Properties

Label 361.2.c.h.68.3
Level $361$
Weight $2$
Character 361.68
Analytic conductor $2.883$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,2,Mod(68,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88259951297\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 68.3
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 361.68
Dual form 361.2.c.h.292.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.439693 - 0.761570i) q^{2} +(0.266044 - 0.460802i) q^{3} +(0.613341 + 1.06234i) q^{4} +(1.26604 - 2.19285i) q^{5} +(-0.233956 - 0.405223i) q^{6} -1.87939 q^{7} +2.83750 q^{8} +(1.35844 + 2.35289i) q^{9} +(-1.11334 - 1.92836i) q^{10} +3.41147 q^{11} +0.652704 q^{12} +(-2.64543 - 4.58202i) q^{13} +(-0.826352 + 1.43128i) q^{14} +(-0.673648 - 1.16679i) q^{15} +(0.0209445 - 0.0362770i) q^{16} +(-0.826352 + 1.43128i) q^{17} +2.38919 q^{18} +3.10607 q^{20} +(-0.500000 + 0.866025i) q^{21} +(1.50000 - 2.59808i) q^{22} +(-0.879385 - 1.52314i) q^{23} +(0.754900 - 1.30753i) q^{24} +(-0.705737 - 1.22237i) q^{25} -4.65270 q^{26} +3.04189 q^{27} +(-1.15270 - 1.99654i) q^{28} +(-1.73396 - 3.00330i) q^{29} -1.18479 q^{30} -1.94356 q^{31} +(2.81908 + 4.88279i) q^{32} +(0.907604 - 1.57202i) q^{33} +(0.726682 + 1.25865i) q^{34} +(-2.37939 + 4.12122i) q^{35} +(-1.66637 + 2.88624i) q^{36} +0.837496 q^{37} -2.81521 q^{39} +(3.59240 - 6.22221i) q^{40} +(-2.24510 + 3.88863i) q^{41} +(0.439693 + 0.761570i) q^{42} +(-2.40033 + 4.15749i) q^{43} +(2.09240 + 3.62414i) q^{44} +6.87939 q^{45} -1.54664 q^{46} +(-0.358441 - 0.620838i) q^{47} +(-0.0111444 - 0.0193026i) q^{48} -3.46791 q^{49} -1.24123 q^{50} +(0.439693 + 0.761570i) q^{51} +(3.24510 - 5.62068i) q^{52} +(-3.05303 - 5.28801i) q^{53} +(1.33750 - 2.31661i) q^{54} +(4.31908 - 7.48086i) q^{55} -5.33275 q^{56} -3.04963 q^{58} +(-5.37939 + 9.31737i) q^{59} +(0.826352 - 1.43128i) q^{60} +(-2.19459 - 3.80115i) q^{61} +(-0.854570 + 1.48016i) q^{62} +(-2.55303 - 4.42198i) q^{63} +5.04189 q^{64} -13.3969 q^{65} +(-0.798133 - 1.38241i) q^{66} +(7.10607 + 12.3081i) q^{67} -2.02734 q^{68} -0.935822 q^{69} +(2.09240 + 3.62414i) q^{70} +(-6.87939 + 11.9154i) q^{71} +(3.85457 + 6.67631i) q^{72} +(3.75877 - 6.51038i) q^{73} +(0.368241 - 0.637812i) q^{74} -0.751030 q^{75} -6.41147 q^{77} +(-1.23783 + 2.14398i) q^{78} +(-3.48158 + 6.03028i) q^{79} +(-0.0530334 - 0.0918566i) q^{80} +(-3.26604 + 5.65695i) q^{81} +(1.97431 + 3.41960i) q^{82} +2.51249 q^{83} -1.22668 q^{84} +(2.09240 + 3.62414i) q^{85} +(2.11081 + 3.65604i) q^{86} -1.84524 q^{87} +9.68004 q^{88} +(-1.14156 - 1.97724i) q^{89} +(3.02481 - 5.23913i) q^{90} +(4.97178 + 8.61138i) q^{91} +(1.07873 - 1.86841i) q^{92} +(-0.517074 + 0.895599i) q^{93} -0.630415 q^{94} +3.00000 q^{96} +(-0.911474 + 1.57872i) q^{97} +(-1.52481 + 2.64106i) q^{98} +(4.63429 + 8.02682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{3} - 3 q^{4} + 3 q^{5} - 6 q^{6} + 12 q^{8} + 6 q^{12} - 6 q^{14} - 3 q^{15} - 3 q^{16} - 6 q^{17} + 6 q^{18} - 6 q^{20} - 3 q^{21} + 9 q^{22} + 6 q^{23} + 6 q^{24} + 6 q^{25} - 30 q^{26}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.439693 0.761570i 0.310910 0.538511i −0.667650 0.744475i \(-0.732700\pi\)
0.978560 + 0.205964i \(0.0660330\pi\)
\(3\) 0.266044 0.460802i 0.153601 0.266044i −0.778948 0.627089i \(-0.784246\pi\)
0.932549 + 0.361044i \(0.117580\pi\)
\(4\) 0.613341 + 1.06234i 0.306670 + 0.531169i
\(5\) 1.26604 2.19285i 0.566192 0.980674i −0.430745 0.902473i \(-0.641749\pi\)
0.996938 0.0782003i \(-0.0249174\pi\)
\(6\) −0.233956 0.405223i −0.0955120 0.165432i
\(7\) −1.87939 −0.710341 −0.355170 0.934802i \(-0.615577\pi\)
−0.355170 + 0.934802i \(0.615577\pi\)
\(8\) 2.83750 1.00321
\(9\) 1.35844 + 2.35289i 0.452814 + 0.784296i
\(10\) −1.11334 1.92836i −0.352069 0.609802i
\(11\) 3.41147 1.02860 0.514299 0.857611i \(-0.328052\pi\)
0.514299 + 0.857611i \(0.328052\pi\)
\(12\) 0.652704 0.188419
\(13\) −2.64543 4.58202i −0.733710 1.27082i −0.955287 0.295680i \(-0.904454\pi\)
0.221577 0.975143i \(-0.428880\pi\)
\(14\) −0.826352 + 1.43128i −0.220852 + 0.382527i
\(15\) −0.673648 1.16679i −0.173935 0.301265i
\(16\) 0.0209445 0.0362770i 0.00523613 0.00906925i
\(17\) −0.826352 + 1.43128i −0.200420 + 0.347137i −0.948664 0.316286i \(-0.897564\pi\)
0.748244 + 0.663424i \(0.230897\pi\)
\(18\) 2.38919 0.563136
\(19\) 0 0
\(20\) 3.10607 0.694538
\(21\) −0.500000 + 0.866025i −0.109109 + 0.188982i
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) −0.879385 1.52314i −0.183364 0.317597i 0.759660 0.650321i \(-0.225366\pi\)
−0.943024 + 0.332724i \(0.892032\pi\)
\(24\) 0.754900 1.30753i 0.154093 0.266897i
\(25\) −0.705737 1.22237i −0.141147 0.244474i
\(26\) −4.65270 −0.912470
\(27\) 3.04189 0.585412
\(28\) −1.15270 1.99654i −0.217841 0.377311i
\(29\) −1.73396 3.00330i −0.321987 0.557699i 0.658911 0.752221i \(-0.271018\pi\)
−0.980898 + 0.194523i \(0.937684\pi\)
\(30\) −1.18479 −0.216313
\(31\) −1.94356 −0.349074 −0.174537 0.984651i \(-0.555843\pi\)
−0.174537 + 0.984651i \(0.555843\pi\)
\(32\) 2.81908 + 4.88279i 0.498347 + 0.863163i
\(33\) 0.907604 1.57202i 0.157994 0.273653i
\(34\) 0.726682 + 1.25865i 0.124625 + 0.215857i
\(35\) −2.37939 + 4.12122i −0.402190 + 0.696613i
\(36\) −1.66637 + 2.88624i −0.277729 + 0.481041i
\(37\) 0.837496 0.137684 0.0688418 0.997628i \(-0.478070\pi\)
0.0688418 + 0.997628i \(0.478070\pi\)
\(38\) 0 0
\(39\) −2.81521 −0.450794
\(40\) 3.59240 6.22221i 0.568008 0.983818i
\(41\) −2.24510 + 3.88863i −0.350626 + 0.607302i −0.986359 0.164607i \(-0.947364\pi\)
0.635734 + 0.771909i \(0.280698\pi\)
\(42\) 0.439693 + 0.761570i 0.0678460 + 0.117513i
\(43\) −2.40033 + 4.15749i −0.366047 + 0.634012i −0.988944 0.148292i \(-0.952622\pi\)
0.622897 + 0.782304i \(0.285956\pi\)
\(44\) 2.09240 + 3.62414i 0.315441 + 0.546359i
\(45\) 6.87939 1.02552
\(46\) −1.54664 −0.228039
\(47\) −0.358441 0.620838i −0.0522840 0.0905585i 0.838699 0.544595i \(-0.183317\pi\)
−0.890983 + 0.454037i \(0.849983\pi\)
\(48\) −0.0111444 0.0193026i −0.00160855 0.00278609i
\(49\) −3.46791 −0.495416
\(50\) −1.24123 −0.175536
\(51\) 0.439693 + 0.761570i 0.0615693 + 0.106641i
