Properties

Label 1710.4.a.k.1.2
Level $1710$
Weight $4$
Character 1710.1
Self dual yes
Analytic conductor $100.893$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(1,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,8,10,0,-10,-16,0,-20,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1710.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +5.00000 q^{5} -2.76393 q^{7} -8.00000 q^{8} -10.0000 q^{10} -7.70820 q^{11} -15.9574 q^{13} +5.52786 q^{14} +16.0000 q^{16} -44.0263 q^{17} -19.0000 q^{19} +20.0000 q^{20} +15.4164 q^{22} +82.2492 q^{23} +25.0000 q^{25} +31.9149 q^{26} -11.0557 q^{28} +72.6262 q^{29} -219.108 q^{31} -32.0000 q^{32} +88.0526 q^{34} -13.8197 q^{35} -362.705 q^{37} +38.0000 q^{38} -40.0000 q^{40} +150.154 q^{41} +331.728 q^{43} -30.8328 q^{44} -164.498 q^{46} -267.967 q^{47} -335.361 q^{49} -50.0000 q^{50} -63.8297 q^{52} +759.633 q^{53} -38.5410 q^{55} +22.1115 q^{56} -145.252 q^{58} +721.515 q^{59} +664.014 q^{61} +438.217 q^{62} +64.0000 q^{64} -79.7871 q^{65} +437.686 q^{67} -176.105 q^{68} +27.6393 q^{70} +796.604 q^{71} -994.231 q^{73} +725.410 q^{74} -76.0000 q^{76} +21.3050 q^{77} -1009.93 q^{79} +80.0000 q^{80} -300.308 q^{82} -235.882 q^{83} -220.132 q^{85} -663.457 q^{86} +61.6656 q^{88} -1161.27 q^{89} +44.1052 q^{91} +328.997 q^{92} +535.935 q^{94} -95.0000 q^{95} +1443.28 q^{97} +670.721 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} + 10 q^{5} - 10 q^{7} - 16 q^{8} - 20 q^{10} - 2 q^{11} + 62 q^{13} + 20 q^{14} + 32 q^{16} + 64 q^{17} - 38 q^{19} + 40 q^{20} + 4 q^{22} + 84 q^{23} + 50 q^{25} - 124 q^{26} - 40 q^{28}+ \cdots + 1252 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −2.76393 −0.149238 −0.0746192 0.997212i \(-0.523774\pi\)
−0.0746192 + 0.997212i \(0.523774\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −7.70820 −0.211283 −0.105641 0.994404i \(-0.533690\pi\)
−0.105641 + 0.994404i \(0.533690\pi\)
\(12\) 0 0
\(13\) −15.9574 −0.340446 −0.170223 0.985406i \(-0.554449\pi\)
−0.170223 + 0.985406i \(0.554449\pi\)
\(14\) 5.52786 0.105527
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −44.0263 −0.628115 −0.314057 0.949404i \(-0.601688\pi\)
−0.314057 + 0.949404i \(0.601688\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) 15.4164 0.149400
\(23\) 82.2492 0.745659 0.372829 0.927900i \(-0.378388\pi\)
0.372829 + 0.927900i \(0.378388\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 31.9149 0.240731
\(27\) 0 0
\(28\) −11.0557 −0.0746192
\(29\) 72.6262 0.465046 0.232523 0.972591i \(-0.425302\pi\)
0.232523 + 0.972591i \(0.425302\pi\)
\(30\) 0 0
\(31\) −219.108 −1.26945 −0.634726 0.772737i \(-0.718887\pi\)
−0.634726 + 0.772737i \(0.718887\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 88.0526 0.444144
\(35\) −13.8197 −0.0667414
\(36\) 0 0
\(37\) −362.705 −1.61158 −0.805789 0.592203i \(-0.798258\pi\)
−0.805789 + 0.592203i \(0.798258\pi\)
\(38\) 38.0000 0.162221
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) 150.154 0.571954 0.285977 0.958236i \(-0.407682\pi\)
0.285977 + 0.958236i \(0.407682\pi\)
\(42\) 0 0
\(43\) 331.728 1.17647 0.588234 0.808691i \(-0.299824\pi\)
0.588234 + 0.808691i \(0.299824\pi\)
\(44\) −30.8328 −0.105641
\(45\) 0 0
\(46\) −164.498 −0.527260
\(47\) −267.967 −0.831640 −0.415820 0.909447i \(-0.636505\pi\)
−0.415820 + 0.909447i \(0.636505\pi\)
\(48\) 0 0
\(49\) −335.361 −0.977728
\(50\) −50.0000 −0.141421
\(51\) 0 0
\(52\) −63.8297 −0.170223
\(53\) 759.633 1.96875 0.984374 0.176091i \(-0.0563453\pi\)
0.984374 + 0.176091i \(0.0563453\pi\)
\(54\) 0 0
\(55\) −38.5410 −0.0944885
\(56\) 22.1115 0.0527637
\(57\) 0 0
\(58\) −145.252 −0.328837
\(59\) 721.515 1.59209 0.796045 0.605237i \(-0.206922\pi\)
0.796045 + 0.605237i \(0.206922\pi\)
\(60\) 0 0
\(61\) 664.014 1.39374 0.696871 0.717196i \(-0.254575\pi\)
0.696871 + 0.717196i \(0.254575\pi\)
\(62\) 438.217 0.897638
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −79.7871 −0.152252
\(66\) 0 0
\(67\) 437.686 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(68\) −176.105 −0.314057
\(69\) 0 0
\(70\) 27.6393 0.0471933
\(71\) 796.604 1.33154 0.665771 0.746156i \(-0.268103\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(72\) 0 0
\(73\) −994.231 −1.59405 −0.797027 0.603944i \(-0.793595\pi\)
−0.797027 + 0.603944i \(0.793595\pi\)
\(74\) 725.410 1.13956
\(75\) 0 0
\(76\) −76.0000 −0.114708
\(77\) 21.3050 0.0315315
\(78\) 0 0
\(79\) −1009.93 −1.43830 −0.719151 0.694854i \(-0.755469\pi\)
