Properties

Label 171.2.u.c.118.1
Level $171$
Weight $2$
Character 171.118
Analytic conductor $1.365$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [171,2,Mod(28,171)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("171.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(171, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.u (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 118.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 171.118
Dual form 171.2.u.c.100.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.826352 + 0.300767i) q^{2} +(-0.939693 - 0.788496i) q^{4} +(1.93969 - 1.62760i) q^{5} +(0.939693 - 1.62760i) q^{7} +(-1.41875 - 2.45734i) q^{8} +(2.09240 - 0.761570i) q^{10} +(1.70574 + 2.95442i) q^{11} +(-0.918748 + 5.21048i) q^{13} +(1.26604 - 1.06234i) q^{14} +(-0.00727396 - 0.0412527i) q^{16} +(1.55303 + 0.565258i) q^{17} +(-2.52094 - 3.55596i) q^{19} -3.10607 q^{20} +(0.520945 + 2.95442i) q^{22} +(-1.34730 - 1.13052i) q^{23} +(0.245100 - 1.39003i) q^{25} +(-2.32635 + 4.02936i) q^{26} +(-2.16637 + 0.788496i) q^{28} +(-3.25877 + 1.18610i) q^{29} +(-0.971782 + 1.68317i) q^{31} +(-0.979055 + 5.55250i) q^{32} +(1.11334 + 0.934204i) q^{34} +(-0.826352 - 4.68647i) q^{35} -0.837496 q^{37} +(-1.01367 - 3.69669i) q^{38} +(-6.75150 - 2.45734i) q^{40} +(0.779715 + 4.42198i) q^{41} +(3.67752 - 3.08580i) q^{43} +(0.726682 - 4.12122i) q^{44} +(-0.773318 - 1.33943i) q^{46} +(0.673648 - 0.245188i) q^{47} +(1.73396 + 3.00330i) q^{49} +(0.620615 - 1.07494i) q^{50} +(4.97178 - 4.17182i) q^{52} +(4.67752 + 3.92490i) q^{53} +(8.11721 + 2.95442i) q^{55} -5.33275 q^{56} -3.04963 q^{58} +(-10.1099 - 3.67972i) q^{59} +(3.36231 + 2.82131i) q^{61} +(-1.30928 + 1.09861i) q^{62} +(-2.52094 + 4.36640i) q^{64} +(6.69846 + 11.6021i) q^{65} +(-13.3550 + 4.86084i) q^{67} +(-1.01367 - 1.75573i) q^{68} +(0.726682 - 4.12122i) q^{70} +(10.5398 - 8.84397i) q^{71} +(-1.30541 - 7.40333i) q^{73} +(-0.692066 - 0.251892i) q^{74} +(-0.434945 + 5.32926i) q^{76} +6.41147 q^{77} +(-1.20914 - 6.85738i) q^{79} +(-0.0812519 - 0.0681784i) q^{80} +(-0.685670 + 3.88863i) q^{82} +(1.25624 - 2.17588i) q^{83} +(3.93242 - 1.43128i) q^{85} +(3.96703 - 1.44388i) q^{86} +(4.84002 - 8.38316i) q^{88} +(0.396459 - 2.24843i) q^{89} +(7.61721 + 6.39160i) q^{91} +(0.374638 + 2.12467i) q^{92} +0.630415 q^{94} +(-10.6775 - 2.79439i) q^{95} +(1.71301 + 0.623485i) q^{97} +(0.529563 + 3.00330i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{5} - 6 q^{8} + 9 q^{10} - 3 q^{13} + 3 q^{14} - 18 q^{16} - 3 q^{17} - 12 q^{19} + 6 q^{20} - 6 q^{23} - 15 q^{26} + 6 q^{28} + 3 q^{29} + 9 q^{31} - 9 q^{32} - 6 q^{35} + 15 q^{38}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.826352 + 0.300767i 0.584319 + 0.212675i 0.617229 0.786784i \(-0.288255\pi\)
−0.0329100 + 0.999458i \(0.510477\pi\)
\(3\) 0 0
\(4\) −0.939693 0.788496i −0.469846 0.394248i
\(5\) 1.93969 1.62760i 0.867457 0.727883i −0.0961041 0.995371i \(-0.530638\pi\)
0.963561 + 0.267489i \(0.0861937\pi\)
\(6\) 0 0
\(7\) 0.939693 1.62760i 0.355170 0.615173i −0.631977 0.774987i \(-0.717756\pi\)
0.987147 + 0.159814i \(0.0510895\pi\)
\(8\) −1.41875 2.45734i −0.501603 0.868802i
\(9\) 0 0
\(10\) 2.09240 0.761570i 0.661674 0.240830i
\(11\) 1.70574 + 2.95442i 0.514299 + 0.890792i 0.999862 + 0.0165906i \(0.00528120\pi\)
−0.485563 + 0.874202i \(0.661385\pi\)
\(12\) 0 0
\(13\) −0.918748 + 5.21048i −0.254815 + 1.44513i 0.541733 + 0.840551i \(0.317769\pi\)
−0.796547 + 0.604576i \(0.793343\pi\)
\(14\) 1.26604 1.06234i 0.338365 0.283922i
\(15\) 0 0
\(16\) −0.00727396 0.0412527i −0.00181849 0.0103132i
\(17\) 1.55303 + 0.565258i 0.376666 + 0.137095i 0.523414 0.852079i \(-0.324658\pi\)
−0.146748 + 0.989174i \(0.546881\pi\)
\(18\) 0 0
\(19\) −2.52094 3.55596i −0.578344 0.815793i
\(20\) −3.10607 −0.694538
\(21\) 0 0
\(22\) 0.520945 + 2.95442i 0.111066 + 0.629885i
\(23\) −1.34730 1.13052i −0.280931 0.235729i 0.491424 0.870921i \(-0.336477\pi\)
−0.772354 + 0.635192i \(0.780921\pi\)
\(24\) 0 0
\(25\) 0.245100 1.39003i 0.0490200 0.278006i
\(26\) −2.32635 + 4.02936i −0.456235 + 0.790222i
\(27\) 0 0
\(28\) −2.16637 + 0.788496i −0.409406 + 0.149012i
\(29\) −3.25877 + 1.18610i −0.605138 + 0.220252i −0.626375 0.779522i \(-0.715462\pi\)
0.0212363 + 0.999774i \(0.493240\pi\)
\(30\) 0 0
\(31\) −0.971782 + 1.68317i −0.174537 + 0.302307i −0.940001 0.341172i \(-0.889176\pi\)
0.765464 + 0.643479i \(0.222510\pi\)
\(32\) −0.979055 + 5.55250i −0.173074 + 0.981553i
\(33\) 0 0
\(34\) 1.11334 + 0.934204i 0.190936 + 0.160215i
\(35\) −0.826352 4.68647i −0.139679 0.792159i
\(36\) 0 0
\(37\) −0.837496 −0.137684 −0.0688418 0.997628i \(-0.521930\pi\)
−0.0688418 + 0.997628i \(0.521930\pi\)
\(38\) −1.01367 3.69669i −0.164439 0.599682i
\(39\) 0 0
\(40\) −6.75150 2.45734i −1.06751 0.388540i
\(41\) 0.779715 + 4.42198i 0.121771 + 0.690598i 0.983173 + 0.182675i \(0.0584755\pi\)
−0.861402 + 0.507923i \(0.830413\pi\)
\(42\) 0 0
\(43\) 3.67752 3.08580i 0.560816 0.470581i −0.317768 0.948169i \(-0.602933\pi\)
0.878584 + 0.477588i \(0.158489\pi\)
\(44\) 0.726682 4.12122i 0.109551 0.621297i
\(45\) 0 0
\(46\) −0.773318 1.33943i −0.114020 0.197488i
\(47\) 0.673648 0.245188i 0.0982617 0.0357643i −0.292422 0.956290i \(-0.594461\pi\)
0.390683 + 0.920525i \(0.372239\pi\)
\(48\) 0 0
\(49\) 1.73396 + 3.00330i 0.247708 + 0.429043i
\(50\) 0.620615 1.07494i 0.0877682 0.152019i
\(51\) 0 0
\(52\) 4.97178 4.17182i 0.689462 0.578527i
\(53\) 4.67752 + 3.92490i 0.642507 + 0.539127i 0.904787 0.425865i \(-0.140030\pi\)
−0.262280 + 0.964992i \(0.584474\pi\)
\(54\) 0 0
\(55\) 8.11721 + 2.95442i 1.09452 + 0.398374i
\(56\) −5.33275 −0.712618
\(57\) 0 0
\(58\) −3.04963 −0.400436
\(59\) −10.1099 3.67972i −1.31620 0.479058i −0.413962 0.910294i \(-0.635856\pi\)
−0.902239 + 0.431236i \(0.858078\pi\)
\(60\) 0 0
\(61\) 3.36231 + 2.82131i 0.430500 + 0.361232i 0.832140 0.554565i \(-0.187115\pi\)
−0.401640 + 0.915797i \(0.631560\pi\)
\(62\) −1.30928 + 1.09861i −0.166278 + 0.139524i
\(63\) 0 0
\(64\) −2.52094 + 4.36640i −0.315118 + 0.545801i
\(65\) 6.69846 + 11.6021i 0.830842 + 1.43906i
\(66\) 0 0
\(67\) −13.3550 + 4.86084i −1.63158 + 0.593846i −0.985537 0.169458i \(-0.945798\pi\)
−0.646040 + 0.763304i \(0.723576\pi\)
\(68\) −1.01367 1.75573i −0.122926 0.212913i
\(69\) 0 0
\(70\) 0.726682 4.12122i 0.0868551 0.492580i
\(71\) 10.5398 8.84397i 1.25085 1.04959i 0.254252 0.967138i \(-0.418171\pi\)
0.996595 0.0824479i \(-0.0262738\pi\)
\(72\) 0 0
\(73\) −1.30541 7.40333i −0.152786 0.866495i −0.960782 0.277306i \(-0.910559\pi\)
0.807995 0.589189i \(-0.200553\pi\)