\(52\) 3.24510 5.62068i 0.450014 0.779448i
\(53\) −3.05303 5.28801i −0.419366 0.726364i 0.576509 0.817090i \(-0.304414\pi\)
−0.995876 + 0.0907266i \(0.971081\pi\)
\(54\) 1.33750 2.31661i 0.182010 0.315251i
\(55\) 4.31908 7.48086i 0.582384 1.00872i
\(56\) −5.33275 −0.712618
\(57\) 0 0
\(58\) −3.04963 −0.400436
\(59\) −5.37939 + 9.31737i −0.700336 + 1.21302i 0.268012 + 0.963416i \(0.413633\pi\)
−0.968348 + 0.249603i \(0.919700\pi\)
\(60\) 0.826352 1.43128i 0.106682 0.184778i
\(61\) −2.19459 3.80115i −0.280989 0.486687i 0.690640 0.723199i \(-0.257329\pi\)
−0.971629 + 0.236512i \(0.923996\pi\)
\(62\) −0.854570 + 1.48016i −0.108531 + 0.187980i
\(63\) −2.55303 4.42198i −0.321652 0.557118i
\(64\) 5.04189 0.630236
\(65\) −13.3969 −1.66168
\(66\) −0.798133 1.38241i −0.0982434 0.170163i
\(67\) 7.10607 + 12.3081i 0.868144 + 1.50367i 0.863891 + 0.503679i \(0.168021\pi\)
0.00425333 + 0.999991i \(0.498646\pi\)
\(68\) −2.02734 −0.245851
\(69\) −0.935822 −0.112660
\(70\) 2.09240 + 3.62414i 0.250089 + 0.433167i
\(71\) −6.87939 + 11.9154i −0.816433 + 1.41410i 0.0918617 + 0.995772i \(0.470718\pi\)
−0.908294 + 0.418331i \(0.862615\pi\)
\(72\) 3.85457 + 6.67631i 0.454265 + 0.786811i
\(73\) 3.75877 6.51038i 0.439931 0.761983i −0.557753 0.830007i \(-0.688336\pi\)
0.997684 + 0.0680246i \(0.0216696\pi\)
\(74\) 0.368241 0.637812i 0.0428071 0.0741441i
\(75\) −0.751030 −0.0867214
\(76\) 0 0
\(77\) −6.41147 −0.730655
\(78\) −1.23783 + 2.14398i −0.140156 + 0.242758i
\(79\) −3.48158 + 6.03028i −0.391709 + 0.678459i −0.992675 0.120815i \(-0.961449\pi\)
0.600966 + 0.799274i \(0.294783\pi\)
\(80\) −0.0530334 0.0918566i −0.00592932 0.0102699i
\(81\) −3.26604 + 5.65695i −0.362894 + 0.628551i
\(82\) 1.97431 + 3.41960i 0.218026 + 0.377632i
\(83\) 2.51249 0.275781 0.137891 0.990447i \(-0.455968\pi\)
0.137891 + 0.990447i \(0.455968\pi\)
\(84\) −1.22668 −0.133842
\(85\) 2.09240 + 3.62414i 0.226952 + 0.393093i
\(86\) 2.11081 + 3.65604i 0.227615 + 0.394241i
\(87\) −1.84524 −0.197830
\(88\) 9.68004 1.03190
\(89\) −1.14156 1.97724i −0.121005 0.209587i 0.799159 0.601119i \(-0.205278\pi\)
−0.920164 + 0.391533i \(0.871945\pi\)
\(90\) 3.02481 5.23913i 0.318843 0.552253i
\(91\) 4.97178 + 8.61138i 0.521184 + 0.902718i
\(92\) 1.07873 1.86841i 0.112465 0.194795i
\(93\) −0.517074 + 0.895599i −0.0536181 + 0.0928693i
\(94\) −0.630415 −0.0650223
\(95\) 0 0
\(96\) 3.00000 0.306186
\(97\) −0.911474 + 1.57872i −0.0925462 + 0.160295i −0.908582 0.417707i \(-0.862834\pi\)
0.816036 + 0.578002i \(0.196167\pi\)
\(98\) −1.52481 + 2.64106i −0.154030 + 0.266787i
\(99\) 4.63429 + 8.02682i 0.465763 + 0.806726i
\(100\) 0.865715 1.49946i 0.0865715 0.149946i
\(101\) 3.96064 + 6.86002i 0.394098 + 0.682598i 0.992986 0.118235i \(-0.0377237\pi\)
−0.598887 + 0.800833i \(0.704390\pi\)
\(102\) 0.773318 0.0765699
\(103\) 0.0145479 0.00143345 0.000716725 1.00000i \(-0.499772\pi\)
0.000716725 1.00000i \(0.499772\pi\)
\(104\) −7.50640 13.0015i −0.736063 1.27490i
\(105\) 1.26604 + 2.19285i 0.123553 + 0.214001i
\(106\) −5.36959 −0.521540
\(107\) 3.55438 0.343615 0.171807 0.985131i \(-0.445039\pi\)
0.171807 + 0.985131i \(0.445039\pi\)
\(108\) 1.86571 + 3.23151i 0.179528 + 0.310952i
\(109\) 3.68479 6.38225i 0.352939 0.611308i −0.633824 0.773477i \(-0.718516\pi\)
0.986763 + 0.162169i \(0.0518489\pi\)
\(110\) −3.79813 6.57856i −0.362138 0.627241i
\(111\) 0.222811 0.385920i 0.0211483 0.0366299i
\(112\) −0.0393628 + 0.0681784i −0.00371944 + 0.00644226i
\(113\) −7.37733 −0.694000 −0.347000 0.937865i \(-0.612800\pi\)
−0.347000 + 0.937865i \(0.612800\pi\)
\(114\) 0 0
\(115\) −4.45336 −0.415278
\(116\) 2.12701 3.68409i 0.197488 0.342059i
\(117\) 7.18732 12.4488i 0.664468 1.15089i
\(118\) 4.73055 + 8.19356i 0.435483 + 0.754278i
\(119\) 1.55303 2.68993i 0.142366 0.246586i
\(120\) −1.91147 3.31077i −0.174493 0.302231i
\(121\) 0.638156 0.0580142
\(122\) −3.85978 −0.349449
\(123\) 1.19459 + 2.06910i 0.107713 + 0.186564i
\(124\) −1.19207 2.06472i −0.107051 0.185417i
\(125\) 9.08647 0.812718
\(126\) −4.49020 −0.400019
\(127\) −0.0505072 0.0874810i −0.00448179 0.00776269i 0.863776 0.503876i \(-0.168093\pi\)
−0.868258 + 0.496114i \(0.834760\pi\)
\(128\) −3.42127 + 5.92582i −0.302401 + 0.523774i
\(129\) 1.27719 + 2.21216i 0.112450 + 0.194769i
\(130\) −5.89053 + 10.2027i −0.516634 + 0.894836i
\(131\) 1.51842 2.62998i 0.132665 0.229782i −0.792038 0.610472i \(-0.790980\pi\)
0.924703 + 0.380689i \(0.124313\pi\)
\(132\) 2.22668 0.193808
\(133\) 0 0
\(134\) 12.4979 1.07966
\(135\) 3.85117 6.67042i 0.331456 0.574098i
\(136\) −2.34477 + 4.06126i −0.201062 + 0.348250i
\(137\) −9.76991 16.9220i −0.834700 1.44574i −0.894274 0.447519i \(-0.852308\pi\)
0.0595742 0.998224i \(-0.481026\pi\)
\(138\) −0.411474 + 0.712694i −0.0350270 + 0.0606686i
\(139\) −7.69846 13.3341i −0.652975 1.13099i −0.982397 0.186803i \(-0.940187\pi\)
0.329422 0.944183i \(-0.393146\pi\)
\(140\) −5.83750 −0.493358
\(141\) −0.381445 −0.0321234
\(142\) 6.04963 + 10.4783i 0.507674 + 0.879317i
\(143\) −9.02481 15.6314i −0.754693 1.30717i
\(144\) 0.113808 0.00948397
\(145\) −8.78106 −0.729227
\(146\) −3.30541 5.72513i −0.273557 0.473815i
\(147\) −0.922618 + 1.59802i −0.0760963 + 0.131803i
\(148\) 0.513671 + 0.889704i 0.0422235 + 0.0731332i
\(149\) 1.88326 3.26189i 0.154282 0.267225i −0.778515 0.627626i \(-0.784027\pi\)
0.932797 + 0.360401i \(0.117360\pi\)
\(150\) −0.330222 + 0.571962i −0.0269625 + 0.0467005i
\(151\) 14.5963 1.18783 0.593914 0.804529i \(-0.297582\pi\)
0.593914 + 0.804529i \(0.297582\pi\)
\(152\) 0 0
\(153\) −4.49020 −0.363011
\(154\) −2.81908 + 4.88279i −0.227168 + 0.393466i
\(155\) −2.46064 + 4.26195i −0.197643 + 0.342328i
\(156\) −1.72668 2.99070i −0.138245 0.239448i
\(157\) 5.18732 8.98470i 0.413993 0.717057i −0.581329 0.813669i \(-0.697467\pi\)
0.995322 + 0.0966115i \(0.0308004\pi\)
\(158\) 3.06165 + 5.30294i 0.243572 + 0.421879i
\(159\) −3.24897 −0.257660
\(160\) 14.2763 1.12864
\(161\) 1.65270 + 2.86257i 0.130251 + 0.225602i
\(162\) 2.87211 + 4.97464i 0.225654 + 0.390845i
\(163\) −2.02229 −0.158398 −0.0791989 0.996859i \(-0.525236\pi\)