−0.719151 + 0.694854i \(0.755469\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) −300.308 −0.404433
\(83\) −235.882 −0.311945 −0.155973 0.987761i \(-0.549851\pi\)
−0.155973 + 0.987761i \(0.549851\pi\)
\(84\) 0 0
\(85\) −220.132 −0.280901
\(86\) −663.457 −0.831888
\(87\) 0 0
\(88\) 61.6656 0.0746998
\(89\) −1161.27 −1.38308 −0.691541 0.722337i \(-0.743068\pi\)
−0.691541 + 0.722337i \(0.743068\pi\)
\(90\) 0 0
\(91\) 44.1052 0.0508075
\(92\) 328.997 0.372829
\(93\) 0 0
\(94\) 535.935 0.588058
\(95\) −95.0000 −0.102598
\(96\) 0 0
\(97\) 1443.28 1.51075 0.755374 0.655294i \(-0.227455\pi\)
0.755374 + 0.655294i \(0.227455\pi\)
\(98\) 670.721 0.691358
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 1903.41 1.87521 0.937606 0.347700i \(-0.113037\pi\)
0.937606 + 0.347700i \(0.113037\pi\)
\(102\) 0 0
\(103\) −844.519 −0.807892 −0.403946 0.914783i \(-0.632362\pi\)
−0.403946 + 0.914783i \(0.632362\pi\)
\(104\) 127.659 0.120366
\(105\) 0 0
\(106\) −1519.27 −1.39211
\(107\) 274.597 0.248097 0.124048 0.992276i \(-0.460412\pi\)
0.124048 + 0.992276i \(0.460412\pi\)
\(108\) 0 0
\(109\) 1621.35 1.42475 0.712373 0.701801i \(-0.247620\pi\)
0.712373 + 0.701801i \(0.247620\pi\)
\(110\) 77.0820 0.0668135
\(111\) 0 0
\(112\) −44.2229 −0.0373096
\(113\) −693.712 −0.577513 −0.288756 0.957403i \(-0.593242\pi\)
−0.288756 + 0.957403i \(0.593242\pi\)
\(114\) 0 0
\(115\) 411.246 0.333469
\(116\) 290.505 0.232523
\(117\) 0 0
\(118\) −1443.03 −1.12578
\(119\) 121.686 0.0937388
\(120\) 0 0
\(121\) −1271.58 −0.955360
\(122\) −1328.03 −0.985524
\(123\) 0 0
\(124\) −876.433 −0.634726
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1310.86 −0.915906 −0.457953 0.888976i \(-0.651417\pi\)
−0.457953 + 0.888976i \(0.651417\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 159.574 0.107658
\(131\) 241.321 0.160949 0.0804746 0.996757i \(-0.474356\pi\)
0.0804746 + 0.996757i \(0.474356\pi\)
\(132\) 0 0
\(133\) 52.5147 0.0342376
\(134\) −875.371 −0.564333
\(135\) 0 0
\(136\) 352.210 0.222072
\(137\) 860.610 0.536692 0.268346 0.963323i \(-0.413523\pi\)
0.268346 + 0.963323i \(0.413523\pi\)
\(138\) 0 0
\(139\) 2355.81 1.43754 0.718768 0.695250i \(-0.244706\pi\)
0.718768 + 0.695250i \(0.244706\pi\)
\(140\) −55.2786 −0.0333707
\(141\) 0 0
\(142\) −1593.21 −0.941542
\(143\) 123.003 0.0719303
\(144\) 0 0
\(145\) 363.131 0.207975
\(146\) 1988.46 1.12717
\(147\) 0 0
\(148\) −1450.82 −0.805789
\(149\) 932.079 0.512476 0.256238 0.966614i \(-0.417517\pi\)
0.256238 + 0.966614i \(0.417517\pi\)
\(150\) 0 0
\(151\) 560.263 0.301944 0.150972 0.988538i \(-0.451760\pi\)
0.150972 + 0.988538i \(0.451760\pi\)
\(152\) 152.000 0.0811107
\(153\) 0 0
\(154\) −42.6099 −0.0222961
\(155\) −1095.54 −0.567716
\(156\) 0 0
\(157\) 309.850 0.157508 0.0787538 0.996894i \(-0.474906\pi\)
0.0787538 + 0.996894i \(0.474906\pi\)
\(158\) 2019.86 1.01703
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) −227.331 −0.111281
\(162\) 0 0
\(163\) 3249.65 1.56155 0.780774 0.624813i \(-0.214825\pi\)
0.780774 + 0.624813i \(0.214825\pi\)
\(164\) 600.616 0.285977
\(165\) 0 0
\(166\) 471.765 0.220579
\(167\) −2159.50 −1.00064 −0.500321 0.865840i \(-0.666785\pi\)
−0.500321 + 0.865840i \(0.666785\pi\)
\(168\) 0 0
\(169\) −1942.36 −0.884097
\(170\) 440.263 0.198627
\(171\) 0 0
\(172\) 1326.91 0.588234
\(173\) −1667.41 −0.732782 −0.366391 0.930461i \(-0.619407\pi\)
−0.366391 + 0.930461i \(0.619407\pi\)
\(174\) 0 0
\(175\) −69.0983 −0.0298477
\(176\) −123.331 −0.0528207
\(177\) 0 0
\(178\) 2322.54 0.977987
\(179\) −438.865 −0.183253 −0.0916266 0.995793i \(-0.529207\pi\)
−0.0916266 + 0.995793i \(0.529207\pi\)
\(180\) 0 0
\(181\) −3069.52 −1.26053 −0.630265 0.776380i \(-0.717054\pi\)
−0.630265 + 0.776380i \(0.717054\pi\)
\(182\) −88.2105 −0.0359264
\(183\) 0 0
\(184\) −657.994 −0.263630
\(185\) −1813.53 −0.720719
\(186\) 0 0
\(187\) 339.364 0.132710
\(188\) −1071.87 −0.415820
\(189\) 0 0
\(190\) 190.000 0.0725476
\(191\) 628.134 0.237959 0.118980 0.992897i \(-0.462038\pi\)
0.118980 + 0.992897i \(0.462038\pi\)
\(192\) 0 0
\(193\) 2510.75 0.936411 0.468206 0.883619i \(-0.344901\pi\)
0.468206 + 0.883619i \(0.344901\pi\)
\(194\) −2886.55 −1.06826
\(195\) 0 0
\(196\) −1341.44 −0.488864
\(197\) −235.723 −0.0852516 −0.0426258 0.999091i \(-0.513572\pi\)
−0.0426258 + 0.999091i \(0.513572\pi\)
\(198\) 0 0
\(199\) 4469.36 1.59208 0.796041 0.605243i \(-0.206924\pi\)
0.796041 + 0.605243i \(0.206924\pi\)
