properties

Label 1710.4.a.x
Level $1710$
Weight $4$
Character orbit 1710.a
Self dual yes
Analytic conductor $100.893$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(1,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,0,12,15,0,-11,-24,0,-30,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 23x - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 5 q^{5} + (\beta_{2} + 7 \beta_1 - 4) q^{7} - 8 q^{8} - 10 q^{10} + (14 \beta_{2} + 10 \beta_1 + 18) q^{11} + (8 \beta_{2} + \beta_1 - 43) q^{13} + ( - 2 \beta_{2} - 14 \beta_1 + 8) q^{14}+ \cdots + ( - 2 \beta_{2} - 150 \beta_1 - 706) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 12 q^{4} + 15 q^{5} - 11 q^{7} - 24 q^{8} - 30 q^{10} + 68 q^{11} - 121 q^{13} + 22 q^{14} + 48 q^{16} + 103 q^{17} - 57 q^{19} + 60 q^{20} - 136 q^{22} + 203 q^{23} + 75 q^{25} + 242 q^{26}+ \cdots - 2120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 23x - 40 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.20569
−3.29616
5.50184
−2.00000 0 4.00000 5.00000 0 −22.9577 −8.00000 0 −10.0000
1.2 −2.00000 0 4.00000 5.00000 0 −21.3200 −8.00000 0 −10.0000
1.3 −2.00000 0 4.00000 5.00000 0 33.2777 −8.00000 0 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.4.a.x 3
3.b odd 2 1 190.4.a.h 3
12.b even 2 1 1520.4.a.p 3
15.d odd 2 1 950.4.a.m 3
15.e even 4 2 950.4.b.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.h 3 3.b odd 2 1
950.4.a.m 3 15.d odd 2 1
950.4.b.j 6 15.e even 4 2
1520.4.a.p 3 12.b even 2 1
1710.4.a.x 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1710))\):

\( T_{7}^{3} + 11T_{7}^{2} - 984T_{7} - 16288 \) Copy content Toggle raw display
\( T_{11}^{3} - 68T_{11}^{2} - 2812T_{11} + 194816 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 11 T^{2} + \cdots - 16288 \) Copy content Toggle raw display
$11$ \( T^{3} - 68 T^{2} + \cdots + 194816 \) Copy content Toggle raw display
$13$ \( T^{3} + 121 T^{2} + \cdots + 942 \) Copy content Toggle raw display
$17$ \( T^{3} - 103 T^{2} + \cdots + 1782324 \) Copy content Toggle raw display
$19$ \( (T + 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 203 T^{2} + \cdots + 2255976 \) Copy content Toggle raw display
$29$ \( T^{3} + 91 T^{2} + \cdots - 61620 \) Copy content Toggle raw display
$31$ \( T^{3} + 154 T^{2} + \cdots - 2514272 \) Copy content Toggle raw display
$37$ \( T^{3} + 304 T^{2} + \cdots - 3608532 \) Copy content Toggle raw display
$41$ \( T^{3} + 282 T^{2} + \cdots + 749864 \) Copy content Toggle raw display
$43$ \( T^{3} + 214 T^{2} + \cdots - 14445824 \) Copy content Toggle raw display
$47$ \( T^{3} - 1144 T^{2} + \cdots - 51801600 \) Copy content Toggle raw display
$53$ \( T^{3} + 795 T^{2} + \cdots - 7559654 \) Copy content Toggle raw display
$59$ \( T^{3} - 609 T^{2} + \cdots + 12873880 \) Copy content Toggle raw display
$61$ \( T^{3} - 792 T^{2} + \cdots - 6609824 \) Copy content Toggle raw display
$67$ \( T^{3} + 865 T^{2} + \cdots - 57516042 \) Copy content Toggle raw display
$71$ \( T^{3} - 312 T^{2} + \cdots + 40935424 \) Copy content Toggle raw display
$73$ \( T^{3} - 79 T^{2} + \cdots + 356614884 \) Copy content Toggle raw display
$79$ \( T^{3} - 1806 T^{2} + \cdots - 89460880 \) Copy content Toggle raw display
$83$ \( T^{3} - 34 T^{2} + \cdots + 212872272 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 1232043000 \) Copy content Toggle raw display
$97$ \( T^{3} + 1120 T^{2} + \cdots + 38577204 \) Copy content Toggle raw display
show more
show less