Properties

Label 2-1710-1.1-c3-0-13
Degree $2$
Conductor $1710$
Sign $1$
Analytic cond. $100.893$
Root an. cond. $10.0445$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 5·5-s − 2.76·7-s − 8·8-s − 10·10-s − 7.70·11-s − 15.9·13-s + 5.52·14-s + 16·16-s − 44.0·17-s − 19·19-s + 20·20-s + 15.4·22-s + 82.2·23-s + 25·25-s + 31.9·26-s − 11.0·28-s + 72.6·29-s − 219.·31-s − 32·32-s + 88.0·34-s − 13.8·35-s − 362.·37-s + 38·38-s − 40·40-s + 150.·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447·5-s − 0.149·7-s − 0.353·8-s − 0.316·10-s − 0.211·11-s − 0.340·13-s + 0.105·14-s + 0.250·16-s − 0.628·17-s − 0.229·19-s + 0.223·20-s + 0.149·22-s + 0.745·23-s + 0.200·25-s + 0.240·26-s − 0.0746·28-s + 0.465·29-s − 1.26·31-s − 0.176·32-s + 0.444·34-s − 0.0667·35-s − 1.61·37-s + 0.162·38-s − 0.158·40-s + 0.571·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(100.893\)
Root analytic conductor: \(10.0445\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.309323872\)
\(L(\frac12)\) \(\approx\) \(1.309323872\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 - 5T \)
19 \( 1 + 19T \)
good7 \( 1 + 2.76T + 343T^{2} \)
11 \( 1 + 7.70T + 1.33e3T^{2} \)
13 \( 1 + 15.9T + 2.19e3T^{2} \)
17 \( 1 + 44.0T + 4.91e3T^{2} \)
23 \( 1 - 82.2T + 1.21e4T^{2} \)
29 \( 1 - 72.6T + 2.43e4T^{2} \)
31 \( 1 + 219.T + 2.97e4T^{2} \)
37 \( 1 + 362.T + 5.06e4T^{2} \)
41 \( 1 - 150.T + 6.89e4T^{2} \)
43 \( 1 - 331.T + 7.95e4T^{2} \)
47 \( 1 + 267.T + 1.03e5T^{2} \)
53 \( 1 - 759.T + 1.48e5T^{2} \)
59 \( 1 - 721.T + 2.05e5T^{2} \)
61 \( 1 - 664.T + 2.26e5T^{2} \)
67 \( 1 - 437.T + 3.00e5T^{2} \)
71 \( 1 - 796.T + 3.57e5T^{2} \)
73 \( 1 + 994.T + 3.89e5T^{2} \)
79 \( 1 + 1.00e3T + 4.93e5T^{2} \)
83 \( 1 + 235.T + 5.71e5T^{2} \)
89 \( 1 + 1.16e3T + 7.04e5T^{2} \)
97 \( 1 - 1.44e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900497066926777244821497121989, −8.433883189384188871906007728657, −7.25448688633644984031594585905, −6.84702631283612892096429674656, −5.79439572413839987711811246266, −5.03548211403267582836477591172, −3.82717252843613819806227950621, −2.68893649975552595048461067504, −1.85447858055978662767160817768, −0.59405021345018595691920316983, 0.59405021345018595691920316983, 1.85447858055978662767160817768, 2.68893649975552595048461067504, 3.82717252843613819806227950621, 5.03548211403267582836477591172, 5.79439572413839987711811246266, 6.84702631283612892096429674656, 7.25448688633644984031594585905, 8.433883189384188871906007728657, 8.900497066926777244821497121989

Graph of the $Z$-function along the critical line