\(200\) −200.000 −0.0707107
\(201\) 0 0
\(202\) −3806.82 −1.32597
\(203\) −200.734 −0.0694027
\(204\) 0 0
\(205\) 750.770 0.255786
\(206\) 1689.04 0.571266
\(207\) 0 0
\(208\) −255.319 −0.0851114
\(209\) 146.456 0.0484716
\(210\) 0 0
\(211\) −1282.95 −0.418588 −0.209294 0.977853i \(-0.567117\pi\)
−0.209294 + 0.977853i \(0.567117\pi\)
\(212\) 3038.53 0.984374
\(213\) 0 0
\(214\) −549.195 −0.175431
\(215\) 1658.64 0.526132
\(216\) 0 0
\(217\) 605.601 0.189451
\(218\) −3242.70 −1.00745
\(219\) 0 0
\(220\) −154.164 −0.0472443
\(221\) 702.547 0.213839
\(222\) 0 0
\(223\) −1613.19 −0.484427 −0.242213 0.970223i \(-0.577873\pi\)
−0.242213 + 0.970223i \(0.577873\pi\)
\(224\) 88.4458 0.0263819
\(225\) 0 0
\(226\) 1387.42 0.408363
\(227\) −5274.03 −1.54207 −0.771035 0.636793i \(-0.780261\pi\)
−0.771035 + 0.636793i \(0.780261\pi\)
\(228\) 0 0
\(229\) 2251.16 0.649611 0.324805 0.945781i \(-0.394701\pi\)
0.324805 + 0.945781i \(0.394701\pi\)
\(230\) −822.492 −0.235798
\(231\) 0 0
\(232\) −581.009 −0.164419
\(233\) 2543.84 0.715246 0.357623 0.933866i \(-0.383587\pi\)
0.357623 + 0.933866i \(0.383587\pi\)
\(234\) 0 0
\(235\) −1339.84 −0.371921
\(236\) 2886.06 0.796045
\(237\) 0 0
\(238\) −243.371 −0.0662833
\(239\) −1207.99 −0.326939 −0.163470 0.986548i \(-0.552269\pi\)
−0.163470 + 0.986548i \(0.552269\pi\)
\(240\) 0 0
\(241\) 4561.52 1.21923 0.609613 0.792699i \(-0.291325\pi\)
0.609613 + 0.792699i \(0.291325\pi\)
\(242\) 2543.17 0.675541
\(243\) 0 0
\(244\) 2656.06 0.696871
\(245\) −1676.80 −0.437253
\(246\) 0 0
\(247\) 303.191 0.0781036
\(248\) 1752.87 0.448819
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) 6059.90 1.52389 0.761947 0.647639i \(-0.224244\pi\)
0.761947 + 0.647639i \(0.224244\pi\)
\(252\) 0 0
\(253\) −633.994 −0.157545
\(254\) 2621.72 0.647643
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 6363.59 1.54455 0.772276 0.635287i \(-0.219118\pi\)
0.772276 + 0.635287i \(0.219118\pi\)
\(258\) 0 0
\(259\) 1002.49 0.240509
\(260\) −319.149 −0.0761260
\(261\) 0 0
\(262\) −482.642 −0.113808
\(263\) −2908.69 −0.681967 −0.340984 0.940069i \(-0.610760\pi\)
−0.340984 + 0.940069i \(0.610760\pi\)
\(264\) 0 0
\(265\) 3798.17 0.880451
\(266\) −105.029 −0.0242096
\(267\) 0 0
\(268\) 1750.74 0.399043
\(269\) 2663.82 0.603778 0.301889 0.953343i \(-0.402383\pi\)
0.301889 + 0.953343i \(0.402383\pi\)
\(270\) 0 0
\(271\) 4262.87 0.955537 0.477769 0.878486i \(-0.341446\pi\)
0.477769 + 0.878486i \(0.341446\pi\)
\(272\) −704.421 −0.157029
\(273\) 0 0
\(274\) −1721.22 −0.379499
\(275\) −192.705 −0.0422566
\(276\) 0 0
\(277\) 907.280 0.196798 0.0983992 0.995147i \(-0.468628\pi\)
0.0983992 + 0.995147i \(0.468628\pi\)
\(278\) −4711.63 −1.01649
\(279\) 0 0
\(280\) 110.557 0.0235966
\(281\) 5597.15 1.18825 0.594124 0.804373i \(-0.297499\pi\)
0.594124 + 0.804373i \(0.297499\pi\)
\(282\) 0 0
\(283\) 8473.01 1.77975 0.889873 0.456208i \(-0.150793\pi\)
0.889873 + 0.456208i \(0.150793\pi\)
\(284\) 3186.41 0.665771
\(285\) 0 0
\(286\) −246.006 −0.0508624
\(287\) −415.016 −0.0853575
\(288\) 0 0
\(289\) −2974.68 −0.605472
\(290\) −726.262 −0.147061
\(291\) 0 0
\(292\) −3976.92 −0.797027
\(293\) 241.594 0.0481710 0.0240855 0.999710i \(-0.492333\pi\)
0.0240855 + 0.999710i \(0.492333\pi\)
\(294\) 0 0
\(295\) 3607.58 0.712004
\(296\) 2901.64 0.569779
\(297\) 0 0
\(298\) −1864.16 −0.362375
\(299\) −1312.49 −0.253856
\(300\) 0 0
\(301\) −916.874 −0.175574
\(302\) −1120.53 −0.213507
\(303\) 0 0
\(304\) −304.000 −0.0573539
\(305\) 3320.07 0.623300
\(306\) 0 0
\(307\) 987.717 0.183622 0.0918110 0.995776i \(-0.470734\pi\)
0.0918110 + 0.995776i \(0.470734\pi\)
\(308\) 85.2198 0.0157657
\(309\) 0 0
\(310\) 2191.08 0.401436
\(311\) 810.772 0.147828 0.0739142 0.997265i \(-0.476451\pi\)
0.0739142 + 0.997265i \(0.476451\pi\)
\(312\) 0 0
\(313\) 265.589 0.0479615 0.0239808 0.999712i \(-0.492366\pi\)
0.0239808 + 0.999712i \(0.492366\pi\)
\(314\) −619.700 −0.111375
\(315\) 0 0
\(316\) −4039.71 −0.719151
\(317\) 6449.54 1.14272 0.571360 0.820700i \(-0.306416\pi\)
0.571360 + 0.820700i \(0.306416\pi\)
\(318\) 0 0
\(319\) −559.817 −0.0982563
\(320\) 320.000 0.0559017
\(321\) 0 0
\(322\) 454.663 0.0786874
\(323\) 836.500 0.144099
\(324\) 0 0
\(325\) −398.936 −0.0680891
\(326\) −6499.30 −1.10418
\(327\) 0 0
\(328\) −1201.23 −0.202216
\(329\) 740.644 0.124113
\(330\) 0 0
\(331\) −1482.89 −0.246244 −0.123122 0.992392i \(-0.539291\pi\)
−0.123122 + 0.992392i \(0.539291\pi\)