−0.0791989 + 0.996859i \(0.525236\pi\)
\(164\) −5.50805 −0.430106
\(165\) −2.29813 3.98048i −0.178909 0.309880i
\(166\) 1.10472 1.91344i 0.0857431 0.148511i
\(167\) −11.6284 20.1409i −0.899829 1.55855i −0.827712 0.561154i \(-0.810358\pi\)
−0.0721175 0.997396i \(-0.522976\pi\)
\(168\) −1.41875 + 2.45734i −0.109459 + 0.189588i
\(169\) −7.49660 + 12.9845i −0.576661 + 0.998807i
\(170\) 3.68004 0.282247
\(171\) 0 0
\(172\) −5.88888 −0.449023
\(173\) 0.448311 0.776497i 0.0340844 0.0590360i −0.848480 0.529227i \(-0.822482\pi\)
0.882564 + 0.470191i \(0.155815\pi\)
\(174\) −0.811337 + 1.40528i −0.0615073 + 0.106534i
\(175\) 1.32635 + 2.29731i 0.100263 + 0.173660i
\(176\) 0.0714517 0.123758i 0.00538588 0.00932861i
\(177\) 2.86231 + 4.95767i 0.215144 + 0.372641i
\(178\) −2.00774 −0.150487
\(179\) 21.3182 1.59340 0.796699 0.604377i \(-0.206578\pi\)
0.796699 + 0.604377i \(0.206578\pi\)
\(180\) 4.21941 + 7.30823i 0.314496 + 0.544723i
\(181\) −8.04963 13.9424i −0.598324 1.03633i −0.993069 0.117537i \(-0.962500\pi\)
0.394744 0.918791i \(-0.370833\pi\)
\(182\) 8.74422 0.648165
\(183\) −2.33544 −0.172640
\(184\) −2.49525 4.32190i −0.183952 0.318615i
\(185\) 1.06031 1.83651i 0.0779553 0.135023i
\(186\) 0.454707 + 0.787576i 0.0333408 + 0.0577479i
\(187\) −2.81908 + 4.88279i −0.206151 + 0.357065i
\(188\) 0.439693 0.761570i 0.0320679 0.0555432i
\(189\) −5.71688 −0.415842
\(190\) 0 0
\(191\) 18.9486 1.37107 0.685537 0.728038i \(-0.259568\pi\)
0.685537 + 0.728038i \(0.259568\pi\)
\(192\) 1.34137 2.32332i 0.0968048 0.167671i
\(193\) 6.45084 11.1732i 0.464341 0.804263i −0.534830 0.844960i \(-0.679624\pi\)
0.999172 + 0.0406967i \(0.0129577\pi\)
\(194\) 0.801537 + 1.38830i 0.0575470 + 0.0996743i
\(195\) −3.56418 + 6.17334i −0.255236 + 0.442082i
\(196\) −2.12701 3.68409i −0.151929 0.263149i
\(197\) −23.2003 −1.65295 −0.826476 0.562973i \(-0.809658\pi\)
−0.826476 + 0.562973i \(0.809658\pi\)
\(198\) 8.15064 0.579241
\(199\) −4.61081 7.98617i −0.326852 0.566124i 0.655033 0.755600i \(-0.272655\pi\)
−0.981885 + 0.189476i \(0.939321\pi\)
\(200\) −2.00253 3.46848i −0.141600 0.245258i
\(201\) 7.56212 0.533391
\(202\) 6.96585 0.490116
\(203\) 3.25877 + 5.64436i 0.228721 + 0.396156i
\(204\) −0.539363 + 0.934204i −0.0377630 + 0.0654074i
\(205\) 5.68479 + 9.84635i 0.397043 + 0.687699i
\(206\) 0.00639661 0.0110793i 0.000445673 0.000771929i
\(207\) 2.38919 4.13819i 0.166060 0.287624i
\(208\) −0.221629 −0.0153672
\(209\) 0 0
\(210\) 2.22668 0.153656
\(211\) 7.31180 12.6644i 0.503365 0.871854i −0.496627 0.867964i \(-0.665428\pi\)
0.999992 0.00389033i \(-0.00123833\pi\)
\(212\) 3.74510 6.48670i 0.257215 0.445509i
\(213\) 3.66044 + 6.34008i 0.250810 + 0.434415i
\(214\) 1.56283 2.70691i 0.106833 0.185040i
\(215\) 6.07785 + 10.5271i 0.414506 + 0.717945i
\(216\) 8.63135 0.587289
\(217\) 3.65270 0.247962
\(218\) −3.24035 5.61245i −0.219464 0.380123i
\(219\) −2.00000 3.46410i −0.135147 0.234082i
\(220\) 10.5963 0.714400
\(221\) 8.74422 0.588200
\(222\) −0.195937 0.339373i −0.0131504 0.0227772i
\(223\) −1.50727 + 2.61068i −0.100935 + 0.174824i −0.912070 0.410035i \(-0.865517\pi\)
0.811135 + 0.584858i \(0.198850\pi\)
\(224\) −5.29813 9.17664i −0.353996 0.613140i
\(225\) 1.91740 3.32104i 0.127827 0.221403i
\(226\) −3.24376 + 5.61835i −0.215771 + 0.373727i
\(227\) 13.7219 0.910757 0.455378 0.890298i \(-0.349504\pi\)
0.455378 + 0.890298i \(0.349504\pi\)
\(228\) 0 0
\(229\) 9.41416 0.622105 0.311053 0.950393i \(-0.399318\pi\)
0.311053 + 0.950393i \(0.399318\pi\)
\(230\) −1.95811 + 3.39155i −0.129114 + 0.223632i
\(231\) −1.70574 + 2.95442i −0.112229 + 0.194387i
\(232\) −4.92009 8.52185i −0.323020 0.559487i
\(233\) 12.0929 20.9455i 0.792230 1.37218i −0.132354 0.991203i \(-0.542253\pi\)
0.924583 0.380980i \(-0.124413\pi\)
\(234\) −6.32042 10.9473i −0.413179 0.715647i
\(235\) −1.81521 −0.118411
\(236\) −13.1976 −0.859090
\(237\) 1.85251 + 3.20864i 0.120334 + 0.208424i
\(238\) −1.36571 2.36549i −0.0885261 0.153332i
\(239\) −23.3259 −1.50883 −0.754415 0.656398i \(-0.772079\pi\)
−0.754415 + 0.656398i \(0.772079\pi\)
\(240\) −0.0564370 −0.00364299
\(241\) 0.148833 + 0.257787i 0.00958719 + 0.0166055i 0.870779 0.491674i \(-0.163615\pi\)
−0.861192 + 0.508280i \(0.830282\pi\)
\(242\) 0.280592 0.486000i 0.0180372 0.0312413i
\(243\) 6.30066 + 10.9131i 0.404187 + 0.700073i
\(244\) 2.69207 4.66280i 0.172342 0.298505i
\(245\) −4.39053 + 7.60462i −0.280501 + 0.485841i
\(246\) 2.10101 0.133956
\(247\) 0 0
\(248\) −5.51485 −0.350193
\(249\) 0.668434 1.15776i 0.0423603 0.0733701i
\(250\) 3.99525 6.91998i 0.252682 0.437658i
\(251\) 8.09879 + 14.0275i 0.511191 + 0.885409i 0.999916 + 0.0129711i \(0.00412896\pi\)
−0.488725 + 0.872438i \(0.662538\pi\)
\(252\) 3.13176 5.42437i 0.197282 0.341703i
\(253\) −3.00000 5.19615i −0.188608 0.326679i
\(254\) −0.0888306 −0.00557373
\(255\) 2.22668 0.139440
\(256\) 8.05051 + 13.9439i 0.503157 + 0.871493i
\(257\) 7.67752 + 13.2979i 0.478910 + 0.829497i 0.999708 0.0241833i \(-0.00769852\pi\)
−0.520797 + 0.853680i \(0.674365\pi\)
\(258\) 2.24628 0.139847
\(259\) −1.57398 −0.0978022
\(260\) −8.21688 14.2321i −0.509589 0.882635i
\(261\) 4.71095 8.15961i 0.291601 0.505067i
\(262\) −1.33527 2.31276i −0.0824935 0.142883i
\(263\) −4.82160 + 8.35126i −0.297313 + 0.514961i −0.975520 0.219910i \(-0.929424\pi\)
0.678207 + 0.734871i \(0.262757\pi\)
\(264\) 2.57532 4.46059i 0.158500 0.274530i
\(265\) −15.4611 −0.949768
\(266\) 0 0
\(267\) −1.21482 −0.0743459
\(268\) −8.71688 + 15.0981i −0.532468 + 0.922262i
\(269\) −9.13950 + 15.8301i −0.557245 + 0.965177i 0.440480 + 0.897762i \(0.354808\pi\)
−0.997725 + 0.0674144i \(0.978525\pi\)
\(270\) −3.38666 5.86587i −0.206106 0.356985i
\(271\) −9.48205 + 16.4234i −0.575993 + 0.997650i 0.419939 + 0.907552i \(0.362051\pi\)
−0.995933 + 0.0900978i \(0.971282\pi\)
\(272\) 0.0346151 + 0.0599551i 0.00209885 + 0.00363531i
\(273\) 5.29086 0.320217
\(274\) −17.1830 −1.03807
\(275\) −2.40760 4.17009i −0.145184 0.251466i
\(276\) −0.573978 0.994159i −0.0345494 0.0598413i
\(277\) 13.7638 0.826988 0.413494 0.910507i \(-0.364308\pi\)
0.413494 + 0.910507i \(0.364308\pi\)