\(74\) −0.692066 0.251892i −0.0804511 0.0292818i
\(75\) 0 0
\(76\) −0.434945 + 5.32926i −0.0498916 + 0.611308i
\(77\) 6.41147 0.730655
\(78\) 0 0
\(79\) −1.20914 6.85738i −0.136039 0.771515i −0.974131 0.225986i \(-0.927440\pi\)
0.838092 0.545529i \(-0.183671\pi\)
\(80\) −0.0812519 0.0681784i −0.00908424 0.00762258i
\(81\) 0 0
\(82\) −0.685670 + 3.88863i −0.0757196 + 0.429427i
\(83\) 1.25624 2.17588i 0.137891 0.238834i −0.788807 0.614641i \(-0.789301\pi\)
0.926698 + 0.375807i \(0.122634\pi\)
\(84\) 0 0
\(85\) 3.93242 1.43128i 0.426531 0.155244i
\(86\) 3.96703 1.44388i 0.427776 0.155698i
\(87\) 0 0
\(88\) 4.84002 8.38316i 0.515948 0.893648i
\(89\) 0.396459 2.24843i 0.0420246 0.238333i −0.956559 0.291539i \(-0.905833\pi\)
0.998584 + 0.0532055i \(0.0169438\pi\)
\(90\) 0 0
\(91\) 7.61721 + 6.39160i 0.798501 + 0.670022i
\(92\) 0.374638 + 2.12467i 0.0390587 + 0.221513i
\(93\) 0 0
\(94\) 0.630415 0.0650223
\(95\) −10.6775 2.79439i −1.09549 0.286698i
\(96\) 0 0
\(97\) 1.71301 + 0.623485i 0.173930 + 0.0633053i 0.427517 0.904007i \(-0.359388\pi\)
−0.253587 + 0.967312i \(0.581611\pi\)
\(98\) 0.529563 + 3.00330i 0.0534939 + 0.303379i
\(99\) 0 0
\(100\) −1.32635 + 1.11294i −0.132635 + 0.111294i
\(101\) 1.37551 7.80093i 0.136869 0.776222i −0.836671 0.547705i \(-0.815501\pi\)
0.973540 0.228516i \(-0.0733874\pi\)
\(102\) 0 0
\(103\) 0.00727396 + 0.0125989i 0.000716725 + 0.00124140i 0.866384 0.499379i \(-0.166439\pi\)
−0.865667 + 0.500621i \(0.833105\pi\)
\(104\) 14.1074 5.13468i 1.38335 0.503497i
\(105\) 0 0
\(106\) 2.68479 + 4.65020i 0.260770 + 0.451667i
\(107\) −1.77719 + 3.07818i −0.171807 + 0.297579i −0.939052 0.343776i \(-0.888294\pi\)
0.767244 + 0.641355i \(0.221627\pi\)
\(108\) 0 0
\(109\) 5.64543 4.73708i 0.540734 0.453730i −0.331055 0.943612i \(-0.607404\pi\)
0.871789 + 0.489882i \(0.162960\pi\)
\(110\) 5.81908 + 4.88279i 0.554827 + 0.465555i
\(111\) 0 0
\(112\) −0.0739780 0.0269258i −0.00699026 0.00254425i
\(113\) −7.37733 −0.694000 −0.347000 0.937865i \(-0.612800\pi\)
−0.347000 + 0.937865i \(0.612800\pi\)
\(114\) 0 0
\(115\) −4.45336 −0.415278
\(116\) 3.99747 + 1.45496i 0.371156 + 0.135090i
\(117\) 0 0
\(118\) −7.24763 6.08148i −0.667198 0.559846i
\(119\) 2.37939 1.99654i 0.218118 0.183023i
\(120\) 0 0
\(121\) −0.319078 + 0.552659i −0.0290071 + 0.0502417i
\(122\) 1.92989 + 3.34267i 0.174724 + 0.302631i
\(123\) 0 0
\(124\) 2.24035 0.815422i 0.201190 0.0732270i
\(125\) 4.54323 + 7.86911i 0.406359 + 0.703835i
\(126\) 0 0
\(127\) −0.0175410 + 0.0994798i −0.00155651 + 0.00882740i −0.985576 0.169233i \(-0.945871\pi\)
0.984020 + 0.178060i \(0.0569822\pi\)
\(128\) 5.24170 4.39831i 0.463305 0.388759i
\(129\) 0 0
\(130\) 2.04576 + 11.6021i 0.179425 + 1.01757i
\(131\) −2.85369 1.03866i −0.249328 0.0907481i 0.214333 0.976761i \(-0.431242\pi\)
−0.463661 + 0.886013i \(0.653464\pi\)
\(132\) 0 0
\(133\) −8.15657 + 0.761570i −0.707265 + 0.0660365i
\(134\) −12.4979 −1.07966
\(135\) 0 0
\(136\) −0.814330 4.61830i −0.0698282 0.396016i
\(137\) −14.9684 12.5600i −1.27883 1.07307i −0.993404 0.114671i \(-0.963419\pi\)
−0.285431 0.958399i \(-0.592137\pi\)
\(138\) 0 0
\(139\) 2.67365 15.1630i 0.226776 1.28611i −0.632485 0.774573i \(-0.717965\pi\)
0.859261 0.511537i \(-0.170924\pi\)
\(140\) −2.91875 + 5.05542i −0.246679 + 0.427261i
\(141\) 0 0
\(142\) 11.3696 4.13819i 0.954114 0.347269i
\(143\) −16.9611 + 6.17334i −1.41836 + 0.516240i
\(144\) 0 0
\(145\) −4.39053 + 7.60462i −0.364614 + 0.631529i
\(146\) 1.14796 6.51038i 0.0950055 0.538803i
\(147\) 0 0
\(148\) 0.786989 + 0.660362i 0.0646901 + 0.0542814i
\(149\) 0.654048 + 3.70929i 0.0535817 + 0.303877i 0.999807 0.0196306i \(-0.00624903\pi\)
−0.946226 + 0.323507i \(0.895138\pi\)
\(150\) 0 0
\(151\) −14.5963 −1.18783 −0.593914 0.804529i \(-0.702418\pi\)
−0.593914 + 0.804529i \(0.702418\pi\)
\(152\) −5.16163 + 11.2398i −0.418663 + 0.911671i
\(153\) 0 0
\(154\) 5.29813 + 1.92836i 0.426936 + 0.155392i
\(155\) 0.854570 + 4.84651i 0.0686407 + 0.389281i
\(156\) 0 0
\(157\) −7.94743 + 6.66869i −0.634274 + 0.532219i −0.902254 0.431205i \(-0.858088\pi\)
0.267980 + 0.963425i \(0.413644\pi\)
\(158\) 1.06330 6.03028i 0.0845916 0.479743i
\(159\) 0 0
\(160\) 7.13816 + 12.3636i 0.564321 + 0.977432i
\(161\) −3.10607 + 1.13052i −0.244792 + 0.0890971i
\(162\) 0 0
\(163\) 1.01114 + 1.75135i 0.0791989 + 0.137177i 0.902905 0.429841i \(-0.141430\pi\)
−0.823706 + 0.567018i \(0.808097\pi\)
\(164\) 2.75402 4.77011i 0.215053 0.372483i
\(165\) 0 0
\(166\) 1.69253 1.42020i 0.131366 0.110229i
\(167\) 17.8157 + 14.9491i 1.37862 + 1.15680i 0.969720 + 0.244218i \(0.0785312\pi\)
0.408898 + 0.912580i \(0.365913\pi\)
\(168\) 0 0
\(169\) −14.0890 5.12797i −1.08377 0.394460i
\(170\) 3.68004 0.282247
\(171\) 0 0
\(172\) −5.88888 −0.449023
\(173\) 0.842549 + 0.306663i 0.0640578 + 0.0233151i 0.373850 0.927489i \(-0.378037\pi\)
−0.309793 + 0.950804i \(0.600260\pi\)
\(174\) 0 0
\(175\) −2.03209 1.70513i −0.153611 0.128895i
\(176\) 0.109470 0.0918566i 0.00825164 0.00692395i
\(177\) 0 0
\(178\) 1.00387 1.73875i 0.0752433 0.130325i
\(179\) −10.6591 18.4621i −0.796699 1.37992i −0.921755 0.387773i \(-0.873245\pi\)
0.125056 0.992150i \(-0.460089\pi\)
\(180\) 0 0
\(181\) 15.1284 5.50627i 1.12448 0.409278i 0.288196 0.957571i \(-0.406945\pi\)
0.836286 + 0.548294i \(0.184722\pi\)
\(182\) 4.37211 + 7.57272i 0.324082 + 0.561327i
\(183\) 0 0
\(184\) −0.866592 + 4.91469i −0.0638860 + 0.362316i
\(185\) −1.62449 + 1.36310i −0.119435 + 0.100217i
\(186\) 0 0
\(187\) 0.979055 + 5.55250i 0.0715956 + 0.406039i
\(188\) −0.826352 0.300767i −0.0602679 0.0219357i
\(189\) 0 0
\(190\) −7.98293 5.52060i −0.579142 0.400506i
\(191\) −18.9486 −1.37107 −0.685537 0.728038i \(-0.740432\pi\)
−0.685537 + 0.728038i \(0.740432\pi\)
\(192\) 0 0
\(193\) 2.24035 + 12.7057i 0.161264 + 0.914574i 0.952833 + 0.303494i \(0.0981534\pi\)
−0.791569 + 0.611080i \(0.790736\pi\)
\(194\) 1.22803 + 1.03044i 0.0881671 + 0.0739810i
\(195\) 0 0
\(196\) 0.738703 4.18939i 0.0527645 0.299242i
\(197\) −11.6001 + 20.0920i −0.826476 + 1.43150i 0.0743108 + 0.997235i \(0.476324\pi\)
−0.900786 + 0.434263i \(0.857009\pi\)
\(198\) 0 0
\(199\) −8.66550 + 3.15398i −0.614281 + 0.223580i −0.630375 0.776291i \(-0.717099\pi\)
0.0160945 + 0.999870i \(0.494877\pi\)
\(200\) −3.76352 + 1.36981i −0.266121 + 0.0968601i
\(201\) 0 0
\(202\) 3.48293 6.03260i 0.245058 0.424453i
\(203\) −1.13176 + 6.41852i −0.0794339 + 0.450492i
\(204\) 0 0
\(205\) 8.70961 + 7.30823i 0.608305 + 0.510429i
\(206\) 0.00222152 + 0.0125989i 0.000154781 + 0.000877805i
\(207\) 0 0
\(208\) 0.221629 0.0153672