\(332\) −943.529 −0.155973
\(333\) 0 0
\(334\) 4319.00 0.707561
\(335\) 2188.43 0.356915
\(336\) 0 0
\(337\) 2444.54 0.395141 0.197571 0.980289i \(-0.436695\pi\)
0.197571 + 0.980289i \(0.436695\pi\)
\(338\) 3884.72 0.625151
\(339\) 0 0
\(340\) −880.526 −0.140451
\(341\) 1688.93 0.268213
\(342\) 0 0
\(343\) 1874.94 0.295153
\(344\) −2653.83 −0.415944
\(345\) 0 0
\(346\) 3334.83 0.518155
\(347\) −4943.22 −0.764743 −0.382372 0.924009i \(-0.624893\pi\)
−0.382372 + 0.924009i \(0.624893\pi\)
\(348\) 0 0
\(349\) 12750.4 1.95563 0.977814 0.209475i \(-0.0671754\pi\)
0.977814 + 0.209475i \(0.0671754\pi\)
\(350\) 138.197 0.0211055
\(351\) 0 0
\(352\) 246.663 0.0373499
\(353\) 10348.1 1.56027 0.780133 0.625613i \(-0.215151\pi\)
0.780133 + 0.625613i \(0.215151\pi\)
\(354\) 0 0
\(355\) 3983.02 0.595484
\(356\) −4645.08 −0.691541
\(357\) 0 0
\(358\) 877.731 0.129580
\(359\) 4091.93 0.601570 0.300785 0.953692i \(-0.402751\pi\)
0.300785 + 0.953692i \(0.402751\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 6139.05 0.891329
\(363\) 0 0
\(364\) 176.421 0.0254038
\(365\) −4971.15 −0.712882
\(366\) 0 0
\(367\) −5089.12 −0.723842 −0.361921 0.932209i \(-0.617879\pi\)
−0.361921 + 0.932209i \(0.617879\pi\)
\(368\) 1315.99 0.186415
\(369\) 0 0
\(370\) 3627.05 0.509625
\(371\) −2099.57 −0.293813
\(372\) 0 0
\(373\) 4163.90 0.578012 0.289006 0.957327i \(-0.406675\pi\)
0.289006 + 0.957327i \(0.406675\pi\)
\(374\) −678.728 −0.0938400
\(375\) 0 0
\(376\) 2143.74 0.294029
\(377\) −1158.93 −0.158323
\(378\) 0 0
\(379\) 11585.9 1.57026 0.785130 0.619331i \(-0.212596\pi\)
0.785130 + 0.619331i \(0.212596\pi\)
\(380\) −380.000 −0.0512989
\(381\) 0 0
\(382\) −1256.27 −0.168262
\(383\) 3345.13 0.446288 0.223144 0.974785i \(-0.428368\pi\)
0.223144 + 0.974785i \(0.428368\pi\)
\(384\) 0 0
\(385\) 106.525 0.0141013
\(386\) −5021.49 −0.662143
\(387\) 0 0
\(388\) 5773.11 0.755374
\(389\) 4067.36 0.530137 0.265069 0.964230i \(-0.414605\pi\)
0.265069 + 0.964230i \(0.414605\pi\)
\(390\) 0 0
\(391\) −3621.13 −0.468359
\(392\) 2682.89 0.345679
\(393\) 0 0
\(394\) 471.446 0.0602820
\(395\) −5049.64 −0.643228
\(396\) 0 0
\(397\) −3996.26 −0.505205 −0.252602 0.967570i \(-0.581286\pi\)
−0.252602 + 0.967570i \(0.581286\pi\)
\(398\) −8938.72 −1.12577
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −4211.11 −0.524421 −0.262211 0.965011i \(-0.584451\pi\)
−0.262211 + 0.965011i \(0.584451\pi\)
\(402\) 0 0
\(403\) 3496.41 0.432180
\(404\) 7613.64 0.937606
\(405\) 0 0
\(406\) 401.468 0.0490751
\(407\) 2795.80 0.340499
\(408\) 0 0
\(409\) −9617.74 −1.16276 −0.581378 0.813634i \(-0.697486\pi\)
−0.581378 + 0.813634i \(0.697486\pi\)
\(410\) −1501.54 −0.180868
\(411\) 0 0
\(412\) −3378.07 −0.403946
\(413\) −1994.22 −0.237601
\(414\) 0 0
\(415\) −1179.41 −0.139506
\(416\) 510.638 0.0601829
\(417\) 0 0
\(418\) −292.912 −0.0342746
\(419\) 6831.50 0.796517 0.398259 0.917273i \(-0.369615\pi\)
0.398259 + 0.917273i \(0.369615\pi\)
\(420\) 0 0
\(421\) −11478.5 −1.32881 −0.664404 0.747373i \(-0.731315\pi\)
−0.664404 + 0.747373i \(0.731315\pi\)
\(422\) 2565.91 0.295987
\(423\) 0 0
\(424\) −6077.06 −0.696057
\(425\) −1100.66 −0.125623
\(426\) 0 0
\(427\) −1835.29 −0.208000
\(428\) 1098.39 0.124048
\(429\) 0 0
\(430\) −3317.28 −0.372032
\(431\) 5513.31 0.616165 0.308082 0.951360i \(-0.400313\pi\)
0.308082 + 0.951360i \(0.400313\pi\)
\(432\) 0 0
\(433\) 17227.8 1.91204 0.956020 0.293302i \(-0.0947542\pi\)
0.956020 + 0.293302i \(0.0947542\pi\)
\(434\) −1211.20 −0.133962
\(435\) 0 0
\(436\) 6485.41 0.712373
\(437\) −1562.74 −0.171066
\(438\) 0 0
\(439\) 16157.5 1.75662 0.878309 0.478092i \(-0.158672\pi\)
0.878309 + 0.478092i \(0.158672\pi\)
\(440\) 308.328 0.0334067
\(441\) 0 0
\(442\) −1405.09 −0.151207
\(443\) −8749.51 −0.938379 −0.469189 0.883098i \(-0.655454\pi\)
−0.469189 + 0.883098i \(0.655454\pi\)
\(444\) 0 0
\(445\) −5806.35 −0.618533
\(446\) 3226.38 0.342542
\(447\) 0 0
\(448\) −176.892 −0.0186548
\(449\) 15036.6 1.58045 0.790224 0.612817i \(-0.209964\pi\)
0.790224 + 0.612817i \(0.209964\pi\)
\(450\) 0 0
\(451\) −1157.42 −0.120844
\(452\) −2774.85 −0.288756
\(453\) 0 0
\(454\) 10548.1 1.09041
\(455\) 220.526 0.0227218
\(456\) 0 0
\(457\) 2054.13 0.210258 0.105129 0.994459i \(-0.466474\pi\)
0.105129 + 0.994459i \(0.466474\pi\)
\(458\) −4502.32 −0.459344
\(459\) 0 0
\(460\) 1644.98 0.166734
\(461\) 18233.8 1.84215 0.921076 0.389383i \(-0.127312\pi\)
0.921076 + 0.389383i \(0.127312\pi\)