\(278\) −13.5398 −0.812065
\(279\) −2.64022 4.57299i −0.158066 0.273778i
\(280\) −6.75150 + 11.6939i −0.403479 + 0.698846i
\(281\) 6.55556 + 11.3546i 0.391072 + 0.677356i 0.992591 0.121502i \(-0.0387710\pi\)
−0.601519 + 0.798858i \(0.705438\pi\)
\(282\) −0.167718 + 0.290497i −0.00998748 + 0.0172988i
\(283\) 8.68866 15.0492i 0.516487 0.894582i −0.483329 0.875439i \(-0.660573\pi\)
0.999817 0.0191438i \(-0.00609404\pi\)
\(284\) −16.8776 −1.00150
\(285\) 0 0
\(286\) −15.8726 −0.938565
\(287\) 4.21941 7.30823i 0.249064 0.431391i
\(288\) −7.65910 + 13.2660i −0.451317 + 0.781704i
\(289\) 7.13429 + 12.3569i 0.419664 + 0.726879i
\(290\) −3.86097 + 6.68739i −0.226724 + 0.392697i
\(291\) 0.484985 + 0.840019i 0.0284303 + 0.0492428i
\(292\) 9.22163 0.539655
\(293\) −15.6040 −0.911596 −0.455798 0.890083i \(-0.650646\pi\)
−0.455798 + 0.890083i \(0.650646\pi\)
\(294\) 0.811337 + 1.40528i 0.0473181 + 0.0819574i
\(295\) 13.6211 + 23.5924i 0.793050 + 1.37360i
\(296\) 2.37639 0.138125
\(297\) 10.3773 0.602154
\(298\) −1.65611 2.86846i −0.0959357 0.166166i
\(299\) −4.65270 + 8.05872i −0.269073 + 0.466048i
\(300\) −0.460637 0.797847i −0.0265949 0.0460637i
\(301\) 4.51114 7.81353i 0.260018 0.450364i
\(302\) 6.41787 11.1161i 0.369307 0.639658i
\(303\) 4.21482 0.242135
\(304\) 0 0
\(305\) −11.1138 −0.636375
\(306\) −1.97431 + 3.41960i −0.112864 + 0.195486i
\(307\) 10.7601 18.6371i 0.614112 1.06367i −0.376427 0.926446i \(-0.622848\pi\)
0.990540 0.137227i \(-0.0438191\pi\)
\(308\) −3.93242 6.81115i −0.224070 0.388101i
\(309\) 0.00387039 0.00670372i 0.000220179 0.000381361i
\(310\) 2.16385 + 3.74789i 0.122898 + 0.212866i
\(311\) 14.4953 0.821950 0.410975 0.911647i \(-0.365188\pi\)
0.410975 + 0.911647i \(0.365188\pi\)
\(312\) −7.98814 −0.452239
\(313\) −9.75924 16.9035i −0.551625 0.955442i −0.998158 0.0606748i \(-0.980675\pi\)
0.446533 0.894767i \(-0.352659\pi\)
\(314\) −4.56165 7.90101i −0.257429 0.445880i
\(315\) −12.9290 −0.728467
\(316\) −8.54158 −0.480502
\(317\) 14.1736 + 24.5495i 0.796071 + 1.37884i 0.922157 + 0.386817i \(0.126425\pi\)
−0.126085 + 0.992019i \(0.540241\pi\)
\(318\) −1.42855 + 2.47432i −0.0801090 + 0.138753i
\(319\) −5.91534 10.2457i −0.331196 0.573648i
\(320\) 6.38326 11.0561i 0.356835 0.618056i
\(321\) 0.945622 1.63787i 0.0527795 0.0914168i
\(322\) 2.90673 0.161986
\(323\) 0 0
\(324\) −8.01279 −0.445155
\(325\) −3.73396 + 6.46740i −0.207123 + 0.358747i
\(326\) −0.889185 + 1.54011i −0.0492474 + 0.0852990i
\(327\) −1.96064 3.39592i −0.108423 0.187795i
\(328\) −6.37046 + 11.0340i −0.351750 + 0.609249i
\(329\) 0.673648 + 1.16679i 0.0371394 + 0.0643274i
\(330\) −4.04189 −0.222499
\(331\) 1.71007 0.0939942 0.0469971 0.998895i \(-0.485035\pi\)
0.0469971 + 0.998895i \(0.485035\pi\)
\(332\) 1.54101 + 2.66911i 0.0845740 + 0.146486i
\(333\) 1.13769 + 1.97053i 0.0623450 + 0.107985i
\(334\) −20.4516 −1.11906
\(335\) 35.9864 1.96615
\(336\) 0.0209445 + 0.0362770i 0.00114262 + 0.00197907i
\(337\) 12.7194 22.0307i 0.692870 1.20009i −0.278023 0.960574i \(-0.589679\pi\)
0.970893 0.239512i \(-0.0769875\pi\)
\(338\) 6.59240 + 11.4184i 0.358579 + 0.621077i
\(339\) −1.96270 + 3.39949i −0.106599 + 0.184635i
\(340\) −2.56670 + 4.44566i −0.139199 + 0.241100i
\(341\) −6.63041 −0.359057
\(342\) 0 0
\(343\) 19.6732 1.06225
\(344\) −6.81093 + 11.7969i −0.367221 + 0.636045i
\(345\) −1.18479 + 2.05212i −0.0637871 + 0.110482i
\(346\) −0.394238 0.682840i −0.0211944 0.0367097i
\(347\) −3.85117 + 6.67042i −0.206741 + 0.358087i −0.950686 0.310154i \(-0.899619\pi\)
0.743945 + 0.668241i \(0.232953\pi\)
\(348\) −1.13176 1.96026i −0.0606687 0.105081i
\(349\) 22.7570 1.21816 0.609078 0.793111i \(-0.291540\pi\)
0.609078 + 0.793111i \(0.291540\pi\)
\(350\) 2.33275 0.124691
\(351\) −8.04710 13.9380i −0.429523 0.743955i
\(352\) 9.61721 + 16.6575i 0.512599 + 0.887848i
\(353\) −11.4456 −0.609189 −0.304595 0.952482i \(-0.598521\pi\)
−0.304595 + 0.952482i \(0.598521\pi\)
\(354\) 5.03415 0.267562
\(355\) 17.4192 + 30.1710i 0.924516 + 1.60131i
\(356\) 1.40033 2.42544i 0.0742173 0.128548i
\(357\) −0.826352 1.43128i −0.0437352 0.0757515i
\(358\) 9.37346 16.2353i 0.495403 0.858062i
\(359\) −5.19207 + 8.99292i −0.274027 + 0.474628i −0.969889 0.243547i \(-0.921689\pi\)
0.695862 + 0.718175i \(0.255022\pi\)
\(360\) 19.5202 1.02881
\(361\) 0 0
\(362\) −14.1575 −0.744099
\(363\) 0.169778 0.294064i 0.00891102 0.0154343i
\(364\) −6.09879 + 10.5634i −0.319664 + 0.553674i
\(365\) −9.51754 16.4849i −0.498171 0.862857i
\(366\) −1.02687 + 1.77860i −0.0536756 + 0.0929688i
\(367\) 16.2665 + 28.1744i 0.849105 + 1.47069i 0.882008 + 0.471234i \(0.156191\pi\)
−0.0329030 + 0.999459i \(0.510475\pi\)
\(368\) −0.0736733 −0.00384048
\(369\) −12.1993 −0.635072
\(370\) −0.932419 1.61500i −0.0484741 0.0839597i
\(371\) 5.73783 + 9.93821i 0.297893 + 0.515966i
\(372\) −1.26857 −0.0657723
\(373\) −30.4858 −1.57849 −0.789246 0.614077i \(-0.789529\pi\)
−0.789246 + 0.614077i \(0.789529\pi\)
\(374\) 2.47906 + 4.29385i 0.128189 + 0.222030i
\(375\) 2.41740 4.18707i 0.124834 0.216219i
\(376\) −1.01707 1.76162i −0.0524516 0.0908488i
\(377\) −9.17412 + 15.8900i −0.472491 + 0.818378i
\(378\) −2.51367 + 4.35381i −0.129289 + 0.223936i
\(379\) −17.8598 −0.917396 −0.458698 0.888592i \(-0.651684\pi\)
−0.458698 + 0.888592i \(0.651684\pi\)
\(380\) 0 0
\(381\) −0.0537486 −0.00275363
\(382\) 8.33157 14.4307i 0.426280 0.738339i
\(383\) −11.7280 + 20.3135i −0.599274 + 1.03797i 0.393654 + 0.919259i \(0.371211\pi\)
−0.992928 + 0.118715i \(0.962123\pi\)
\(384\) 1.82042 + 3.15306i 0.0928980 + 0.160904i
\(385\) −8.11721 + 14.0594i −0.413691 + 0.716535i
\(386\) −5.67277 9.82553i −0.288736 0.500106i
\(387\) −13.0428 −0.663004
\(388\) −2.23618 −0.113525
\(389\) −1.95471 3.38565i −0.0991076 0.171659i 0.812208 0.583368i \(-0.198265\pi\)
−0.911316 + 0.411709i \(0.864932\pi\)
\(390\) 3.13429 + 5.42874i 0.158711 + 0.274895i
\(391\) 2.90673 0.146999
\(392\) −9.84018 −0.497004
\(393\) −0.807934 1.39938i −0.0407549 0.0705895i
\(394\) −10.2010 + 17.6686i −0.513918 + 0.890133i
\(395\) 8.81567 + 15.2692i 0.443565 + 0.768277i