\(209\) 6.20574 13.5135i 0.429260 0.934746i
\(210\) 0 0
\(211\) −13.7417 5.00157i −0.946017 0.344322i −0.177478 0.984125i \(-0.556794\pi\)
−0.768539 + 0.639803i \(0.779016\pi\)
\(212\) −1.30066 7.37641i −0.0893297 0.506614i
\(213\) 0 0
\(214\) −2.39440 + 2.00914i −0.163678 + 0.137342i
\(215\) 2.11081 11.9710i 0.143956 0.816417i
\(216\) 0 0
\(217\) 1.82635 + 3.16333i 0.123981 + 0.214741i
\(218\) 6.08987 2.21653i 0.412458 0.150122i
\(219\) 0 0
\(220\) −5.29813 9.17664i −0.357200 0.618689i
\(221\) −4.37211 + 7.57272i −0.294100 + 0.509396i
\(222\) 0 0
\(223\) −2.30928 + 1.93771i −0.154641 + 0.129759i −0.716825 0.697253i \(-0.754405\pi\)
0.562185 + 0.827012i \(0.309961\pi\)
\(224\) 8.11721 + 6.81115i 0.542354 + 0.455089i
\(225\) 0 0
\(226\) −6.09627 2.21886i −0.405518 0.147596i
\(227\) 13.7219 0.910757 0.455378 0.890298i \(-0.349504\pi\)
0.455378 + 0.890298i \(0.349504\pi\)
\(228\) 0 0
\(229\) 9.41416 0.622105 0.311053 0.950393i \(-0.399318\pi\)
0.311053 + 0.950393i \(0.399318\pi\)
\(230\) −3.68004 1.33943i −0.242655 0.0883192i
\(231\) 0 0
\(232\) 7.53802 + 6.32515i 0.494895 + 0.415266i
\(233\) 18.5273 15.5463i 1.21377 1.01847i 0.214640 0.976693i \(-0.431142\pi\)
0.999127 0.0417777i \(-0.0133021\pi\)
\(234\) 0 0
\(235\) 0.907604 1.57202i 0.0592055 0.102547i
\(236\) 6.59879 + 11.4294i 0.429545 + 0.743993i
\(237\) 0 0
\(238\) 2.56670 0.934204i 0.166375 0.0605554i
\(239\) −11.6630 20.2009i −0.754415 1.30668i −0.945665 0.325143i \(-0.894587\pi\)
0.191250 0.981541i \(-0.438746\pi\)
\(240\) 0 0
\(241\) 0.0516892 0.293144i 0.00332960 0.0188831i −0.983098 0.183082i \(-0.941393\pi\)
0.986427 + 0.164199i \(0.0525038\pi\)
\(242\) −0.429892 + 0.360723i −0.0276345 + 0.0231881i
\(243\) 0 0
\(244\) −0.934945 5.30234i −0.0598537 0.339447i
\(245\) 8.25150 + 3.00330i 0.527169 + 0.191874i
\(246\) 0 0
\(247\) 20.8444 9.86830i 1.32629 0.627905i
\(248\) 5.51485 0.350193
\(249\) 0 0
\(250\) 1.38754 + 7.86911i 0.0877555 + 0.497686i
\(251\) 12.4081 + 10.4116i 0.783190 + 0.657175i 0.944050 0.329802i \(-0.106982\pi\)
−0.160859 + 0.986977i \(0.551427\pi\)
\(252\) 0 0
\(253\) 1.04189 5.90885i 0.0655030 0.371486i
\(254\) −0.0444153 + 0.0769295i −0.00278686 + 0.00482699i
\(255\) 0 0
\(256\) 15.1300 5.50687i 0.945625 0.344179i
\(257\) 14.4290 5.25173i 0.900057 0.327594i 0.149782 0.988719i \(-0.452143\pi\)
0.750276 + 0.661125i \(0.229921\pi\)
\(258\) 0 0
\(259\) −0.786989 + 1.36310i −0.0489011 + 0.0846992i
\(260\) 2.85369 16.1841i 0.176979 1.00370i
\(261\) 0 0
\(262\) −2.04576 1.71660i −0.126387 0.106052i
\(263\) −1.67453 9.49671i −0.103256 0.585592i −0.991903 0.127000i \(-0.959465\pi\)
0.888647 0.458592i \(-0.151646\pi\)
\(264\) 0 0
\(265\) 15.4611 0.949768
\(266\) −6.96926 1.82391i −0.427312 0.111831i
\(267\) 0 0
\(268\) 16.3824 + 5.96270i 1.00071 + 0.364230i
\(269\) 3.17412 + 18.0013i 0.193529 + 1.09756i 0.914498 + 0.404591i \(0.132586\pi\)
−0.720969 + 0.692968i \(0.756303\pi\)
\(270\) 0 0
\(271\) 14.5273 12.1899i 0.882473 0.740483i −0.0842129 0.996448i \(-0.526838\pi\)
0.966686 + 0.255965i \(0.0823932\pi\)
\(272\) 0.0120217 0.0681784i 0.000728923 0.00413393i
\(273\) 0 0
\(274\) −8.59152 14.8809i −0.519033 0.898991i
\(275\) 4.52481 1.64690i 0.272857 0.0993117i
\(276\) 0 0
\(277\) −6.88191 11.9198i −0.413494 0.716193i 0.581775 0.813350i \(-0.302358\pi\)
−0.995269 + 0.0971571i \(0.969025\pi\)
\(278\) 6.76991 11.7258i 0.406033 0.703269i
\(279\) 0 0
\(280\) −10.3439 + 8.67956i −0.618166 + 0.518703i
\(281\) −10.0437 8.42767i −0.599157 0.502752i 0.292018 0.956413i \(-0.405673\pi\)
−0.891175 + 0.453661i \(0.850118\pi\)
\(282\) 0 0
\(283\) 16.3293 + 5.94340i 0.970679 + 0.353298i 0.778209 0.628005i \(-0.216128\pi\)
0.192469 + 0.981303i \(0.438350\pi\)
\(284\) −16.8776 −1.00150
\(285\) 0 0
\(286\) −15.8726 −0.938565
\(287\) 7.92989 + 2.88624i 0.468087 + 0.170370i
\(288\) 0 0
\(289\) −10.9304 9.17166i −0.642962 0.539509i
\(290\) −5.91534 + 4.96356i −0.347361 + 0.291470i
\(291\) 0 0
\(292\) −4.61081 + 7.98617i −0.269828 + 0.467355i
\(293\) 7.80200 + 13.5135i 0.455798 + 0.789465i 0.998734 0.0503091i \(-0.0160206\pi\)
−0.542936 + 0.839774i \(0.682687\pi\)
\(294\) 0 0
\(295\) −25.5993 + 9.31737i −1.49045 + 0.542478i
\(296\) 1.18820 + 2.05802i 0.0690625 + 0.119620i
\(297\) 0 0
\(298\) −0.575160 + 3.26189i −0.0333181 + 0.188956i
\(299\) 7.12836 5.98140i 0.412243 0.345913i
\(300\) 0 0
\(301\) −1.56670 8.88522i −0.0903033 0.512136i
\(302\) −12.0617 4.39008i −0.694070 0.252621i
\(303\) 0 0
\(304\) −0.128356 + 0.129862i −0.00736170 + 0.00744807i
\(305\) 11.1138 0.636375
\(306\) 0 0
\(307\) 3.73695 + 21.1933i 0.213279 + 1.20956i 0.883868 + 0.467736i \(0.154930\pi\)
−0.670589 + 0.741829i \(0.733959\pi\)
\(308\) −6.02481 5.05542i −0.343296 0.288059i
\(309\) 0 0
\(310\) −0.751497 + 4.26195i −0.0426821 + 0.242062i
\(311\) 7.24763 12.5533i 0.410975 0.711830i −0.584021 0.811738i \(-0.698522\pi\)
0.994997 + 0.0999083i \(0.0318550\pi\)
\(312\) 0 0
\(313\) −18.3414 + 6.67571i −1.03672 + 0.377334i −0.803634 0.595124i \(-0.797103\pi\)
−0.233081 + 0.972457i \(0.574881\pi\)
\(314\) −8.57310 + 3.12035i −0.483808 + 0.176092i
\(315\) 0 0
\(316\) −4.27079 + 7.39723i −0.240251 + 0.416127i
\(317\) −4.92246 + 27.9166i −0.276473 + 1.56795i 0.457772 + 0.889070i \(0.348648\pi\)
−0.734245 + 0.678885i \(0.762464\pi\)
\(318\) 0 0
\(319\) −9.06283 7.60462i −0.507421 0.425777i
\(320\) 2.21688 + 12.5726i 0.123927 + 0.702827i
\(321\) 0 0
\(322\) −2.90673 −0.161986
\(323\) −1.90508 6.94751i −0.106001 0.386570i
\(324\) 0 0
\(325\) 7.01754 + 2.55418i 0.389263 + 0.141680i
\(326\) 0.308811 + 1.75135i 0.0171035 + 0.0969985i
\(327\) 0 0
\(328\) 9.76011 8.18971i 0.538912 0.452201i
\(329\) 0.233956 1.32683i 0.0128984 0.0731504i
\(330\) 0 0
\(331\) 0.855037 + 1.48097i 0.0469971 + 0.0814014i 0.888567 0.458747i \(-0.151702\pi\)
−0.841570 + 0.540148i \(0.818368\pi\)
\(332\) −2.89615 + 1.05411i −0.158947 + 0.0578520i
\(333\) 0 0
\(334\) 10.2258 + 17.7116i 0.559531 + 0.969136i
\(335\) −17.9932 + 31.1651i −0.983073 + 1.70273i
\(336\) 0 0
\(337\) 19.4873 16.3518i 1.06154 0.890737i 0.0672796 0.997734i \(-0.478568\pi\)
0.994259 + 0.106997i \(0.0341236\pi\)
\(338\) −10.1001 8.47502i −0.549375 0.460980i
\(339\) 0 0
\(340\) −4.82383 1.75573i −0.261609 0.0952178i
\(341\) −6.63041 −0.359057
\(342\) 0 0
\(343\) 19.6732 1.06225
\(344\) −12.8004 4.65895i −0.690149 0.251194i
\(345\) 0 0
\(346\) 0.604007 + 0.506822i 0.0324716 + 0.0272469i
\(347\) −5.90033 + 4.95096i −0.316746 + 0.265782i −0.787274 0.616604i \(-0.788508\pi\)
0.470527 + 0.882385i \(0.344064\pi\)
\(348\) 0 0