\(462\) 0 0
\(463\) −13997.7 −1.40503 −0.702513 0.711671i \(-0.747939\pi\)
−0.702513 + 0.711671i \(0.747939\pi\)
\(464\) 1162.02 0.116262
\(465\) 0 0
\(466\) −5087.67 −0.505755
\(467\) −9986.52 −0.989552 −0.494776 0.869020i \(-0.664750\pi\)
−0.494776 + 0.869020i \(0.664750\pi\)
\(468\) 0 0
\(469\) −1209.73 −0.119105
\(470\) 2679.67 0.262988
\(471\) 0 0
\(472\) −5772.12 −0.562889
\(473\) −2557.03 −0.248567
\(474\) 0 0
\(475\) −475.000 −0.0458831
\(476\) 486.743 0.0468694
\(477\) 0 0
\(478\) 2415.98 0.231181
\(479\) 2988.28 0.285048 0.142524 0.989791i \(-0.454478\pi\)
0.142524 + 0.989791i \(0.454478\pi\)
\(480\) 0 0
\(481\) 5787.84 0.548654
\(482\) −9123.04 −0.862123
\(483\) 0 0
\(484\) −5086.33 −0.477680
\(485\) 7216.38 0.675627
\(486\) 0 0
\(487\) 5064.87 0.471275 0.235638 0.971841i \(-0.424282\pi\)
0.235638 + 0.971841i \(0.424282\pi\)
\(488\) −5312.11 −0.492762
\(489\) 0 0
\(490\) 3353.61 0.309185
\(491\) 8108.65 0.745292 0.372646 0.927974i \(-0.378451\pi\)
0.372646 + 0.927974i \(0.378451\pi\)
\(492\) 0 0
\(493\) −3197.46 −0.292102
\(494\) −606.382 −0.0552276
\(495\) 0 0
\(496\) −3505.73 −0.317363
\(497\) −2201.76 −0.198717
\(498\) 0 0
\(499\) −4913.49 −0.440798 −0.220399 0.975410i \(-0.570736\pi\)
−0.220399 + 0.975410i \(0.570736\pi\)
\(500\) 500.000 0.0447214
\(501\) 0 0
\(502\) −12119.8 −1.07756
\(503\) −11233.6 −0.995785 −0.497893 0.867239i \(-0.665893\pi\)
−0.497893 + 0.867239i \(0.665893\pi\)
\(504\) 0 0
\(505\) 9517.05 0.838620
\(506\) 1267.99 0.111401
\(507\) 0 0
\(508\) −5243.44 −0.457953
\(509\) 17195.0 1.49736 0.748678 0.662934i \(-0.230689\pi\)
0.748678 + 0.662934i \(0.230689\pi\)
\(510\) 0 0
\(511\) 2747.99 0.237894
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −12727.2 −1.09216
\(515\) −4222.59 −0.361300
\(516\) 0 0
\(517\) 2065.55 0.175711
\(518\) −2004.98 −0.170066
\(519\) 0 0
\(520\) 638.297 0.0538292
\(521\) 9873.44 0.830256 0.415128 0.909763i \(-0.363737\pi\)
0.415128 + 0.909763i \(0.363737\pi\)
\(522\) 0 0
\(523\) −8048.30 −0.672902 −0.336451 0.941701i \(-0.609227\pi\)
−0.336451 + 0.941701i \(0.609227\pi\)
\(524\) 965.285 0.0804746
\(525\) 0 0
\(526\) 5817.37 0.482224
\(527\) 9646.53 0.797362
\(528\) 0 0
\(529\) −5402.07 −0.443993
\(530\) −7596.33 −0.622573
\(531\) 0 0
\(532\) 210.059 0.0171188
\(533\) −2396.07 −0.194719
\(534\) 0 0
\(535\) 1372.99 0.110952
\(536\) −3501.49 −0.282166
\(537\) 0 0
\(538\) −5327.65 −0.426935
\(539\) 2585.03 0.206577
\(540\) 0 0
\(541\) −10650.4 −0.846393 −0.423196 0.906038i \(-0.639092\pi\)
−0.423196 + 0.906038i \(0.639092\pi\)
\(542\) −8525.73 −0.675667
\(543\) 0 0
\(544\) 1408.84 0.111036
\(545\) 8106.76 0.637166
\(546\) 0 0
\(547\) −21827.6 −1.70618 −0.853090 0.521764i \(-0.825274\pi\)
−0.853090 + 0.521764i \(0.825274\pi\)
\(548\) 3442.44 0.268346
\(549\) 0 0
\(550\) 385.410 0.0298799
\(551\) −1379.90 −0.106689
\(552\) 0 0
\(553\) 2791.37 0.214650
\(554\) −1814.56 −0.139158
\(555\) 0 0
\(556\) 9423.25 0.718768
\(557\) 20564.0 1.56432 0.782159 0.623079i \(-0.214119\pi\)
0.782159 + 0.623079i \(0.214119\pi\)
\(558\) 0 0
\(559\) −5293.53 −0.400523
\(560\) −221.115 −0.0166853
\(561\) 0 0
\(562\) −11194.3 −0.840219
\(563\) −10760.6 −0.805517 −0.402759 0.915306i \(-0.631949\pi\)
−0.402759 + 0.915306i \(0.631949\pi\)
\(564\) 0 0
\(565\) −3468.56 −0.258272
\(566\) −16946.0 −1.25847
\(567\) 0 0
\(568\) −6372.83 −0.470771
\(569\) −21954.7 −1.61755 −0.808777 0.588115i \(-0.799870\pi\)
−0.808777 + 0.588115i \(0.799870\pi\)
\(570\) 0 0
\(571\) −15598.2 −1.14319 −0.571597 0.820534i \(-0.693676\pi\)
−0.571597 + 0.820534i \(0.693676\pi\)
\(572\) 492.012 0.0359652
\(573\) 0 0
\(574\) 830.031 0.0603568
\(575\) 2056.23 0.149132
\(576\) 0 0
\(577\) −17249.7 −1.24457 −0.622284 0.782791i \(-0.713795\pi\)
−0.622284 + 0.782791i \(0.713795\pi\)
\(578\) 5949.37 0.428133
\(579\) 0 0
\(580\) 1452.52 0.103987
\(581\) 651.963 0.0465542
\(582\) 0 0
\(583\) −5855.41 −0.415963
\(584\) 7953.84 0.563583
\(585\) 0 0
\(586\) −483.189 −0.0340620
\(587\) −14572.0 −1.02462 −0.512308 0.858802i \(-0.671209\pi\)
−0.512308 + 0.858802i \(0.671209\pi\)
\(588\) 0 0
\(589\) 4163.06 0.291232
\(590\) −7215.15 −0.503463
\(591\) 0 0
\(592\) −5803.28 −0.402894
\(593\) 20116.4 1.39305 0.696526 0.717531i \(-0.254728\pi\)
0.696526 + 0.717531i \(0.254728\pi\)
\(594\) 0 0
\(595\) 608.429 0.0419212
\(596\) 3728.32 0.256238
\(597\) 0 0
\(598\) 2624.97 0.179503
\(599\) 13556.6 0.924718 0.462359 0.886693i \(-0.347003\pi\)