\(396\) −5.68479 + 9.84635i −0.285672 + 0.494798i
\(397\) −4.47952 + 7.75876i −0.224821 + 0.389401i −0.956266 0.292500i \(-0.905513\pi\)
0.731445 + 0.681901i \(0.238846\pi\)
\(398\) −8.10936 −0.406486
\(399\) 0 0
\(400\) −0.0591253 −0.00295627
\(401\) −1.01367 + 1.75573i −0.0506203 + 0.0876769i −0.890225 0.455521i \(-0.849453\pi\)
0.839605 + 0.543197i \(0.182786\pi\)
\(402\) 3.32501 5.75908i 0.165836 0.287237i
\(403\) 5.14156 + 8.90544i 0.256119 + 0.443612i
\(404\) −4.85844 + 8.41507i −0.241716 + 0.418665i
\(405\) 8.26991 + 14.3239i 0.410935 + 0.711761i
\(406\) 5.73143 0.284446
\(407\) 2.85710 0.141621
\(408\) 1.24763 + 2.16095i 0.0617667 + 0.106983i
\(409\) −16.1040 27.8930i −0.796292 1.37922i −0.922016 0.387153i \(-0.873459\pi\)
0.125724 0.992065i \(-0.459875\pi\)
\(410\) 9.99825 0.493778
\(411\) −10.3969 −0.512843
\(412\) 0.00892283 + 0.0154548i 0.000439596 + 0.000761403i
\(413\) 10.1099 17.5109i 0.497477 0.861656i
\(414\) −2.10101 3.63906i −0.103259 0.178850i
\(415\) 3.18092 5.50952i 0.156145 0.270452i
\(416\) 14.9153 25.8341i 0.731285 1.26662i
\(417\) −8.19253 −0.401190
\(418\) 0 0
\(419\) −23.2499 −1.13583 −0.567916 0.823086i \(-0.692250\pi\)
−0.567916 + 0.823086i \(0.692250\pi\)
\(420\) −1.55303 + 2.68993i −0.0757803 + 0.131255i
\(421\) 3.22668 5.58878i 0.157259 0.272380i −0.776620 0.629969i \(-0.783068\pi\)
0.933879 + 0.357589i \(0.116401\pi\)
\(422\) −6.42989 11.1369i −0.313002 0.542136i
\(423\) 0.973841 1.68674i 0.0473498 0.0820122i
\(424\) −8.66297 15.0047i −0.420711 0.728693i
\(425\) 2.33275 0.113155
\(426\) 6.43788 0.311916
\(427\) 4.12449 + 7.14382i 0.199598 + 0.345714i
\(428\) 2.18004 + 3.77595i 0.105376 + 0.182517i
\(429\) −9.60401 −0.463686
\(430\) 10.6895 0.515495
\(431\) −6.99866 12.1220i −0.337113 0.583898i 0.646775 0.762681i \(-0.276117\pi\)
−0.983888 + 0.178783i \(0.942784\pi\)
\(432\) 0.0637109 0.110351i 0.00306529 0.00530925i
\(433\) −14.3464 24.8487i −0.689445 1.19415i −0.972018 0.234908i \(-0.924521\pi\)
0.282573 0.959246i \(-0.408812\pi\)
\(434\) 1.60607 2.78179i 0.0770937 0.133530i
\(435\) −2.33615 + 4.04633i −0.112010 + 0.194007i
\(436\) 9.04013 0.432944
\(437\) 0 0
\(438\) −3.51754 −0.168075
\(439\) −6.67112 + 11.5547i −0.318395 + 0.551477i −0.980153 0.198241i \(-0.936477\pi\)
0.661758 + 0.749717i \(0.269811\pi\)
\(440\) 12.2554 21.2269i 0.584252 1.01195i
\(441\) −4.71095 8.15961i −0.224331 0.388553i
\(442\) 3.84477 6.65934i 0.182877 0.316752i
\(443\) −16.9415 29.3435i −0.804915 1.39415i −0.916348 0.400382i \(-0.868877\pi\)
0.111433 0.993772i \(-0.464456\pi\)
\(444\) 0.546637 0.0259422
\(445\) −5.78106 −0.274048
\(446\) 1.32547 + 2.29579i 0.0627630 + 0.108709i
\(447\) −1.00206 1.73562i −0.0473958 0.0820919i
\(448\) −9.47565 −0.447682
\(449\) −18.8402 −0.889123 −0.444562 0.895748i \(-0.646641\pi\)
−0.444562 + 0.895748i \(0.646641\pi\)
\(450\) −1.68614 2.92047i −0.0794852 0.137672i
\(451\) −7.65910 + 13.2660i −0.360653 + 0.624669i
\(452\) −4.52481 7.83721i −0.212829 0.368631i
\(453\) 3.88326 6.72600i 0.182451 0.316015i
\(454\) 6.03343 10.4502i 0.283163 0.490453i
\(455\) 25.1780 1.18036
\(456\) 0 0
\(457\) 14.2790 0.667943 0.333972 0.942583i \(-0.391611\pi\)
0.333972 + 0.942583i \(0.391611\pi\)
\(458\) 4.13934 7.16954i 0.193419 0.335011i
\(459\) −2.51367 + 4.35381i −0.117328 + 0.203218i
\(460\) −2.73143 4.73097i −0.127354 0.220583i
\(461\) 6.96404 12.0621i 0.324348 0.561787i −0.657032 0.753862i \(-0.728189\pi\)
0.981380 + 0.192076i \(0.0615219\pi\)
\(462\) 1.50000 + 2.59808i 0.0697863 + 0.120873i
\(463\) −1.76289 −0.0819284 −0.0409642 0.999161i \(-0.513043\pi\)
−0.0409642 + 0.999161i \(0.513043\pi\)
\(464\) −0.145268 −0.00674388
\(465\) 1.30928 + 2.26774i 0.0607163 + 0.105164i
\(466\) −10.6343 18.4191i −0.492624 0.853249i
\(467\) 22.0419 1.01998 0.509988 0.860181i \(-0.329650\pi\)
0.509988 + 0.860181i \(0.329650\pi\)
\(468\) 17.6331 0.815090
\(469\) −13.3550 23.1316i −0.616678 1.06812i
\(470\) −0.798133 + 1.38241i −0.0368151 + 0.0637657i
\(471\) −2.76011 4.78066i −0.127179 0.220281i
\(472\) −15.2640 + 26.4380i −0.702582 + 1.21691i
\(473\) −8.18866 + 14.1832i −0.376515 + 0.652143i
\(474\) 3.25814 0.149651
\(475\) 0 0
\(476\) 3.81016 0.174638
\(477\) 8.29473 14.3669i 0.379790 0.657815i
\(478\) −10.2562 + 17.7643i −0.469110 + 0.812522i
\(479\) 12.7285 + 22.0464i 0.581580 + 1.00733i 0.995292 + 0.0969180i \(0.0308985\pi\)
−0.413713 + 0.910407i \(0.635768\pi\)
\(480\) 3.79813 6.57856i 0.173360 0.300269i
\(481\) −2.21554 3.83742i −0.101020 0.174971i
\(482\) 0.261764 0.0119230
\(483\) 1.75877 0.0800268
\(484\) 0.391407 + 0.677937i 0.0177912 + 0.0308153i
\(485\) 2.30793 + 3.99746i 0.104798 + 0.181515i
\(486\) 11.0814 0.502663
\(487\) 22.5107 1.02006 0.510029 0.860157i \(-0.329635\pi\)
0.510029 + 0.860157i \(0.329635\pi\)
\(488\) −6.22715 10.7857i −0.281890 0.488247i
\(489\) −0.538019 + 0.931876i −0.0243300 + 0.0421409i
\(490\) 3.86097 + 6.68739i 0.174421 + 0.302106i
\(491\) −7.81702 + 13.5395i −0.352777 + 0.611028i −0.986735 0.162340i \(-0.948096\pi\)
0.633958 + 0.773368i \(0.281429\pi\)
\(492\) −1.46538 + 2.53812i −0.0660647 + 0.114427i
\(493\) 5.73143 0.258131
\(494\) 0 0
\(495\) 23.4688 1.05485
\(496\) −0.0407070 + 0.0705066i −0.00182780 + 0.00316584i
\(497\) 12.9290 22.3937i 0.579946 1.00450i
\(498\) −0.587811 1.01812i −0.0263404 0.0456230i
\(499\) 14.3084 24.7829i 0.640532 1.10943i −0.344782 0.938683i \(-0.612047\pi\)
0.985314 0.170751i \(-0.0546194\pi\)
\(500\) 5.57310 + 9.65289i 0.249237 + 0.431691i
\(501\) −12.3746 −0.552858
\(502\) 14.2439 0.635737
\(503\) 12.5228 + 21.6900i 0.558362 + 0.967111i 0.997633 + 0.0687571i \(0.0219033\pi\)
−0.439271 + 0.898354i \(0.644763\pi\)
\(504\) −7.24422 12.5474i −0.322683 0.558904i
\(505\) 20.0574 0.892541
\(506\) −5.27631 −0.234561
\(507\) 3.98886 + 6.90890i 0.177151 + 0.306835i
\(508\) 0.0619563 0.107311i 0.00274886 0.00476117i
\(509\) 16.7606 + 29.0302i 0.742900 + 1.28674i 0.951170 + 0.308669i \(0.0998834\pi\)
−0.208270 + 0.978071i \(0.566783\pi\)
\(510\) 0.979055 1.69577i 0.0433533 0.0750901i
\(511\) −7.06418 + 12.2355i −0.312501 + 0.541267i
\(512\) 0.473897 0.0209435