\(349\) −11.3785 + 19.7082i −0.609078 + 1.05495i 0.382315 + 0.924032i \(0.375127\pi\)
−0.991393 + 0.130921i \(0.958206\pi\)
\(350\) −1.16637 2.02022i −0.0623453 0.107985i
\(351\) 0 0
\(352\) −18.0744 + 6.57856i −0.963371 + 0.350638i
\(353\) −5.72281 9.91220i −0.304595 0.527573i 0.672576 0.740028i \(-0.265188\pi\)
−0.977171 + 0.212454i \(0.931854\pi\)
\(354\) 0 0
\(355\) 6.04963 34.3092i 0.321081 1.82094i
\(356\) −2.14543 + 1.80023i −0.113708 + 0.0954120i
\(357\) 0 0
\(358\) −3.25537 18.4621i −0.172051 0.975752i
\(359\) 9.75789 + 3.55158i 0.515002 + 0.187445i 0.586429 0.810000i \(-0.300533\pi\)
−0.0714274 + 0.997446i \(0.522755\pi\)
\(360\) 0 0
\(361\) −6.28968 + 17.9287i −0.331036 + 0.943618i
\(362\) 14.1575 0.744099
\(363\) 0 0
\(364\) −2.11809 12.0123i −0.111018 0.629614i
\(365\) −14.5817 12.2355i −0.763242 0.640436i
\(366\) 0 0
\(367\) −5.64930 + 32.0388i −0.294891 + 1.67241i 0.372754 + 0.927930i \(0.378414\pi\)
−0.667645 + 0.744480i \(0.732697\pi\)
\(368\) −0.0368366 + 0.0638029i −0.00192024 + 0.00332596i
\(369\) 0 0
\(370\) −1.75237 + 0.637812i −0.0911016 + 0.0331583i
\(371\) 10.7836 3.92490i 0.559856 0.203771i
\(372\) 0 0
\(373\) −15.2429 + 26.4014i −0.789246 + 1.36701i 0.137183 + 0.990546i \(0.456195\pi\)
−0.926429 + 0.376469i \(0.877138\pi\)
\(374\) −0.860967 + 4.88279i −0.0445195 + 0.252483i
\(375\) 0 0
\(376\) −1.55825 1.30753i −0.0803605 0.0674305i
\(377\) −3.18614 18.0695i −0.164094 0.930626i
\(378\) 0 0
\(379\) 17.8598 0.917396 0.458698 0.888592i \(-0.348316\pi\)
0.458698 + 0.888592i \(0.348316\pi\)
\(380\) 7.83022 + 11.0450i 0.401682 + 0.566599i
\(381\) 0 0
\(382\) −15.6582 5.69913i −0.801144 0.291593i
\(383\) 4.07310 + 23.0997i 0.208126 + 1.18034i 0.892445 + 0.451157i \(0.148988\pi\)
−0.684319 + 0.729183i \(0.739900\pi\)
\(384\) 0 0
\(385\) 12.4363 10.4353i 0.633812 0.531831i
\(386\) −1.97013 + 11.1732i −0.100277 + 0.568700i
\(387\) 0 0
\(388\) −1.11809 1.93659i −0.0567623 0.0983153i
\(389\) 3.67365 1.33710i 0.186261 0.0677936i −0.247206 0.968963i \(-0.579512\pi\)
0.433467 + 0.901169i \(0.357290\pi\)
\(390\) 0 0
\(391\) −1.45336 2.51730i −0.0734997 0.127305i
\(392\) 4.92009 8.52185i 0.248502 0.430418i
\(393\) 0 0
\(394\) −15.6288 + 13.1141i −0.787369 + 0.660681i
\(395\) −13.5064 11.3332i −0.679581 0.570236i
\(396\) 0 0
\(397\) −8.41875 3.06417i −0.422525 0.153786i 0.122002 0.992530i \(-0.461069\pi\)
−0.544527 + 0.838743i \(0.683291\pi\)
\(398\) −8.10936 −0.406486
\(399\) 0 0
\(400\) −0.0591253 −0.00295627
\(401\) −1.90508 0.693392i −0.0951350 0.0346263i 0.294014 0.955801i \(-0.405009\pi\)
−0.389149 + 0.921175i \(0.627231\pi\)
\(402\) 0 0
\(403\) −7.87733 6.60986i −0.392398 0.329261i
\(404\) −7.44356 + 6.24589i −0.370331 + 0.310745i
\(405\) 0 0
\(406\) −2.86571 + 4.96356i −0.142223 + 0.246338i
\(407\) −1.42855 2.47432i −0.0708105 0.122647i
\(408\) 0 0
\(409\) 30.2656 11.0158i 1.49654 0.544696i 0.541377 0.840780i \(-0.317903\pi\)
0.955162 + 0.296084i \(0.0956808\pi\)
\(410\) 4.99912 + 8.65873i 0.246889 + 0.427624i
\(411\) 0 0
\(412\) 0.00309887 0.0175745i 0.000152670 0.000865836i
\(413\) −15.4893 + 12.9971i −0.762180 + 0.639545i
\(414\) 0 0
\(415\) −1.10472 6.26519i −0.0542287 0.307546i
\(416\) −28.0317 10.2027i −1.37437 0.500228i
\(417\) 0 0
\(418\) 9.19253 9.30039i 0.449622 0.454897i
\(419\) 23.2499 1.13583 0.567916 0.823086i \(-0.307750\pi\)
0.567916 + 0.823086i \(0.307750\pi\)
\(420\) 0 0
\(421\) 1.12061 + 6.35532i 0.0546154 + 0.309739i 0.999862 0.0166178i \(-0.00528986\pi\)
−0.945246 + 0.326357i \(0.894179\pi\)
\(422\) −9.85117 8.26611i −0.479547 0.402388i
\(423\) 0 0
\(424\) 3.00862 17.0627i 0.146111 0.828639i
\(425\) 1.16637 2.02022i 0.0565775 0.0979950i
\(426\) 0 0
\(427\) 7.75150 2.82131i 0.375121 0.136533i
\(428\) 4.09714 1.49124i 0.198043 0.0720817i
\(429\) 0 0
\(430\) 5.34477 9.25741i 0.257748 0.446432i
\(431\) 2.43061 13.7847i 0.117078 0.663984i −0.868622 0.495475i \(-0.834994\pi\)
0.985700 0.168508i \(-0.0538950\pi\)
\(432\) 0 0
\(433\) −21.9800 18.4434i −1.05629 0.886333i −0.0625499 0.998042i \(-0.519923\pi\)
−0.993741 + 0.111709i \(0.964368\pi\)
\(434\) 0.557781 + 3.16333i 0.0267744 + 0.151845i
\(435\) 0 0
\(436\) −9.04013 −0.432944
\(437\) −0.623608 + 7.64090i −0.0298312 + 0.365514i
\(438\) 0 0
\(439\) 12.5376 + 4.56332i 0.598387 + 0.217795i 0.623414 0.781892i \(-0.285745\pi\)
−0.0250271 + 0.999687i \(0.507967\pi\)
\(440\) −4.25624 24.1384i −0.202908 1.15075i
\(441\) 0 0
\(442\) −5.89053 + 4.94274i −0.280184 + 0.235102i
\(443\) −5.88372 + 33.3682i −0.279544 + 1.58537i 0.444603 + 0.895728i \(0.353345\pi\)
−0.724147 + 0.689646i \(0.757766\pi\)
\(444\) 0 0
\(445\) −2.89053 5.00654i −0.137024 0.237333i
\(446\) −2.49108 + 0.906678i −0.117956 + 0.0429324i
\(447\) 0 0
\(448\) 4.73783 + 8.20616i 0.223841 + 0.387704i
\(449\) 9.42009 16.3161i 0.444562 0.770003i −0.553460 0.832876i \(-0.686693\pi\)
0.998022 + 0.0628725i \(0.0200261\pi\)
\(450\) 0 0
\(451\) −11.7344 + 9.84635i −0.552552 + 0.463646i
\(452\) 6.93242 + 5.81699i 0.326074 + 0.273608i
\(453\) 0 0
\(454\) 11.3391 + 4.12711i 0.532172 + 0.193695i
\(455\) 25.1780 1.18036
\(456\) 0 0
\(457\) 14.2790 0.667943 0.333972 0.942583i \(-0.391611\pi\)
0.333972 + 0.942583i \(0.391611\pi\)
\(458\) 7.77941 + 2.83147i 0.363508 + 0.132306i
\(459\) 0 0
\(460\) 4.18479 + 3.51146i 0.195117 + 0.163723i
\(461\) 10.6695 8.95280i 0.496930 0.416973i −0.359572 0.933117i \(-0.617077\pi\)
0.856502 + 0.516144i \(0.172633\pi\)
\(462\) 0 0
\(463\) 0.881445 1.52671i 0.0409642 0.0709521i −0.844816 0.535056i \(-0.820290\pi\)
0.885781 + 0.464104i \(0.153624\pi\)
\(464\) 0.0726338 + 0.125805i 0.00337194 + 0.00584037i
\(465\) 0 0
\(466\) 19.9859 7.27428i 0.925830 0.336974i
\(467\) 11.0209 + 19.0888i 0.509988 + 0.883326i 0.999933 + 0.0115724i \(0.00368368\pi\)
−0.489945 + 0.871754i \(0.662983\pi\)
\(468\) 0 0
\(469\) −4.63816 + 26.3043i −0.214170 + 1.21462i
\(470\) 1.22281 1.02606i 0.0564041 0.0473286i
\(471\) 0 0
\(472\) 5.30113 + 30.0642i 0.244004 + 1.38382i
\(473\) 15.3897 + 5.60138i 0.707617 + 0.257552i
\(474\) 0 0
\(475\) −5.56077 + 2.63263i −0.255146 + 0.120793i
\(476\) −3.81016 −0.174638
\(477\) 0 0
\(478\) −3.56196 20.2009i −0.162920 0.923966i
\(479\) 19.5012 + 16.3634i 0.891032 + 0.747664i 0.968417 0.249337i \(-0.0802126\pi\)
−0.0773851 + 0.997001i \(0.524657\pi\)
\(480\) 0 0
\(481\) 0.769448 4.36376i 0.0350838 0.198970i
\(482\) 0.130882 0.226694i 0.00596150 0.0103256i
\(483\) 0 0
\(484\) 0.735604 0.267738i 0.0334366 0.0121699i
\(485\) 4.33750 1.57872i 0.196956 0.0716860i
\(486\) 0 0
\(487\) 11.2554 19.4949i 0.510029 0.883397i −0.489903 0.871777i \(-0.662968\pi\)