0.462359 + 0.886693i \(0.347003\pi\)
\(600\) 0 0
\(601\) −27787.7 −1.88600 −0.942998 0.332799i \(-0.892007\pi\)
−0.942998 + 0.332799i \(0.892007\pi\)
\(602\) 1833.75 0.124150
\(603\) 0 0
\(604\) 2241.05 0.150972
\(605\) −6357.92 −0.427250
\(606\) 0 0
\(607\) 20870.6 1.39557 0.697784 0.716308i \(-0.254169\pi\)
0.697784 + 0.716308i \(0.254169\pi\)
\(608\) 608.000 0.0405554
\(609\) 0 0
\(610\) −6640.14 −0.440740
\(611\) 4276.07 0.283128
\(612\) 0 0
\(613\) 8289.90 0.546209 0.273104 0.961984i \(-0.411950\pi\)
0.273104 + 0.961984i \(0.411950\pi\)
\(614\) −1975.43 −0.129840
\(615\) 0 0
\(616\) −170.440 −0.0111481
\(617\) −16006.8 −1.04443 −0.522213 0.852815i \(-0.674893\pi\)
−0.522213 + 0.852815i \(0.674893\pi\)
\(618\) 0 0
\(619\) −9823.47 −0.637865 −0.318933 0.947777i \(-0.603324\pi\)
−0.318933 + 0.947777i \(0.603324\pi\)
\(620\) −4382.17 −0.283858
\(621\) 0 0
\(622\) −1621.54 −0.104530
\(623\) 3209.67 0.206409
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −531.177 −0.0339139
\(627\) 0 0
\(628\) 1239.40 0.0787538
\(629\) 15968.6 1.01226
\(630\) 0 0
\(631\) 7114.01 0.448818 0.224409 0.974495i \(-0.427955\pi\)
0.224409 + 0.974495i \(0.427955\pi\)
\(632\) 8079.43 0.508517
\(633\) 0 0
\(634\) −12899.1 −0.808025
\(635\) −6554.30 −0.409606
\(636\) 0 0
\(637\) 5351.49 0.332863
\(638\) 1119.63 0.0694777
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 9831.58 0.605809 0.302905 0.953021i \(-0.402044\pi\)
0.302905 + 0.953021i \(0.402044\pi\)
\(642\) 0 0
\(643\) 16619.8 1.01931 0.509657 0.860378i \(-0.329772\pi\)
0.509657 + 0.860378i \(0.329772\pi\)
\(644\) −909.325 −0.0556404
\(645\) 0 0
\(646\) −1673.00 −0.101894
\(647\) −11214.6 −0.681441 −0.340721 0.940165i \(-0.610671\pi\)
−0.340721 + 0.940165i \(0.610671\pi\)
\(648\) 0 0
\(649\) −5561.59 −0.336381
\(650\) 797.871 0.0481463
\(651\) 0 0
\(652\) 12998.6 0.780774
\(653\) −16751.8 −1.00391 −0.501953 0.864895i \(-0.667385\pi\)
−0.501953 + 0.864895i \(0.667385\pi\)
\(654\) 0 0
\(655\) 1206.61 0.0719786
\(656\) 2402.46 0.142989
\(657\) 0 0
\(658\) −1481.29 −0.0877608
\(659\) 6661.91 0.393796 0.196898 0.980424i \(-0.436913\pi\)
0.196898 + 0.980424i \(0.436913\pi\)
\(660\) 0 0
\(661\) −7200.89 −0.423725 −0.211862 0.977299i \(-0.567953\pi\)
−0.211862 + 0.977299i \(0.567953\pi\)
\(662\) 2965.77 0.174121
\(663\) 0 0
\(664\) 1887.06 0.110289
\(665\) 262.574 0.0153115
\(666\) 0 0
\(667\) 5973.45 0.346766
\(668\) −8638.01 −0.500321
\(669\) 0 0
\(670\) −4376.86 −0.252377
\(671\) −5118.35 −0.294474
\(672\) 0 0
\(673\) −14431.5 −0.826587 −0.413293 0.910598i \(-0.635622\pi\)
−0.413293 + 0.910598i \(0.635622\pi\)
\(674\) −4889.08 −0.279407
\(675\) 0 0
\(676\) −7769.44 −0.442048
\(677\) −30133.8 −1.71069 −0.855345 0.518059i \(-0.826655\pi\)
−0.855345 + 0.518059i \(0.826655\pi\)
\(678\) 0 0
\(679\) −3989.12 −0.225461
\(680\) 1761.05 0.0993136
\(681\) 0 0
\(682\) −3377.86 −0.189656
\(683\) −6029.49 −0.337792 −0.168896 0.985634i \(-0.554020\pi\)
−0.168896 + 0.985634i \(0.554020\pi\)
\(684\) 0 0
\(685\) 4303.05 0.240016
\(686\) −3749.89 −0.208705
\(687\) 0 0
\(688\) 5307.65 0.294117
\(689\) −12121.8 −0.670252
\(690\) 0 0
\(691\) 29317.3 1.61401 0.807005 0.590544i \(-0.201087\pi\)
0.807005 + 0.590544i \(0.201087\pi\)
\(692\) −6669.66 −0.366391
\(693\) 0 0
\(694\) 9886.44 0.540755
\(695\) 11779.1 0.642885
\(696\) 0 0
\(697\) −6610.73 −0.359253
\(698\) −25500.8 −1.38284
\(699\) 0 0
\(700\) −276.393 −0.0149238
\(701\) −21824.4 −1.17589 −0.587944 0.808902i \(-0.700062\pi\)
−0.587944 + 0.808902i \(0.700062\pi\)
\(702\) 0 0
\(703\) 6891.40 0.369721
\(704\) −493.325 −0.0264104
\(705\) 0 0
\(706\) −20696.2 −1.10327
\(707\) −5260.90 −0.279853
\(708\) 0 0
\(709\) 16303.6 0.863601 0.431801 0.901969i \(-0.357878\pi\)
0.431801 + 0.901969i \(0.357878\pi\)
\(710\) −7966.04 −0.421070
\(711\) 0 0
\(712\) 9290.16 0.488994
\(713\) −18021.5 −0.946578
\(714\) 0 0
\(715\) 615.016 0.0321682
\(716\) −1755.46 −0.0916266
\(717\) 0 0
\(718\) −8183.86 −0.425374
\(719\) 3999.89 0.207470 0.103735 0.994605i \(-0.466921\pi\)
0.103735 + 0.994605i \(0.466921\pi\)
\(720\) 0 0
\(721\) 2334.19 0.120568
\(722\) −722.000 −0.0372161
\(723\) 0 0
\(724\) −12278.1 −0.630265
\(725\) 1815.65 0.0930092
\(726\) 0 0
\(727\) −4347.43 −0.221784 −0.110892 0.993832i \(-0.535371\pi\)
−0.110892 + 0.993832i \(0.535371\pi\)
\(728\) −352.842 −0.0179632
\(729\) 0 0
\(730\) 9942.31 0.504084
\(731\) −14604.8 −0.738956
\(732\) 0 0