\(513\) 0 0
\(514\) 13.5030 0.595591
\(515\) 0.0184183 0.0319015i 0.000811608 0.00140575i
\(516\) −1.56670 + 2.71361i −0.0689703 + 0.119460i
\(517\) −1.22281 2.11797i −0.0537792 0.0931483i
\(518\) −0.692066 + 1.19869i −0.0304077 + 0.0526676i
\(519\) −0.238541 0.413165i −0.0104708 0.0181359i
\(520\) −38.0137 −1.66701
\(521\) 27.4783 1.20385 0.601924 0.798553i \(-0.294401\pi\)
0.601924 + 0.798553i \(0.294401\pi\)
\(522\) −4.14274 7.17544i −0.181323 0.314060i
\(523\) −5.17870 8.96977i −0.226449 0.392221i 0.730304 0.683122i \(-0.239378\pi\)
−0.956753 + 0.290901i \(0.906045\pi\)
\(524\) 3.72523 0.162737
\(525\) 1.41147 0.0616018
\(526\) 4.24005 + 7.34398i 0.184875 + 0.320213i
\(527\) 1.60607 2.78179i 0.0699614 0.121177i
\(528\) −0.0380187 0.0658503i −0.00165455 0.00286577i
\(529\) 9.95336 17.2397i 0.432755 0.749554i
\(530\) −6.79813 + 11.7747i −0.295292 + 0.511461i
\(531\) −29.2303 −1.26849
\(532\) 0 0
\(533\) 23.7570 1.02903
\(534\) −0.534148 + 0.925172i −0.0231149 + 0.0400361i
\(535\) 4.50000 7.79423i 0.194552 0.336974i
\(536\) 20.1634 + 34.9241i 0.870928 + 1.50849i
\(537\) 5.67159 9.82348i 0.244747 0.423914i
\(538\) 8.03714 + 13.9207i 0.346506 + 0.600166i
\(539\) −11.8307 −0.509584
\(540\) 9.44831 0.406591
\(541\) −1.26217 2.18615i −0.0542651 0.0939899i 0.837617 0.546258i \(-0.183948\pi\)
−0.891882 + 0.452268i \(0.850615\pi\)
\(542\) 8.33837 + 14.4425i 0.358164 + 0.620358i
\(543\) −8.56624 −0.367612
\(544\) −9.31820 −0.399515
\(545\) −9.33022 16.1604i −0.399663 0.692236i
\(546\) 2.32635 4.02936i 0.0995587 0.172441i
\(547\) 3.83750 + 6.64674i 0.164079 + 0.284194i 0.936328 0.351127i \(-0.114201\pi\)
−0.772249 + 0.635321i \(0.780868\pi\)
\(548\) 11.9846 20.7579i 0.511956 0.886733i
\(549\) 5.96245 10.3273i 0.254471 0.440757i
\(550\) −4.23442 −0.180556
\(551\) 0 0
\(552\) −2.65539 −0.113021
\(553\) 6.54323 11.3332i 0.278247 0.481937i
\(554\) 6.05185 10.4821i 0.257119 0.445342i
\(555\) −0.564178 0.977185i −0.0239480 0.0414792i
\(556\) 9.44356 16.3567i 0.400496 0.693680i
\(557\) −1.62789 2.81959i −0.0689759 0.119470i 0.829475 0.558544i \(-0.188640\pi\)
−0.898451 + 0.439074i \(0.855306\pi\)
\(558\) −4.64353 −0.196576
\(559\) 25.3996 1.07429
\(560\) 0.0996702 + 0.172634i 0.00421184 + 0.00729511i
\(561\) 1.50000 + 2.59808i 0.0633300 + 0.109691i
\(562\) 11.5297 0.486352
\(563\) −5.25908 −0.221644 −0.110822 0.993840i \(-0.535348\pi\)
−0.110822 + 0.993840i \(0.535348\pi\)
\(564\) −0.233956 0.405223i −0.00985131 0.0170630i
\(565\) −9.34002 + 16.1774i −0.392938 + 0.680588i
\(566\) −7.64068 13.2340i −0.321162 0.556269i
\(567\) 6.13816 10.6316i 0.257778 0.446485i
\(568\) −19.5202 + 33.8100i −0.819051 + 1.41864i
\(569\) 29.9564 1.25584 0.627918 0.778280i \(-0.283907\pi\)
0.627918 + 0.778280i \(0.283907\pi\)
\(570\) 0 0
\(571\) −16.7101 −0.699295 −0.349647 0.936881i \(-0.613699\pi\)
−0.349647 + 0.936881i \(0.613699\pi\)
\(572\) 11.0706 19.1748i 0.462884 0.801739i
\(573\) 5.04117 8.73157i 0.210598 0.364767i
\(574\) −3.71048 6.42675i −0.154873 0.268247i
\(575\) −1.24123 + 2.14987i −0.0517628 + 0.0896559i
\(576\) 6.84911 + 11.8630i 0.285379 + 0.494292i
\(577\) −13.6800 −0.569508 −0.284754 0.958601i \(-0.591912\pi\)
−0.284754 + 0.958601i \(0.591912\pi\)
\(578\) 12.5476 0.521910
\(579\) −3.43242 5.94512i −0.142646 0.247071i
\(580\) −5.38578 9.32845i −0.223632 0.387343i
\(581\) −4.72193 −0.195899
\(582\) 0.852978 0.0353571
\(583\) −10.4153 18.0399i −0.431359 0.747137i
\(584\) 10.6655 18.4732i 0.441341 0.764426i
\(585\) −18.1989 31.5215i −0.752433 1.30325i
\(586\) −6.86097 + 11.8835i −0.283424 + 0.490905i
\(587\) 12.0184 20.8165i 0.496053 0.859189i −0.503936 0.863741i \(-0.668115\pi\)
0.999990 + 0.00455138i \(0.00144875\pi\)
\(588\) −2.26352 −0.0933459
\(589\) 0 0
\(590\) 23.9564 0.986268
\(591\) −6.17230 + 10.6907i −0.253895 + 0.439758i
\(592\) 0.0175410 0.0303818i 0.000720929 0.00124869i
\(593\) 2.12061 + 3.67301i 0.0870832 + 0.150833i 0.906277 0.422684i \(-0.138912\pi\)
−0.819194 + 0.573517i \(0.805579\pi\)
\(594\) 4.56283 7.90306i 0.187215 0.324266i
\(595\) −3.93242 6.81115i −0.161213 0.279230i
\(596\) 4.62031 0.189255
\(597\) −4.90673 −0.200819
\(598\) 4.09152 + 7.08672i 0.167315 + 0.289797i
\(599\) −13.1370 22.7539i −0.536762 0.929699i −0.999076 0.0429829i \(-0.986314\pi\)
0.462314 0.886716i \(-0.347019\pi\)
\(600\) −2.13104 −0.0869995
\(601\) 42.2395 1.72298 0.861492 0.507771i \(-0.169530\pi\)
0.861492 + 0.507771i \(0.169530\pi\)
\(602\) −3.96703 6.87110i −0.161684 0.280045i
\(603\) −19.3063 + 33.4396i −0.786215 + 1.36176i
\(604\) 8.95249 + 15.5062i 0.364271 + 0.630937i
\(605\) 0.807934 1.39938i 0.0328472 0.0568930i
\(606\) 1.85323 3.20988i 0.0752822 0.130393i
\(607\) 22.0969 0.896885 0.448443 0.893812i \(-0.351979\pi\)
0.448443 + 0.893812i \(0.351979\pi\)
\(608\) 0 0
\(609\) 3.46791 0.140527
\(610\) −4.88666 + 8.46394i −0.197855 + 0.342695i
\(611\) −1.89646 + 3.28476i −0.0767225 + 0.132887i
\(612\) −2.75402 4.77011i −0.111325 0.192820i
\(613\) −3.58853 + 6.21551i −0.144939 + 0.251042i −0.929350 0.369199i \(-0.879632\pi\)
0.784411 + 0.620241i \(0.212965\pi\)
\(614\) −9.46229 16.3892i −0.381867 0.661413i
\(615\) 6.04963 0.243945
\(616\) −18.1925 −0.732998
\(617\) 24.6864 + 42.7582i 0.993839 + 1.72138i 0.592906 + 0.805272i \(0.297981\pi\)
0.400933 + 0.916108i \(0.368686\pi\)
\(618\) −0.00340357 0.00589515i −0.000136912 0.000237138i
\(619\) 26.4979 1.06504 0.532521 0.846417i \(-0.321245\pi\)
0.532521 + 0.846417i \(0.321245\pi\)
\(620\) −6.03684 −0.242445
\(621\) −2.67499 4.63322i −0.107344 0.185925i
\(622\) 6.37346 11.0391i 0.255552 0.442630i
\(623\) 2.14543 + 3.71599i 0.0859548 + 0.148878i
\(624\) −0.0589632 + 0.102127i −0.00236042 + 0.00408836i
\(625\) 15.0326 26.0372i 0.601302 1.04149i
\(626\) −17.1643 −0.686022
\(627\) 0 0
\(628\) 12.7264 0.507838
\(629\) −0.692066 + 1.19869i −0.0275945 + 0.0477951i
\(630\) −5.68479 + 9.84635i −0.226488 + 0.392288i
\(631\) −16.6604 28.8567i −0.663242 1.14877i −0.979759 0.200182i \(-0.935847\pi\)
0.316517 0.948587i \(-0.397487\pi\)
\(632\) −9.87897 + 17.1109i −0.392965 + 0.680635i