0.999932 0.0116199i \(-0.00369881\pi\)
\(488\) 2.16267 12.2651i 0.0978993 0.555214i
\(489\) 0 0
\(490\) 5.91534 + 4.96356i 0.267228 + 0.224231i
\(491\) −2.71482 15.3965i −0.122518 0.694835i −0.982751 0.184934i \(-0.940793\pi\)
0.860233 0.509902i \(-0.170318\pi\)
\(492\) 0 0
\(493\) −5.73143 −0.258131
\(494\) 20.1928 1.88538i 0.908519 0.0848274i
\(495\) 0 0
\(496\) 0.0765042 + 0.0278452i 0.00343514 + 0.00125029i
\(497\) −4.49020 25.4652i −0.201413 1.14227i
\(498\) 0 0
\(499\) −21.9217 + 18.3945i −0.981352 + 0.823452i −0.984293 0.176544i \(-0.943508\pi\)
0.00294090 + 0.999996i \(0.499064\pi\)
\(500\) 1.93552 10.9769i 0.0865590 0.490900i
\(501\) 0 0
\(502\) 7.12196 + 12.3356i 0.317869 + 0.550565i
\(503\) −23.5351 + 8.56607i −1.04938 + 0.381942i −0.808428 0.588595i \(-0.799681\pi\)
−0.240950 + 0.970538i \(0.577459\pi\)
\(504\) 0 0
\(505\) −10.0287 17.3702i −0.446271 0.772963i
\(506\) 2.63816 4.56942i 0.117280 0.203135i
\(507\) 0 0
\(508\) 0.0949225 0.0796494i 0.00421150 0.00353387i
\(509\) −25.6787 21.5470i −1.13819 0.955053i −0.138810 0.990319i \(-0.544328\pi\)
−0.999378 + 0.0352655i \(0.988772\pi\)
\(510\) 0 0
\(511\) −13.2763 4.83218i −0.587309 0.213763i
\(512\) 0.473897 0.0209435
\(513\) 0 0
\(514\) 13.5030 0.595591
\(515\) 0.0346151 + 0.0125989i 0.00152532 + 0.000555172i
\(516\) 0 0
\(517\) 1.87346 + 1.57202i 0.0823945 + 0.0691372i
\(518\) −1.06031 + 0.889704i −0.0465872 + 0.0390913i
\(519\) 0 0
\(520\) 19.0069 32.9209i 0.833506 1.44367i
\(521\) −13.7392 23.7969i −0.601924 1.04256i −0.992530 0.122005i \(-0.961068\pi\)
0.390606 0.920558i \(-0.372266\pi\)
\(522\) 0 0
\(523\) 9.73277 3.54244i 0.425584 0.154900i −0.120343 0.992732i \(-0.538400\pi\)
0.545928 + 0.837832i \(0.316177\pi\)
\(524\) 1.86262 + 3.22615i 0.0813687 + 0.140935i
\(525\) 0 0
\(526\) 1.47255 8.35126i 0.0642064 0.364132i
\(527\) −2.46064 + 2.06472i −0.107187 + 0.0899406i
\(528\) 0 0
\(529\) −3.45677 19.6043i −0.150294 0.852361i
\(530\) 12.7763 + 4.65020i 0.554968 + 0.201992i
\(531\) 0 0
\(532\) 8.26517 + 5.71578i 0.358340 + 0.247811i
\(533\) −23.7570 −1.02903
\(534\) 0 0
\(535\) 1.56283 + 8.86327i 0.0675672 + 0.383193i
\(536\) 30.8922 + 25.9216i 1.33434 + 1.11964i
\(537\) 0 0
\(538\) −2.79127 + 15.8301i −0.120340 + 0.682483i
\(539\) −5.91534 + 10.2457i −0.254792 + 0.441313i
\(540\) 0 0
\(541\) −2.37211 + 0.863378i −0.101985 + 0.0371195i −0.392509 0.919748i \(-0.628393\pi\)
0.290524 + 0.956868i \(0.406170\pi\)
\(542\) 15.6710 5.70378i 0.673128 0.244998i
\(543\) 0 0
\(544\) −4.65910 + 8.06980i −0.199757 + 0.345990i
\(545\) 3.24035 18.3770i 0.138801 0.787182i
\(546\) 0 0
\(547\) 5.87939 + 4.93339i 0.251384 + 0.210937i 0.759768 0.650194i \(-0.225312\pi\)
−0.508384 + 0.861131i \(0.669757\pi\)
\(548\) 4.16220 + 23.6050i 0.177800 + 1.00836i
\(549\) 0 0
\(550\) 4.23442 0.180556
\(551\) 12.4329 + 8.59797i 0.529659 + 0.366286i
\(552\) 0 0
\(553\) −12.2973 4.47584i −0.522933 0.190332i
\(554\) −2.10179 11.9198i −0.0892963 0.506425i
\(555\) 0 0
\(556\) −14.4684 + 12.1404i −0.613596 + 0.514868i
\(557\) −0.565360 + 3.20631i −0.0239551 + 0.135856i −0.994440 0.105307i \(-0.966418\pi\)
0.970485 + 0.241163i \(0.0775287\pi\)
\(558\) 0 0
\(559\) 12.6998 + 21.9967i 0.537145 + 0.930362i
\(560\) −0.187319 + 0.0681784i −0.00791566 + 0.00288107i
\(561\) 0 0
\(562\) −5.76486 9.98503i −0.243176 0.421193i
\(563\) 2.62954 4.55449i 0.110822 0.191949i −0.805280 0.592895i \(-0.797985\pi\)
0.916102 + 0.400946i \(0.131318\pi\)
\(564\) 0 0
\(565\) −14.3097 + 12.0073i −0.602015 + 0.505151i
\(566\) 11.7062 + 9.82267i 0.492048 + 0.412878i
\(567\) 0 0
\(568\) −36.6860 13.3526i −1.53931 0.560264i
\(569\) 29.9564 1.25584 0.627918 0.778280i \(-0.283907\pi\)
0.627918 + 0.778280i \(0.283907\pi\)
\(570\) 0 0
\(571\) −16.7101 −0.699295 −0.349647 0.936881i \(-0.613699\pi\)
−0.349647 + 0.936881i \(0.613699\pi\)
\(572\) 20.8059 + 7.57272i 0.869937 + 0.316631i
\(573\) 0 0
\(574\) 5.68479 + 4.77011i 0.237279 + 0.199100i
\(575\) −1.90167 + 1.59569i −0.0793053 + 0.0665450i
\(576\) 0 0
\(577\) 6.84002 11.8473i 0.284754 0.493208i −0.687796 0.725904i \(-0.741421\pi\)
0.972549 + 0.232696i \(0.0747548\pi\)
\(578\) −6.27379 10.8665i −0.260955 0.451987i
\(579\) 0 0
\(580\) 10.1220 3.68409i 0.420291 0.152974i
\(581\) −2.36097 4.08931i −0.0979494 0.169653i
\(582\) 0 0
\(583\) −3.61721 + 20.5142i −0.149810 + 0.849612i
\(584\) −16.3405 + 13.7113i −0.676174 + 0.567378i
\(585\) 0 0
\(586\) 2.38279 + 13.5135i 0.0984321 + 0.558236i
\(587\) −22.5872 8.22108i −0.932275 0.339320i −0.169164 0.985588i \(-0.554107\pi\)
−0.763111 + 0.646268i \(0.776329\pi\)
\(588\) 0 0
\(589\) 8.43511 0.787576i 0.347563 0.0324515i
\(590\) −23.9564 −0.986268
\(591\) 0 0
\(592\) 0.00609191 + 0.0345490i 0.000250376 + 0.00141995i
\(593\) 3.24897 + 2.72621i 0.133419 + 0.111952i 0.707055 0.707158i \(-0.250023\pi\)
−0.573636 + 0.819110i \(0.694468\pi\)
\(594\) 0 0
\(595\) 1.36571 7.74535i 0.0559888 0.317529i
\(596\) 2.31016 4.00131i 0.0946276 0.163900i
\(597\) 0 0
\(598\) 7.68954 2.79876i 0.314449 0.114450i
\(599\) −24.6894 + 8.98622i −1.00878 + 0.367167i −0.792965 0.609267i \(-0.791464\pi\)
−0.215818 + 0.976434i \(0.569242\pi\)
\(600\) 0 0
\(601\) 21.1197 36.5805i 0.861492 1.49215i −0.00899659 0.999960i \(-0.502864\pi\)
0.870489 0.492188i \(-0.163803\pi\)
\(602\) 1.37774 7.81353i 0.0561523 0.318456i
\(603\) 0 0
\(604\) 13.7160 + 11.5091i 0.558096 + 0.468298i
\(605\) 0.280592 + 1.59132i 0.0114077 + 0.0646963i
\(606\) 0 0
\(607\) −22.0969 −0.896885 −0.448443 0.893812i \(-0.648021\pi\)
−0.448443 + 0.893812i \(0.648021\pi\)
\(608\) 22.2126 10.5161i 0.900840 0.426483i
\(609\) 0 0
\(610\) 9.18392 + 3.34267i 0.371846 + 0.135341i
\(611\) 0.658633 + 3.73530i 0.0266455 + 0.151114i
\(612\) 0 0
\(613\) 5.49794 4.61332i 0.222060 0.186330i −0.524970 0.851121i \(-0.675924\pi\)
0.747030 + 0.664790i \(0.231479\pi\)
\(614\) −3.28622 + 18.6371i −0.132621 + 0.752131i
\(615\) 0 0
\(616\) −9.09627 15.7552i −0.366499 0.634795i
\(617\) −46.3953 + 16.8865i −1.86781 + 0.679826i −0.895995 + 0.444065i \(0.853536\pi\)
−0.971811 + 0.235761i \(0.924242\pi\)
\(618\) 0 0
\(619\) −13.2490 22.9479i −0.532521 0.922354i −0.999279 0.0379684i \(-0.987911\pi\)
0.466758 0.884385i \(-0.345422\pi\)
\(620\) 3.01842 5.22805i 0.121223 0.209964i
\(621\) 0 0
\(622\) 9.76470 8.19356i 0.391529 0.328532i
\(623\) −3.28699 2.75811i −0.131690 0.110501i
\(624\) 0 0
\(625\) 28.2520 + 10.2829i 1.13008 + 0.411315i
\(626\) −17.1643 −0.686022
\(627\) 0 0
\(628\) 12.7264 0.507838
\(629\) −1.30066 0.473401i −0.0518607 0.0188757i