\(733\) 10361.7 0.522125 0.261063 0.965322i \(-0.415927\pi\)
0.261063 + 0.965322i \(0.415927\pi\)
\(734\) 10178.2 0.511834
\(735\) 0 0
\(736\) −2631.98 −0.131815
\(737\) −3373.77 −0.168622
\(738\) 0 0
\(739\) 19730.6 0.982143 0.491071 0.871119i \(-0.336605\pi\)
0.491071 + 0.871119i \(0.336605\pi\)
\(740\) −7254.10 −0.360360
\(741\) 0 0
\(742\) 4199.15 0.207757
\(743\) −19837.0 −0.979475 −0.489737 0.871870i \(-0.662907\pi\)
−0.489737 + 0.871870i \(0.662907\pi\)
\(744\) 0 0
\(745\) 4660.39 0.229186
\(746\) −8327.80 −0.408716
\(747\) 0 0
\(748\) 1357.46 0.0663549
\(749\) −758.969 −0.0370255
\(750\) 0 0
\(751\) −20446.5 −0.993480 −0.496740 0.867900i \(-0.665470\pi\)
−0.496740 + 0.867900i \(0.665470\pi\)
\(752\) −4287.48 −0.207910
\(753\) 0 0
\(754\) 2317.85 0.111951
\(755\) 2801.32 0.135034
\(756\) 0 0
\(757\) 8965.43 0.430455 0.215227 0.976564i \(-0.430951\pi\)
0.215227 + 0.976564i \(0.430951\pi\)
\(758\) −23171.8 −1.11034
\(759\) 0 0
\(760\) 760.000 0.0362738
\(761\) 6434.83 0.306521 0.153261 0.988186i \(-0.451023\pi\)
0.153261 + 0.988186i \(0.451023\pi\)
\(762\) 0 0
\(763\) −4481.30 −0.212627
\(764\) 2512.54 0.118980
\(765\) 0 0
\(766\) −6690.27 −0.315573
\(767\) −11513.5 −0.542020
\(768\) 0 0
\(769\) 9299.93 0.436104 0.218052 0.975937i \(-0.430030\pi\)
0.218052 + 0.975937i \(0.430030\pi\)
\(770\) −213.050 −0.00997113
\(771\) 0 0
\(772\) 10043.0 0.468206
\(773\) −6499.31 −0.302411 −0.151206 0.988502i \(-0.548316\pi\)
−0.151206 + 0.988502i \(0.548316\pi\)
\(774\) 0 0
\(775\) −5477.71 −0.253890
\(776\) −11546.2 −0.534130
\(777\) 0 0
\(778\) −8134.72 −0.374863
\(779\) −2852.93 −0.131215
\(780\) 0 0
\(781\) −6140.38 −0.281332
\(782\) 7242.26 0.331180
\(783\) 0 0
\(784\) −5365.77 −0.244432
\(785\) 1549.25 0.0704396
\(786\) 0 0
\(787\) 7779.28 0.352352 0.176176 0.984359i \(-0.443627\pi\)
0.176176 + 0.984359i \(0.443627\pi\)
\(788\) −942.892 −0.0426258
\(789\) 0 0
\(790\) 10099.3 0.454831
\(791\) 1917.37 0.0861870
\(792\) 0 0
\(793\) −10596.0 −0.474493
\(794\) 7992.51 0.357234
\(795\) 0 0
\(796\) 17877.4 0.796041
\(797\) −13787.2 −0.612757 −0.306378 0.951910i \(-0.599117\pi\)
−0.306378 + 0.951910i \(0.599117\pi\)
\(798\) 0 0
\(799\) 11797.6 0.522365
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) 8422.22 0.370822
\(803\) 7663.73 0.336796
\(804\) 0 0
\(805\) −1136.66 −0.0497663
\(806\) −6992.81 −0.305597
\(807\) 0 0
\(808\) −15227.3 −0.662987
\(809\) −21123.7 −0.918011 −0.459005 0.888434i \(-0.651794\pi\)
−0.459005 + 0.888434i \(0.651794\pi\)
\(810\) 0 0
\(811\) −19832.8 −0.858723 −0.429361 0.903133i \(-0.641261\pi\)
−0.429361 + 0.903133i \(0.641261\pi\)
\(812\) −802.935 −0.0347014
\(813\) 0 0
\(814\) −5591.61 −0.240769
\(815\) 16248.3 0.698346
\(816\) 0 0
\(817\) −6302.84 −0.269900
\(818\) 19235.5 0.822192
\(819\) 0 0
\(820\) 3003.08 0.127893
\(821\) −10001.6 −0.425164 −0.212582 0.977143i \(-0.568187\pi\)
−0.212582 + 0.977143i \(0.568187\pi\)
\(822\) 0 0
\(823\) −22153.4 −0.938296 −0.469148 0.883120i \(-0.655439\pi\)
−0.469148 + 0.883120i \(0.655439\pi\)
\(824\) 6756.15 0.285633
\(825\) 0 0
\(826\) 3988.44 0.168009
\(827\) −5242.15 −0.220420 −0.110210 0.993908i \(-0.535152\pi\)
−0.110210 + 0.993908i \(0.535152\pi\)
\(828\) 0 0
\(829\) 36538.3 1.53079 0.765396 0.643559i \(-0.222543\pi\)
0.765396 + 0.643559i \(0.222543\pi\)
\(830\) 2358.82 0.0986457
\(831\) 0 0
\(832\) −1021.28 −0.0425557
\(833\) 14764.7 0.614125
\(834\) 0 0
\(835\) −10797.5 −0.447501
\(836\) 585.823 0.0242358
\(837\) 0 0
\(838\) −13663.0 −0.563223
\(839\) −4670.82 −0.192199 −0.0960993 0.995372i \(-0.530637\pi\)
−0.0960993 + 0.995372i \(0.530637\pi\)
\(840\) 0 0
\(841\) −19114.4 −0.783732
\(842\) 22957.0 0.939610
\(843\) 0 0
\(844\) −5131.81 −0.209294
\(845\) −9711.80 −0.395380
\(846\) 0 0
\(847\) 3514.57 0.142576
\(848\) 12154.1 0.492187
\(849\) 0 0
\(850\) 2201.32 0.0888288
\(851\) −29832.2 −1.20169
\(852\) 0 0
\(853\) 34935.8 1.40232 0.701160 0.713004i \(-0.252666\pi\)
0.701160 + 0.713004i \(0.252666\pi\)
\(854\) 3670.58 0.147078
\(855\) 0 0
\(856\) −2196.78 −0.0877154
\(857\) −24249.8 −0.966577 −0.483289 0.875461i \(-0.660558\pi\)
−0.483289 + 0.875461i \(0.660558\pi\)
\(858\) 0 0
\(859\) 40826.7 1.62164 0.810820 0.585295i \(-0.199021\pi\)
0.810820 + 0.585295i \(0.199021\pi\)
\(860\) 6634.57 0.263066
\(861\) 0 0
\(862\) −11026.6 −0.435694
\(863\) −21236.3 −0.837650 −0.418825 0.908067i \(-0.637558\pi\)
−0.418825 + 0.908067i \(0.637558\pi\)
\(864\) 0 0