\(633\) −3.89053 6.73859i −0.154635 0.267835i
\(634\) 24.9282 0.990025
\(635\) −0.255777 −0.0101502
\(636\) −1.99273 3.45150i −0.0790167 0.136861i
\(637\) 9.17412 + 15.8900i 0.363492 + 0.629586i
\(638\) −10.4037 −0.411888
\(639\) −37.3809 −1.47877
\(640\) 8.66297 + 15.0047i 0.342434 + 0.593113i
\(641\) −0.0680482 + 0.117863i −0.00268774 + 0.00465530i −0.867366 0.497671i \(-0.834189\pi\)
0.864678 + 0.502326i \(0.167522\pi\)
\(642\) −0.831566 1.44032i −0.0328193 0.0568447i
\(643\) −24.0890 + 41.7234i −0.949977 + 1.64541i −0.204512 + 0.978864i \(0.565561\pi\)
−0.745465 + 0.666545i \(0.767773\pi\)
\(644\) −2.02734 + 3.51146i −0.0798884 + 0.138371i
\(645\) 6.46791 0.254674
\(646\) 0 0
\(647\) −36.9718 −1.45351 −0.726756 0.686895i \(-0.758973\pi\)
−0.726756 + 0.686895i \(0.758973\pi\)
\(648\) −9.26739 + 16.0516i −0.364057 + 0.630566i
\(649\) −18.3516 + 31.7860i −0.720365 + 1.24771i
\(650\) 3.28359 + 5.68734i 0.128793 + 0.223076i
\(651\) 0.971782 1.68317i 0.0380871 0.0659688i
\(652\) −1.24035 2.14835i −0.0485759 0.0841360i
\(653\) 27.0000 1.05659 0.528296 0.849060i \(-0.322831\pi\)
0.528296 + 0.849060i \(0.322831\pi\)
\(654\) −3.44831 −0.134840
\(655\) −3.84477 6.65934i −0.150228 0.260202i
\(656\) 0.0940451 + 0.162891i 0.00367185 + 0.00635982i
\(657\) 20.4243 0.796827
\(658\) 1.18479 0.0461880
\(659\) 9.43747 + 16.3462i 0.367632 + 0.636757i 0.989195 0.146607i \(-0.0468354\pi\)
−0.621563 + 0.783364i \(0.713502\pi\)
\(660\) 2.81908 4.88279i 0.109732 0.190062i
\(661\) −15.3059 26.5106i −0.595330 1.03114i −0.993500 0.113830i \(-0.963688\pi\)
0.398171 0.917311i \(-0.369645\pi\)
\(662\) 0.751907 1.30234i 0.0292237 0.0506169i
\(663\) 2.32635 4.02936i 0.0903480 0.156487i
\(664\) 7.12918 0.276666
\(665\) 0 0
\(666\) 2.00093 0.0775346
\(667\) −3.04963 + 5.28211i −0.118082 + 0.204524i
\(668\) 14.2643 24.7065i 0.551902 0.955922i
\(669\) 0.802004 + 1.38911i 0.0310073 + 0.0537061i
\(670\) 15.8229 27.4062i 0.611294 1.05879i
\(671\) −7.48680 12.9675i −0.289025 0.500605i
\(672\) −5.63816 −0.217497
\(673\) −11.9094 −0.459074 −0.229537 0.973300i \(-0.573721\pi\)
−0.229537 + 0.973300i \(0.573721\pi\)
\(674\) −11.1853 19.3734i −0.430840 0.746237i
\(675\) −2.14677 3.71832i −0.0826294 0.143118i
\(676\) −18.3919 −0.707380
\(677\) −5.78106 −0.222184 −0.111092 0.993810i \(-0.535435\pi\)
−0.111092 + 0.993810i \(0.535435\pi\)
\(678\) 1.72597 + 2.98946i 0.0662853 + 0.114810i
\(679\) 1.71301 2.96702i 0.0657393 0.113864i
\(680\) 5.93717 + 10.2835i 0.227680 + 0.394353i
\(681\) 3.65064 6.32310i 0.139893 0.242302i
\(682\) −2.91534 + 5.04952i −0.111634 + 0.193356i
\(683\) −21.0496 −0.805442 −0.402721 0.915323i \(-0.631935\pi\)
−0.402721 + 0.915323i \(0.631935\pi\)
\(684\) 0 0
\(685\) −49.4766 −1.89040
\(686\) 8.65018 14.9825i 0.330265 0.572036i
\(687\) 2.50459 4.33807i 0.0955559 0.165508i
\(688\) 0.100548 + 0.174154i 0.00383334 + 0.00663954i
\(689\) −16.1532 + 27.9781i −0.615387 + 1.06588i
\(690\) 1.04189 + 1.80460i 0.0396640 + 0.0687001i
\(691\) −32.9377 −1.25301 −0.626504 0.779418i \(-0.715515\pi\)
−0.626504 + 0.779418i \(0.715515\pi\)
\(692\) 1.09987 0.0418107
\(693\) −8.70961 15.0855i −0.330851 0.573050i
\(694\) 3.38666 + 5.86587i 0.128556 + 0.222665i
\(695\) −38.9864 −1.47884
\(696\) −5.23585 −0.198464
\(697\) −3.71048 6.42675i −0.140545 0.243430i
\(698\) 10.0061 17.3311i 0.378736 0.655990i
\(699\) −6.43448 11.1448i −0.243374 0.421537i
\(700\) −1.62701 + 2.81807i −0.0614952 + 0.106513i
\(701\) −10.6787 + 18.4961i −0.403329 + 0.698586i −0.994125 0.108234i \(-0.965480\pi\)
0.590796 + 0.806821i \(0.298814\pi\)
\(702\) −14.1530 −0.534171
\(703\) 0 0
\(704\) 17.2003 0.648260
\(705\) −0.482926 + 0.836452i −0.0181880 + 0.0315026i
\(706\) −5.03256 + 8.71664i −0.189403 + 0.328055i
\(707\) −7.44356 12.8926i −0.279944 0.484877i
\(708\) −3.51114 + 6.08148i −0.131957 + 0.228556i
\(709\) 7.88532 + 13.6578i 0.296139 + 0.512928i 0.975249 0.221108i \(-0.0709674\pi\)
−0.679110 + 0.734036i \(0.737634\pi\)
\(710\) 30.6364 1.14976
\(711\) −18.9181 −0.709484
\(712\) −3.23917 5.61041i −0.121393 0.210259i
\(713\) 1.70914 + 2.96032i 0.0640078 + 0.110865i
\(714\) −1.45336 −0.0543908
\(715\) −45.7033 −1.70921
\(716\) 13.0753 + 22.6471i 0.488648 + 0.846363i
\(717\) −6.20574 + 10.7487i −0.231757 + 0.401416i
\(718\) 4.56583 + 7.90824i 0.170395 + 0.295133i
\(719\) 17.6642 30.5952i 0.658762 1.14101i −0.322175 0.946680i \(-0.604414\pi\)
0.980936 0.194329i \(-0.0622528\pi\)
\(720\) 0.144086 0.249563i 0.00536975 0.00930068i
\(721\) −0.0273411 −0.00101824
\(722\) 0 0
\(723\) 0.158385 0.00589040
\(724\) 9.87433 17.1028i 0.366977 0.635622i
\(725\) −2.44743 + 4.23908i −0.0908954 + 0.157435i
\(726\) −0.149300 0.258595i −0.00554105 0.00959737i
\(727\) −20.2108 + 35.0061i −0.749577 + 1.29830i 0.198449 + 0.980111i \(0.436410\pi\)
−0.948026 + 0.318194i \(0.896924\pi\)
\(728\) 14.1074 + 24.4348i 0.522855 + 0.905612i
\(729\) −12.8912 −0.477454
\(730\) −16.7392 −0.619544
\(731\) −3.96703 6.87110i −0.146726 0.254137i
\(732\) −1.43242 2.48102i −0.0529437 0.0917012i
\(733\) −36.2763 −1.33990 −0.669948 0.742408i \(-0.733684\pi\)
−0.669948 + 0.742408i \(0.733684\pi\)
\(734\) 28.6091 1.05598
\(735\) 2.33615 + 4.04633i 0.0861703 + 0.149251i
\(736\) 4.95811 8.58770i 0.182758 0.316547i
\(737\) 24.2422 + 41.9887i 0.892972 + 1.54667i
\(738\) −5.36396 + 9.29065i −0.197450 + 0.341994i
\(739\) 10.3380 17.9059i 0.380288 0.658678i −0.610815 0.791773i \(-0.709158\pi\)
0.991103 + 0.133095i \(0.0424915\pi\)
\(740\) 2.60132 0.0956264
\(741\) 0 0
\(742\) 10.0915 0.370471
\(743\) 3.35204 5.80591i 0.122975 0.212998i −0.797965 0.602704i \(-0.794090\pi\)
0.920939 + 0.389706i \(0.127423\pi\)
\(744\) −1.46720 + 2.54126i −0.0537900 + 0.0931670i
\(745\) −4.76857 8.25941i −0.174707 0.302601i
\(746\) −13.4044 + 23.2170i −0.490769 + 0.850036i
\(747\) 3.41307 + 5.91160i 0.124878 + 0.216294i
\(748\) −6.91622 −0.252882
\(749\) −6.68004 −0.244084
\(750\) −2.12583 3.68204i −0.0776243 0.134449i
\(751\) 5.35369 + 9.27287i 0.195359 + 0.338372i 0.947018 0.321180i \(-0.104079\pi\)
−0.751659 + 0.659552i \(0.770746\pi\)
\(752\) −0.0300295 −0.00109506