\(630\) 0 0
\(631\) 25.5253 + 21.4183i 1.01615 + 0.852647i 0.989138 0.146988i \(-0.0469579\pi\)
0.0270071 + 0.999635i \(0.491402\pi\)
\(632\) −15.1355 + 12.7002i −0.602057 + 0.505185i
\(633\) 0 0
\(634\) −12.4641 + 21.5884i −0.495013 + 0.857387i
\(635\) 0.127889 + 0.221510i 0.00507511 + 0.00879035i
\(636\) 0 0
\(637\) −17.2417 + 6.27546i −0.683141 + 0.248643i
\(638\) −5.20187 9.00990i −0.205944 0.356705i
\(639\) 0 0
\(640\) 3.00862 17.0627i 0.118926 0.674463i
\(641\) 0.104256 0.0874810i 0.00411786 0.00345529i −0.640726 0.767769i \(-0.721367\pi\)
0.644844 + 0.764314i \(0.276922\pi\)
\(642\) 0 0
\(643\) 8.36602 + 47.4461i 0.329924 + 1.87109i 0.472536 + 0.881311i \(0.343339\pi\)
−0.142613 + 0.989779i \(0.545550\pi\)
\(644\) 3.81016 + 1.38678i 0.150141 + 0.0546469i
\(645\) 0 0
\(646\) 0.515319 6.31407i 0.0202750 0.248424i
\(647\) 36.9718 1.45351 0.726756 0.686895i \(-0.241027\pi\)
0.726756 + 0.686895i \(0.241027\pi\)
\(648\) 0 0
\(649\) −6.37346 36.1457i −0.250180 1.41884i
\(650\) 5.03074 + 4.22130i 0.197322 + 0.165573i
\(651\) 0 0
\(652\) 0.430770 2.44302i 0.0168702 0.0956759i
\(653\) 13.5000 23.3827i 0.528296 0.915035i −0.471160 0.882048i \(-0.656165\pi\)
0.999456 0.0329874i \(-0.0105021\pi\)
\(654\) 0 0
\(655\) −7.22580 + 2.62998i −0.282336 + 0.102762i
\(656\) 0.176747 0.0643307i 0.00690081 0.00251169i
\(657\) 0 0
\(658\) 0.592396 1.02606i 0.0230940 0.0400000i
\(659\) −3.27760 + 18.5882i −0.127677 + 0.724093i 0.852005 + 0.523534i \(0.175387\pi\)
−0.979682 + 0.200559i \(0.935724\pi\)
\(660\) 0 0
\(661\) −23.4500 19.6769i −0.912098 0.765341i 0.0604192 0.998173i \(-0.480756\pi\)
−0.972517 + 0.232832i \(0.925201\pi\)
\(662\) 0.261135 + 1.48097i 0.0101493 + 0.0575594i
\(663\) 0 0
\(664\) −7.12918 −0.276666
\(665\) −14.5817 + 14.7528i −0.565455 + 0.572090i
\(666\) 0 0
\(667\) 5.73143 + 2.08607i 0.221922 + 0.0807729i
\(668\) −4.95394 28.0952i −0.191674 1.08703i
\(669\) 0 0
\(670\) −24.2422 + 20.3416i −0.936556 + 0.785864i
\(671\) −2.60014 + 14.7461i −0.100377 + 0.569267i
\(672\) 0 0
\(673\) −5.95471 10.3139i −0.229537 0.397570i 0.728134 0.685435i \(-0.240388\pi\)
−0.957671 + 0.287865i \(0.907055\pi\)
\(674\) 21.0214 7.65117i 0.809715 0.294712i
\(675\) 0 0
\(676\) 9.19594 + 15.9278i 0.353690 + 0.612609i
\(677\) 2.89053 5.00654i 0.111092 0.192417i −0.805119 0.593114i \(-0.797898\pi\)
0.916211 + 0.400696i \(0.131232\pi\)
\(678\) 0 0
\(679\) 2.62449 2.20220i 0.100718 0.0845129i
\(680\) −9.09627 7.63267i −0.348826 0.292700i
\(681\) 0 0
\(682\) −5.47906 1.99421i −0.209804 0.0763624i
\(683\) −21.0496 −0.805442 −0.402721 0.915323i \(-0.631935\pi\)
−0.402721 + 0.915323i \(0.631935\pi\)
\(684\) 0 0
\(685\) −49.4766 −1.89040
\(686\) 16.2570 + 5.91707i 0.620696 + 0.225915i
\(687\) 0 0
\(688\) −0.154048 0.129261i −0.00587302 0.00492805i
\(689\) −24.7481 + 20.7661i −0.942827 + 0.791126i
\(690\) 0 0
\(691\) 16.4688 28.5249i 0.626504 1.08514i −0.361744 0.932278i \(-0.617818\pi\)
0.988248 0.152860i \(-0.0488483\pi\)
\(692\) −0.549935 0.952515i −0.0209054 0.0362092i
\(693\) 0 0
\(694\) −6.36484 + 2.31661i −0.241606 + 0.0879374i
\(695\) −19.4932 33.7632i −0.739419 1.28071i
\(696\) 0 0
\(697\) −1.28864 + 7.30823i −0.0488106 + 0.276819i
\(698\) −15.3302 + 12.8636i −0.580257 + 0.486894i
\(699\) 0 0
\(700\) 0.565055 + 3.20459i 0.0213571 + 0.121122i
\(701\) 20.0694 + 7.30466i 0.758010 + 0.275893i 0.691973 0.721924i \(-0.256742\pi\)
0.0660380 + 0.997817i \(0.478964\pi\)
\(702\) 0 0
\(703\) 2.11128 + 2.97810i 0.0796285 + 0.112321i
\(704\) −17.2003 −0.648260
\(705\) 0 0
\(706\) −1.74779 9.91220i −0.0657789 0.373051i
\(707\) −11.4042 9.56926i −0.428899 0.359889i
\(708\) 0 0
\(709\) −2.73854 + 15.5310i −0.102848 + 0.583280i 0.889210 + 0.457499i \(0.151255\pi\)
−0.992058 + 0.125781i \(0.959856\pi\)
\(710\) 15.3182 26.5319i 0.574882 0.995725i
\(711\) 0 0
\(712\) −6.08765 + 2.21572i −0.228144 + 0.0830377i
\(713\) 3.21213 1.16912i 0.120295 0.0437839i
\(714\) 0 0
\(715\) −22.8516 + 39.5802i −0.854603 + 1.48022i
\(716\) −4.54101 + 25.7534i −0.169706 + 0.962448i
\(717\) 0 0
\(718\) 6.99525 + 5.86971i 0.261060 + 0.219056i
\(719\) 6.13470 + 34.7916i 0.228786 + 1.29751i 0.855314 + 0.518109i \(0.173364\pi\)
−0.626529 + 0.779398i \(0.715525\pi\)
\(720\) 0 0
\(721\) 0.0273411 0.00101824
\(722\) −10.5899 + 12.9237i −0.394114 + 0.480971i
\(723\) 0 0
\(724\) −18.5577 6.75444i −0.689691 0.251027i
\(725\) 0.849985 + 4.82050i 0.0315676 + 0.179029i
\(726\) 0 0
\(727\) 30.9647 25.9825i 1.14842 0.963637i 0.148737 0.988877i \(-0.452479\pi\)
0.999681 + 0.0252396i \(0.00803487\pi\)
\(728\) 4.89945 27.7862i 0.181586 1.02982i
\(729\) 0 0
\(730\) −8.36959 14.4965i −0.309772 0.536541i
\(731\) 7.45558 2.71361i 0.275755 0.100367i
\(732\) 0 0
\(733\) 18.1382 + 31.4162i 0.669948 + 1.16038i 0.977918 + 0.208988i \(0.0670170\pi\)
−0.307970 + 0.951396i \(0.599650\pi\)
\(734\) −14.3045 + 24.7762i −0.527990 + 0.914505i
\(735\) 0 0
\(736\) 7.59627 6.37402i 0.280002 0.234950i
\(737\) −37.1411 31.1651i −1.36811 1.14798i
\(738\) 0 0
\(739\) 19.4290 + 7.07158i 0.714708 + 0.260132i 0.673677 0.739026i \(-0.264714\pi\)
0.0410304 + 0.999158i \(0.486936\pi\)
\(740\) 2.60132 0.0956264
\(741\) 0 0
\(742\) 10.0915 0.370471
\(743\) 6.29978 + 2.29293i 0.231117 + 0.0841196i 0.454982 0.890500i \(-0.349646\pi\)
−0.223866 + 0.974620i \(0.571868\pi\)
\(744\) 0 0
\(745\) 7.30587 + 6.13036i 0.267667 + 0.224599i
\(746\) −20.5367 + 17.2323i −0.751901 + 0.630920i
\(747\) 0 0
\(748\) 3.45811 5.98962i 0.126441 0.219002i
\(749\) 3.34002 + 5.78509i 0.122042 + 0.211383i
\(750\) 0 0
\(751\) −10.0617 + 3.66214i −0.367155 + 0.133633i −0.519007 0.854770i \(-0.673698\pi\)
0.151853 + 0.988403i \(0.451476\pi\)
\(752\) −0.0150147 0.0260063i −0.000547531 0.000948352i
\(753\) 0 0
\(754\) 2.80184 15.8900i 0.102037 0.578681i
\(755\) −28.3123 + 23.7568i −1.03039 + 0.864599i
\(756\) 0 0
\(757\) −0.705432 4.00071i −0.0256394 0.145408i 0.969301 0.245878i \(-0.0790764\pi\)
−0.994940 + 0.100470i \(0.967965\pi\)
\(758\) 14.7585 + 5.37164i 0.536052 + 0.195107i
\(759\) 0 0
\(760\) 8.28194 + 30.2029i 0.300417 + 1.09557i
\(761\) 11.0077 0.399030 0.199515 0.979895i \(-0.436063\pi\)
0.199515 + 0.979895i \(0.436063\pi\)
\(762\) 0 0
\(763\) −2.40508 13.6399i −0.0870697 0.493797i
\(764\) 17.8059 + 14.9409i 0.644194 + 0.540543i
\(765\) 0 0
\(766\) −3.58182 + 20.3135i −0.129417 + 0.733958i
\(767\) 28.4616 49.2969i 1.02769 1.78001i
\(768\) 0 0
\(769\) −20.0599 + 7.30121i −0.723378 + 0.263288i −0.677359 0.735652i \(-0.736876\pi\)
−0.0460191 + 0.998941i \(0.514654\pi\)
\(770\) 13.4153 4.88279i 0.483455 0.175963i