\(865\) −8337.07 −0.327710
\(866\) −34455.5 −1.35202
\(867\) 0 0
\(868\) 2422.40 0.0947255
\(869\) 7784.74 0.303888
\(870\) 0 0
\(871\) −6984.34 −0.271705
\(872\) −12970.8 −0.503724
\(873\) 0 0
\(874\) 3125.47 0.120962
\(875\) −345.492 −0.0133483
\(876\) 0 0
\(877\) 569.390 0.0219235 0.0109618 0.999940i \(-0.496511\pi\)
0.0109618 + 0.999940i \(0.496511\pi\)
\(878\) −32315.0 −1.24212
\(879\) 0 0
\(880\) −616.656 −0.0236221
\(881\) 23645.0 0.904222 0.452111 0.891962i \(-0.350671\pi\)
0.452111 + 0.891962i \(0.350671\pi\)
\(882\) 0 0
\(883\) 7994.42 0.304681 0.152341 0.988328i \(-0.451319\pi\)
0.152341 + 0.988328i \(0.451319\pi\)
\(884\) 2810.19 0.106919
\(885\) 0 0
\(886\) 17499.0 0.663534
\(887\) −49130.4 −1.85980 −0.929898 0.367817i \(-0.880105\pi\)
−0.929898 + 0.367817i \(0.880105\pi\)
\(888\) 0 0
\(889\) 3623.13 0.136688
\(890\) 11612.7 0.437369
\(891\) 0 0
\(892\) −6452.76 −0.242213
\(893\) 5091.38 0.190791
\(894\) 0 0
\(895\) −2194.33 −0.0819534
\(896\) 353.783 0.0131909
\(897\) 0 0
\(898\) −30073.2 −1.11755
\(899\) −15913.0 −0.590354
\(900\) 0 0
\(901\) −33443.8 −1.23660
\(902\) 2314.84 0.0854497
\(903\) 0 0
\(904\) 5549.70 0.204182
\(905\) −15347.6 −0.563726
\(906\) 0 0
\(907\) −46407.4 −1.69893 −0.849466 0.527643i \(-0.823076\pi\)
−0.849466 + 0.527643i \(0.823076\pi\)
\(908\) −21096.1 −0.771035
\(909\) 0 0
\(910\) −441.052 −0.0160668
\(911\) −35383.9 −1.28685 −0.643426 0.765508i \(-0.722488\pi\)
−0.643426 + 0.765508i \(0.722488\pi\)
\(912\) 0 0
\(913\) 1818.23 0.0659087
\(914\) −4108.26 −0.148675
\(915\) 0 0
\(916\) 9004.64 0.324805
\(917\) −666.995 −0.0240198
\(918\) 0 0
\(919\) −28252.4 −1.01410 −0.507052 0.861916i \(-0.669265\pi\)
−0.507052 + 0.861916i \(0.669265\pi\)
\(920\) −3289.97 −0.117899
\(921\) 0 0
\(922\) −36467.6 −1.30260
\(923\) −12711.7 −0.453318
\(924\) 0 0
\(925\) −9067.63 −0.322315
\(926\) 27995.4 0.993504
\(927\) 0 0
\(928\) −2324.04 −0.0822093
\(929\) 8118.71 0.286724 0.143362 0.989670i \(-0.454209\pi\)
0.143362 + 0.989670i \(0.454209\pi\)
\(930\) 0 0
\(931\) 6371.85 0.224306
\(932\) 10175.3 0.357623
\(933\) 0 0
\(934\) 19973.0 0.699719
\(935\) 1696.82 0.0593496
\(936\) 0 0
\(937\) −7845.06 −0.273519 −0.136759 0.990604i \(-0.543669\pi\)
−0.136759 + 0.990604i \(0.543669\pi\)
\(938\) 2419.47 0.0842200
\(939\) 0 0
\(940\) −5359.35 −0.185960
\(941\) 26653.8 0.923369 0.461685 0.887044i \(-0.347245\pi\)
0.461685 + 0.887044i \(0.347245\pi\)
\(942\) 0 0
\(943\) 12350.1 0.426483
\(944\) 11544.2 0.398022
\(945\) 0 0
\(946\) 5114.06 0.175764
\(947\) 31616.3 1.08489 0.542445 0.840091i \(-0.317499\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(948\) 0 0
\(949\) 15865.4 0.542689
\(950\) 950.000 0.0324443
\(951\) 0 0
\(952\) −973.486 −0.0331417
\(953\) −8396.16 −0.285392 −0.142696 0.989767i \(-0.545577\pi\)
−0.142696 + 0.989767i \(0.545577\pi\)
\(954\) 0 0
\(955\) 3140.67 0.106419
\(956\) −4831.97 −0.163470
\(957\) 0 0
\(958\) −5976.57 −0.201560
\(959\) −2378.67 −0.0800951
\(960\) 0 0
\(961\) 18217.5 0.611509
\(962\) −11575.7 −0.387957
\(963\) 0 0
\(964\) 18246.1 0.609613
\(965\) 12553.7 0.418776
\(966\) 0 0
\(967\) 53070.8 1.76488 0.882442 0.470422i \(-0.155898\pi\)
0.882442 + 0.470422i \(0.155898\pi\)
\(968\) 10172.7 0.337771
\(969\) 0 0
\(970\) −14432.8 −0.477740
\(971\) 2589.03 0.0855675 0.0427837 0.999084i \(-0.486377\pi\)
0.0427837 + 0.999084i \(0.486377\pi\)
\(972\) 0 0
\(973\) −6511.31 −0.214535
\(974\) −10129.7 −0.333242
\(975\) 0 0
\(976\) 10624.2 0.348436
\(977\) 8727.18 0.285780 0.142890 0.989739i \(-0.454360\pi\)
0.142890 + 0.989739i \(0.454360\pi\)
\(978\) 0 0
\(979\) 8951.31 0.292222
\(980\) −6707.21 −0.218627
\(981\) 0 0
\(982\) −16217.3 −0.527001
\(983\) 39732.2 1.28918 0.644588 0.764530i \(-0.277029\pi\)
0.644588 + 0.764530i \(0.277029\pi\)
\(984\) 0 0
\(985\) −1178.61 −0.0381257
\(986\) 6394.92 0.206548
\(987\) 0 0
\(988\) 1212.76 0.0390518
\(989\) 27284.4 0.877243
\(990\) 0 0
\(991\) −32045.2 −1.02719 −0.513597 0.858031i \(-0.671687\pi\)
−0.513597 + 0.858031i \(0.671687\pi\)
\(992\) 7011.47 0.224410
\(993\) 0 0
\(994\) 4403.52 0.140514
\(995\) 22346.8 0.712001
\(996\) 0 0
\(997\) 43042.7 1.36728 0.683638 0.729821i \(-0.260397\pi\)
0.683638 + 0.729821i \(0.260397\pi\)
\(998\) 9826.98 0.311691
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.a.k.1.2 2
3.2 odd 2 570.4.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.4.a.m.1.2 2 3.2 odd 2
1710.4.a.k.1.2 2 1.1 even 1 trivial