\(771\) 0 0
\(772\) 7.91312 13.7059i 0.284800 0.493287i
\(773\) −3.11128 + 17.6450i −0.111905 + 0.634645i 0.876331 + 0.481709i \(0.159984\pi\)
−0.988236 + 0.152936i \(0.951127\pi\)
\(774\) 0 0
\(775\) 2.10148 + 1.76335i 0.0754874 + 0.0633415i
\(776\) −0.898214 5.09403i −0.0322440 0.182865i
\(777\) 0 0
\(778\) 3.43788 0.123254
\(779\) 13.7588 13.9202i 0.492959 0.498743i
\(780\) 0 0
\(781\) 44.1070 + 16.0536i 1.57827 + 0.574444i
\(782\) −0.443868 2.51730i −0.0158727 0.0900184i
\(783\) 0 0
\(784\) 0.111281 0.0933762i 0.00397434 0.00333486i
\(785\) −4.56165 + 25.8704i −0.162812 + 0.923355i
\(786\) 0 0
\(787\) −24.4158 42.2894i −0.870330 1.50746i −0.861656 0.507493i \(-0.830572\pi\)
−0.00867371 0.999962i \(-0.502761\pi\)
\(788\) 26.7430 9.73367i 0.952681 0.346748i
\(789\) 0 0
\(790\) −7.75237 13.4275i −0.275817 0.477729i
\(791\) −6.93242 + 12.0073i −0.246488 + 0.426930i
\(792\) 0 0
\(793\) −17.7895 + 14.9272i −0.631724 + 0.530080i
\(794\) −6.03524 5.06417i −0.214183 0.179721i
\(795\) 0 0
\(796\) 10.6298 + 3.86893i 0.376763 + 0.137131i
\(797\) 28.5262 1.01045 0.505225 0.862988i \(-0.331409\pi\)
0.505225 + 0.862988i \(0.331409\pi\)
\(798\) 0 0
\(799\) 1.18479 0.0419149
\(800\) 7.47818 + 2.72183i 0.264394 + 0.0962314i
\(801\) 0 0
\(802\) −1.36571 1.14597i −0.0482251 0.0404656i
\(803\) 19.6459 16.4849i 0.693289 0.581738i
\(804\) 0 0
\(805\) −4.18479 + 7.24827i −0.147495 + 0.255468i
\(806\) −4.52141 7.83131i −0.159260 0.275846i
\(807\) 0 0
\(808\) −21.1211 + 7.68745i −0.743037 + 0.270443i
\(809\) −7.41834 12.8489i −0.260815 0.451745i 0.705644 0.708567i \(-0.250658\pi\)
−0.966459 + 0.256822i \(0.917325\pi\)
\(810\) 0 0
\(811\) −1.45471 + 8.25006i −0.0510817 + 0.289699i −0.999638 0.0269103i \(-0.991433\pi\)
0.948556 + 0.316609i \(0.102544\pi\)
\(812\) 6.12449 5.13905i 0.214927 0.180345i
\(813\) 0 0
\(814\) −0.436289 2.47432i −0.0152919 0.0867248i
\(815\) 4.81180 + 1.75135i 0.168550 + 0.0613472i
\(816\) 0 0
\(817\) −20.2438 5.29796i −0.708241 0.185352i
\(818\) 28.3233 0.990299
\(819\) 0 0
\(820\) −2.42185 13.7350i −0.0845746 0.479646i
\(821\) −4.80999 4.03606i −0.167870 0.140860i 0.554983 0.831862i \(-0.312725\pi\)
−0.722852 + 0.691002i \(0.757169\pi\)
\(822\) 0 0
\(823\) 1.91472 10.8589i 0.0667428 0.378517i −0.933080 0.359670i \(-0.882889\pi\)
0.999822 0.0188472i \(-0.00599961\pi\)
\(824\) 0.0206398 0.0357492i 0.000719023 0.00124538i
\(825\) 0 0
\(826\) −16.7087 + 6.08148i −0.581371 + 0.211602i
\(827\) 31.8892 11.6067i 1.10890 0.403606i 0.278309 0.960492i \(-0.410226\pi\)
0.830589 + 0.556886i \(0.188004\pi\)
\(828\) 0 0
\(829\) 10.1834 17.6382i 0.353686 0.612602i −0.633206 0.773983i \(-0.718262\pi\)
0.986892 + 0.161381i \(0.0515949\pi\)
\(830\) 0.971477 5.50952i 0.0337205 0.191238i
\(831\) 0 0
\(832\) −20.4349 17.1470i −0.708454 0.594464i
\(833\) 0.995252 + 5.64436i 0.0344834 + 0.195565i
\(834\) 0 0
\(835\) 58.8881 2.03791
\(836\) −16.4868 + 7.80531i −0.570208 + 0.269952i
\(837\) 0 0
\(838\) 19.2126 + 6.99281i 0.663688 + 0.241563i
\(839\) −2.74526 15.5692i −0.0947770 0.537507i −0.994815 0.101697i \(-0.967573\pi\)
0.900038 0.435810i \(-0.143538\pi\)
\(840\) 0 0
\(841\) −13.0025 + 10.9104i −0.448363 + 0.376221i
\(842\) −0.985452 + 5.58878i −0.0339609 + 0.192602i
\(843\) 0 0
\(844\) 8.96926 + 15.5352i 0.308734 + 0.534744i
\(845\) −35.6746 + 12.9845i −1.22724 + 0.446680i
\(846\) 0 0
\(847\) 0.599670 + 1.03866i 0.0206049 + 0.0356888i
\(848\) 0.127889 0.221510i 0.00439172 0.00760668i
\(849\) 0 0
\(850\) 1.57145 1.31860i 0.0539003 0.0452278i
\(851\) 1.12836 + 0.946803i 0.0386795 + 0.0324560i
\(852\) 0 0
\(853\) 49.4741 + 18.0071i 1.69396 + 0.616551i 0.995115 0.0987227i \(-0.0314757\pi\)
0.698845 + 0.715274i \(0.253698\pi\)
\(854\) 7.25402 0.248228
\(855\) 0 0
\(856\) 10.0855 0.344716
\(857\) −21.6386 7.87581i −0.739161 0.269033i −0.0551238 0.998480i \(-0.517555\pi\)
−0.684038 + 0.729447i \(0.739778\pi\)
\(858\) 0 0
\(859\) 6.82501 + 5.72686i 0.232866 + 0.195398i 0.751753 0.659445i \(-0.229209\pi\)
−0.518886 + 0.854843i \(0.673653\pi\)
\(860\) −11.4226 + 9.58471i −0.389508 + 0.326836i
\(861\) 0 0
\(862\) 6.15451 10.6599i 0.209624 0.363079i
\(863\) 14.8849 + 25.7814i 0.506688 + 0.877609i 0.999970 + 0.00773998i \(0.00246374\pi\)
−0.493282 + 0.869869i \(0.664203\pi\)
\(864\) 0 0
\(865\) 2.13341 0.776497i 0.0725380 0.0264017i
\(866\) −12.6160 21.8516i −0.428710 0.742548i
\(867\) 0 0
\(868\) 0.778066 4.41263i 0.0264093 0.149775i
\(869\) 18.1971 15.2692i 0.617295 0.517972i
\(870\) 0 0
\(871\) −13.0574 74.0520i −0.442432 2.50916i
\(872\) −19.6501 7.15204i −0.665435 0.242199i
\(873\) 0 0
\(874\) −2.81345 + 6.12651i −0.0951665 + 0.207232i
\(875\) 17.0770 0.577307
\(876\) 0 0
\(877\) −4.34642 24.6498i −0.146768 0.832363i −0.965930 0.258802i \(-0.916672\pi\)
0.819162 0.573562i \(-0.194439\pi\)
\(878\) 8.98798 + 7.54181i 0.303330 + 0.254524i
\(879\) 0 0
\(880\) 0.0628336 0.356347i 0.00211812 0.0120125i
\(881\) 10.1980 17.6634i 0.343579 0.595097i −0.641515 0.767110i \(-0.721694\pi\)
0.985095 + 0.172014i \(0.0550273\pi\)
\(882\) 0 0
\(883\) 9.98710 3.63501i 0.336093 0.122328i −0.168460 0.985708i \(-0.553880\pi\)
0.504553 + 0.863381i \(0.331657\pi\)
\(884\) 10.0795 3.66864i 0.339010 0.123390i
\(885\) 0 0
\(886\) −14.8981 + 25.8043i −0.500512 + 0.866912i
\(887\) 9.78312 55.4828i 0.328485 1.86293i −0.155474 0.987840i \(-0.549690\pi\)
0.483959 0.875091i \(-0.339198\pi\)
\(888\) 0 0
\(889\) 0.145430 + 0.122030i 0.00487756 + 0.00409275i
\(890\) −0.882789 5.00654i −0.0295911 0.167820i
\(891\) 0 0
\(892\) 3.69789 0.123815
\(893\) −2.57011 1.77736i −0.0860054 0.0594771i
\(894\) 0 0
\(895\) −50.7242 18.4621i −1.69552 0.617120i
\(896\) −2.23308 12.6644i −0.0746019 0.423088i
\(897\) 0 0
\(898\) 12.6917 10.6496i 0.423526 0.355381i
\(899\) 1.17041 6.63771i 0.0390353 0.221380i
\(900\) 0 0
\(901\) 5.04576 + 8.73951i 0.168099 + 0.291155i
\(902\) −12.6582 + 4.60722i −0.421473 + 0.153404i
\(903\) 0 0
\(904\) 10.4666 + 18.1286i 0.348113 + 0.602949i
\(905\) 20.3824 35.3033i 0.677533 1.17352i
\(906\) 0 0
\(907\) −4.53777 + 3.80764i −0.150674 + 0.126431i −0.715009 0.699116i \(-0.753577\pi\)
0.564334 + 0.825546i \(0.309133\pi\)
\(908\) −12.8944 10.8197i −0.427916 0.359064i
\(909\) 0 0
\(910\) 20.8059 + 7.57272i 0.689708 + 0.251033i
\(911\) 34.0591 1.12843 0.564215 0.825628i \(-0.309179\pi\)
0.564215 + 0.825628i \(0.309179\pi\)
\(912\) 0 0
\(913\) 8.57129 0.283668
\(914\) 11.7995 + 4.29466i 0.390292 + 0.142055i
\(915\) 0 0
\(916\) −8.84642 7.42303i −0.292294 0.245264i
\(917\) −4.37211 + 3.66864i −0.144380 + 0.121149i
\(918\) 0 0
\(919\) 3.13697 5.43340i 0.103479 0.179231i −0.809637 0.586931i \(-0.800336\pi\)
0.913116 + 0.407700i \(0.133669\pi\)
\(920\) 6.31820 + 10.9434i 0.208305 + 0.360795i
\(921\) 0 0
\(922\) 11.5095 4.18911i 0.379045 0.137961i
\(923\) 36.3979 + 63.0429i 1.19805 + 2.07508i
\(924\) 0 0
\(925\) −0.205270 + 1.16415i −0.00674924 + 0.0382769i
\(926\) 1.18757 0.996487i 0.0390259 0.0327466i
\(927\) 0 0
\(928\) −3.39528 19.2556i −0.111455 0.632095i
\(929\) 26.6152 + 9.68712i 0.873215 + 0.317824i 0.739468 0.673191i \(-0.235077\pi\)
0.133747 + 0.991016i \(0.457299\pi\)
\(930\) 0 0
\(931\) 6.30840 13.7370i 0.206749 0.450213i
\(932\) −29.6682 −0.971814
\(933\) 0 0
\(934\) 3.36588 + 19.0888i 0.110135 + 0.624606i
\(935\) 10.9363 + 9.17664i 0.357655 + 0.300108i
\(936\) 0 0
\(937\) −3.48545 + 19.7670i −0.113865 + 0.645759i 0.873441 + 0.486930i \(0.161883\pi\)
−0.987306 + 0.158830i \(0.949228\pi\)
\(938\) −11.7442 + 20.3416i −0.383462 + 0.664176i
\(939\) 0 0
\(940\) −2.09240 + 0.761570i −0.0682464 + 0.0248397i
\(941\) 5.06980 1.84526i 0.165271 0.0601537i −0.258060 0.966129i \(-0.583083\pi\)
0.423331 + 0.905975i \(0.360861\pi\)
\(942\) 0 0
\(943\) 3.94862 6.83920i 0.128585 0.222715i
\(944\) −0.0782589 + 0.443828i −0.00254711 + 0.0144454i
\(945\) 0 0
\(946\) 11.0326 + 9.25741i 0.358699 + 0.300984i
\(947\) −1.15358 6.54228i −0.0374863 0.212596i 0.960311 0.278931i \(-0.0899802\pi\)
−0.997797 + 0.0663359i \(0.978869\pi\)
\(948\) 0 0
\(949\) 39.7743 1.29113
\(950\) −5.38696 + 0.502975i −0.174776 + 0.0163187i
\(951\) 0 0
\(952\) −8.28194 3.01438i −0.268419 0.0976966i
\(953\) 2.57414 + 14.5987i 0.0833846 + 0.472897i 0.997693 + 0.0678799i \(0.0216235\pi\)
−0.914309 + 0.405018i \(0.867265\pi\)
\(954\) 0 0
\(955\) −36.7545 + 30.8407i −1.18935 + 0.997981i
\(956\) −4.96868 + 28.1788i −0.160699 + 0.911368i
\(957\) 0 0
\(958\) 11.1932 + 19.3873i 0.361637 + 0.626374i
\(959\) −34.5082 + 12.5600i −1.11433 + 0.405582i
\(960\) 0 0
\(961\) 13.6113 + 23.5754i 0.439074 + 0.760498i
\(962\) 1.94831 3.37457i 0.0628161 0.108801i
\(963\) 0 0
\(964\) −0.279715 + 0.234709i −0.00900901 + 0.00755946i
\(965\) 25.0253 + 20.9987i 0.805592 + 0.675972i
\(966\) 0 0
\(967\) −19.9418 7.25822i −0.641285 0.233409i 0.000850519 1.00000i \(-0.499729\pi\)
−0.642136 + 0.766591i \(0.721951\pi\)
\(968\) 1.81076 0.0582002
\(969\) 0 0
\(970\) 4.05913 0.130331
\(971\) −35.3387 12.8622i −1.13407 0.412769i −0.294304 0.955712i \(-0.595088\pi\)
−0.839770 + 0.542943i \(0.817310\pi\)
\(972\) 0 0
\(973\) −22.1668 18.6002i −0.710636 0.596295i
\(974\) 15.1643 12.7244i 0.485896 0.407715i
\(975\) 0 0
\(976\) 0.0919294 0.159226i 0.00294259 0.00509671i
\(977\) −23.0107 39.8558i −0.736179 1.27510i −0.954204 0.299156i \(-0.903295\pi\)
0.218026 0.975943i \(-0.430038\pi\)
\(978\) 0 0
\(979\) 7.31908 2.66393i 0.233919 0.0851395i
\(980\) −5.38578 9.32845i −0.172042 0.297986i
\(981\) 0 0
\(982\) 2.38737 13.5395i 0.0761842 0.432062i
\(983\) −46.4195 + 38.9506i −1.48055 + 1.24233i −0.574961 + 0.818181i \(0.694983\pi\)
−0.905592 + 0.424150i \(0.860573\pi\)
\(984\) 0 0
\(985\) 10.2010 + 57.8527i 0.325031 + 1.84334i
\(986\) −4.73618 1.72383i −0.150831 0.0548979i
\(987\) 0 0
\(988\) −27.3684 7.16252i −0.870705 0.227870i
\(989\) −8.44326 −0.268480
\(990\) 0 0
\(991\) 7.27554 + 41.2616i 0.231115 + 1.31072i 0.850643 + 0.525744i \(0.176213\pi\)
−0.619528 + 0.784975i \(0.712676\pi\)
\(992\) −8.39440 7.04374i −0.266522 0.223639i
\(993\) 0 0
\(994\) 3.94862 22.3937i 0.125242 0.710285i
\(995\) −11.6750 + 20.2217i −0.370122 + 0.641070i
\(996\) 0 0
\(997\) −31.6819 + 11.5313i −1.00337 + 0.365198i −0.790885 0.611965i \(-0.790379\pi\)
−0.212490 + 0.977163i \(0.568157\pi\)
\(998\) −23.6475 + 8.60700i −0.748550 + 0.272450i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.2.u.c.118.1 6
3.2 odd 2 19.2.e.a.4.1 6
12.11 even 2 304.2.u.b.289.1 6
15.2 even 4 475.2.u.a.99.2 12
15.8 even 4 475.2.u.a.99.1 12
15.14 odd 2 475.2.l.a.251.1 6
19.5 even 9 inner 171.2.u.c.100.1 6
19.9 even 9 3249.2.a.z.1.1 3
19.10 odd 18 3249.2.a.s.1.3 3
21.2 odd 6 931.2.x.a.802.1 6
21.5 even 6 931.2.x.b.802.1 6
21.11 odd 6 931.2.v.b.422.1 6
21.17 even 6 931.2.v.a.422.1 6
21.20 even 2 931.2.w.a.99.1 6
57.2 even 18 361.2.e.b.54.1 6
57.5 odd 18 19.2.e.a.5.1 yes 6
57.8 even 6 361.2.e.a.28.1 6
57.11 odd 6 361.2.e.g.28.1 6
57.14 even 18 361.2.e.h.62.1 6
57.17 odd 18 361.2.e.f.54.1 6
57.23 odd 18 361.2.c.i.292.1 6
57.26 odd 6 361.2.e.f.234.1 6
57.29 even 18 361.2.a.h.1.1 3
57.32 even 18 361.2.c.h.68.3 6
57.35 odd 18 361.2.e.g.245.1 6
57.41 even 18 361.2.e.a.245.1 6
57.44 odd 18 361.2.c.i.68.1 6
57.47 odd 18 361.2.a.g.1.3 3
57.50 even 6 361.2.e.b.234.1 6
57.53 even 18 361.2.c.h.292.3 6
57.56 even 2 361.2.e.h.99.1 6
228.47 even 18 5776.2.a.br.1.1 3
228.119 even 18 304.2.u.b.81.1 6
228.143 odd 18 5776.2.a.bi.1.3 3
285.29 even 18 9025.2.a.x.1.3 3
285.62 even 36 475.2.u.a.24.1 12
285.104 odd 18 9025.2.a.bd.1.1 3
285.119 odd 18 475.2.l.a.176.1 6
285.233 even 36 475.2.u.a.24.2 12
399.5 even 18 931.2.v.a.214.1 6
399.62 even 18 931.2.w.a.442.1 6
399.233 odd 18 931.2.v.b.214.1 6
399.290 even 18 931.2.x.b.765.1 6
399.347 odd 18 931.2.x.a.765.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.2.e.a.4.1 6 3.2 odd 2
19.2.e.a.5.1 yes 6 57.5 odd 18
171.2.u.c.100.1 6 19.5 even 9 inner
171.2.u.c.118.1 6 1.1 even 1 trivial
304.2.u.b.81.1 6 228.119 even 18
304.2.u.b.289.1 6 12.11 even 2
361.2.a.g.1.3 3 57.47 odd 18
361.2.a.h.1.1 3 57.29 even 18
361.2.c.h.68.3 6 57.32 even 18
361.2.c.h.292.3 6 57.53 even 18
361.2.c.i.68.1 6 57.44 odd 18
361.2.c.i.292.1 6 57.23 odd 18
361.2.e.a.28.1 6 57.8 even 6
361.2.e.a.245.1 6 57.41 even 18
361.2.e.b.54.1 6 57.2 even 18
361.2.e.b.234.1 6 57.50 even 6
361.2.e.f.54.1 6 57.17 odd 18
361.2.e.f.234.1 6 57.26 odd 6
361.2.e.g.28.1 6 57.11 odd 6
361.2.e.g.245.1 6 57.35 odd 18
361.2.e.h.62.1 6 57.14 even 18
361.2.e.h.99.1 6 57.56 even 2
475.2.l.a.176.1 6 285.119 odd 18
475.2.l.a.251.1 6 15.14 odd 2
475.2.u.a.24.1 12 285.62 even 36
475.2.u.a.24.2 12 285.233 even 36
475.2.u.a.99.1 12 15.8 even 4
475.2.u.a.99.2 12 15.2 even 4
931.2.v.a.214.1 6 399.5 even 18
931.2.v.a.422.1 6 21.17 even 6
931.2.v.b.214.1 6 399.233 odd 18
931.2.v.b.422.1 6 21.11 odd 6
931.2.w.a.99.1 6 21.20 even 2
931.2.w.a.442.1 6 399.62 even 18
931.2.x.a.765.1 6 399.347 odd 18
931.2.x.a.802.1 6 21.2 odd 6
931.2.x.b.765.1 6 399.290 even 18
931.2.x.b.802.1 6 21.5 even 6
3249.2.a.s.1.3 3 19.10 odd 18
3249.2.a.z.1.1 3 19.9 even 9
5776.2.a.bi.1.3 3 228.143 odd 18
5776.2.a.br.1.1 3 228.47 even 18
9025.2.a.x.1.3 3 285.29 even 18
9025.2.a.bd.1.1 3 285.104 odd 18