\(753\) 8.61856 0.314078
\(754\) 8.06758 + 13.9735i 0.293804 + 0.508883i
\(755\) 18.4795 32.0075i 0.672539 1.16487i
\(756\) −3.50640 6.07326i −0.127526 0.220882i
\(757\) 2.03121 3.51816i 0.0738256 0.127870i −0.826749 0.562570i \(-0.809813\pi\)
0.900575 + 0.434701i \(0.143146\pi\)
\(758\) −7.85282 + 13.6015i −0.285227 + 0.494028i
\(759\) −3.19253 −0.115882
\(760\) 0 0
\(761\) −11.0077 −0.399030 −0.199515 0.979895i \(-0.563937\pi\)
−0.199515 + 0.979895i \(0.563937\pi\)
\(762\) −0.0236329 + 0.0409333i −0.000856129 + 0.00148286i
\(763\) −6.92514 + 11.9947i −0.250707 + 0.434237i
\(764\) 11.6220 + 20.1298i 0.420468 + 0.728271i
\(765\) −5.68479 + 9.84635i −0.205534 + 0.355996i
\(766\) 10.3135 + 17.8634i 0.372640 + 0.645432i
\(767\) 56.9231 2.05538
\(768\) 8.56717 0.309141
\(769\) −10.6736 18.4873i −0.384902 0.666669i 0.606854 0.794813i \(-0.292431\pi\)
−0.991756 + 0.128144i \(0.959098\pi\)
\(770\) 7.13816 + 12.3636i 0.257241 + 0.445555i
\(771\) 8.17024 0.294244
\(772\) 15.8262 0.569599
\(773\) 8.95858 + 15.5167i 0.322218 + 0.558097i 0.980945 0.194284i \(-0.0622384\pi\)
−0.658728 + 0.752381i \(0.728905\pi\)
\(774\) −5.73483 + 9.93302i −0.206134 + 0.357035i
\(775\) 1.37164 + 2.37576i 0.0492709 + 0.0853397i
\(776\) −2.58630 + 4.47961i −0.0928429 + 0.160809i
\(777\) −0.418748 + 0.725293i −0.0150225 + 0.0260197i
\(778\) −3.43788 −0.123254
\(779\) 0 0
\(780\) −8.74422 −0.313093
\(781\) −23.4688 + 40.6492i −0.839781 + 1.45454i
\(782\) 1.27807 2.21368i 0.0457036 0.0791609i
\(783\) −5.27450 9.13570i −0.188495 0.326483i
\(784\) −0.0726338 + 0.125805i −0.00259406 + 0.00449305i
\(785\) −13.1348 22.7501i −0.468799 0.811984i
\(786\) −1.42097 −0.0506843
\(787\) −48.8316 −1.74066 −0.870330 0.492470i \(-0.836094\pi\)
−0.870330 + 0.492470i \(0.836094\pi\)
\(788\) −14.2297 24.6465i −0.506911 0.877996i
\(789\) 2.56552 + 4.44361i 0.0913350 + 0.158197i
\(790\) 15.5047 0.551634
\(791\) 13.8648 0.492977
\(792\) 13.1498 + 22.7761i 0.467257 + 0.809312i
\(793\) −11.6113 + 20.1113i −0.412329 + 0.714174i
\(794\) 3.93923 + 6.82294i 0.139798 + 0.242137i
\(795\) −4.11334 + 7.12452i −0.145885 + 0.252681i
\(796\) 5.65600 9.79648i 0.200472 0.347227i
\(797\) 28.5262 1.01045 0.505225 0.862988i \(-0.331409\pi\)
0.505225 + 0.862988i \(0.331409\pi\)
\(798\) 0 0
\(799\) 1.18479 0.0419149
\(800\) 3.97906 6.89193i 0.140681 0.243666i
\(801\) 3.10148 5.37192i 0.109585 0.189808i
\(802\) 0.891407 + 1.54396i 0.0314767 + 0.0545192i
\(803\) 12.8229 22.2100i 0.452512 0.783774i
\(804\) 4.63816 + 8.03352i 0.163575 + 0.283320i
\(805\) 8.36959 0.294989
\(806\) 9.04282 0.318520
\(807\) 4.86303 + 8.42301i 0.171187 + 0.296504i
\(808\) 11.2383 + 19.4653i 0.395362 + 0.684787i
\(809\) −14.8367 −0.521630 −0.260815 0.965389i \(-0.583991\pi\)
−0.260815 + 0.965389i \(0.583991\pi\)
\(810\) 14.5449 0.511055
\(811\) −4.18866 7.25498i −0.147084 0.254757i 0.783065 0.621940i \(-0.213655\pi\)
−0.930148 + 0.367184i \(0.880322\pi\)
\(812\) −3.99747 + 6.92383i −0.140284 + 0.242979i
\(813\) 5.04529 + 8.73870i 0.176946 + 0.306480i
\(814\) 1.25624 2.17588i 0.0440313 0.0762645i
\(815\) −2.56031 + 4.43458i −0.0896837 + 0.155337i
\(816\) 0.0368366 0.00128954
\(817\) 0 0
\(818\) −28.3233 −0.990299
\(819\) −13.5077 + 23.3961i −0.471999 + 0.817526i
\(820\) −6.97343 + 12.0783i −0.243523 + 0.421794i
\(821\) −3.13950 5.43777i −0.109569 0.189780i 0.806027 0.591879i \(-0.201614\pi\)
−0.915596 + 0.402100i \(0.868280\pi\)
\(822\) −4.57145 + 7.91799i −0.159448 + 0.276171i
\(823\) −5.51320 9.54915i −0.192178 0.332862i 0.753794 0.657111i \(-0.228222\pi\)
−0.945972 + 0.324249i \(0.894888\pi\)
\(824\) 0.0412797 0.00143805
\(825\) −2.56212 −0.0892015
\(826\) −8.89053 15.3988i −0.309341 0.535794i
\(827\) 16.9679 + 29.3893i 0.590032 + 1.02197i 0.994227 + 0.107293i \(0.0342182\pi\)
−0.404195 + 0.914673i \(0.632448\pi\)
\(828\) 5.86154 0.203703
\(829\) 20.3669 0.707372 0.353686 0.935364i \(-0.384928\pi\)
0.353686 + 0.935364i \(0.384928\pi\)
\(830\) −2.79726 4.84499i −0.0970942 0.168172i
\(831\) 3.66179 6.34240i 0.127026 0.220016i
\(832\) −13.3380 23.1020i −0.462411 0.800919i
\(833\) 2.86571 4.96356i 0.0992911 0.171977i
\(834\) −3.60220 + 6.23919i −0.124734 + 0.216045i
\(835\) −58.8881 −2.03791
\(836\) 0 0
\(837\) −5.91210 −0.204352
\(838\) −10.2228 + 17.7064i −0.353141 + 0.611658i
\(839\) 7.90467 13.6913i 0.272899 0.472676i −0.696704 0.717359i \(-0.745351\pi\)
0.969603 + 0.244683i \(0.0786840\pi\)
\(840\) 3.59240 + 6.22221i 0.123949 + 0.214687i
\(841\) 8.48680 14.6996i 0.292648 0.506881i
\(842\) −2.83750 4.91469i −0.0977866 0.169371i
\(843\) 6.97628 0.240276
\(844\) 17.9385 0.617469
\(845\) 18.9820 + 32.8779i 0.653002 + 1.13103i
\(846\) −0.856381 1.48330i −0.0294430 0.0509968i
\(847\) −1.19934 −0.0412098
\(848\) −0.255777 −0.00878343
\(849\) −4.62314 8.00752i −0.158666 0.274817i
\(850\) 1.02569 1.77655i 0.0351810 0.0609352i
\(851\) −0.736482 1.27562i −0.0252463 0.0437278i
\(852\) −4.49020 + 7.77725i −0.153832 + 0.266444i
\(853\) 26.3246 45.5955i 0.901337 1.56116i 0.0755770 0.997140i \(-0.475920\pi\)
0.825760 0.564022i \(-0.190747\pi\)
\(854\) 7.25402 0.248228
\(855\) 0 0
\(856\) 10.0855 0.344716
\(857\) −11.5137 + 19.9423i −0.393299 + 0.681215i −0.992883 0.119098i \(-0.962000\pi\)
0.599583 + 0.800313i \(0.295333\pi\)
\(858\) −4.22281 + 7.31412i −0.144164 + 0.249700i
\(859\) −4.45471 7.71578i −0.151993 0.263259i 0.779967 0.625820i \(-0.215236\pi\)
−0.931960 + 0.362561i \(0.881902\pi\)
\(860\) −7.45558 + 12.9135i −0.254233 + 0.440345i
\(861\) −2.24510 3.88863i −0.0765128 0.132524i
\(862\) −12.3090 −0.419247
\(863\) −29.7698 −1.01338 −0.506688 0.862129i \(-0.669130\pi\)
−0.506688 + 0.862129i \(0.669130\pi\)
\(864\) 8.57532 + 14.8529i 0.291738 + 0.505306i
\(865\) −1.13516 1.96616i −0.0385967 0.0668514i
\(866\) −25.2321 −0.857420
\(867\) 7.59215 0.257843
\(868\) 2.24035 + 3.88040i 0.0760425 + 0.131709i
\(869\) −11.8773 + 20.5721i −0.402911 + 0.697862i
\(870\) 2.05438 + 3.55829i 0.0696499 + 0.120637i
\(871\) 37.5972 65.1203i 1.27393 2.20652i
\(872\) 10.4556 18.1096i 0.354071 0.613269i
\(873\) −4.95273 −0.167625
\(874\) 0 0
\(875\) −17.0770 −0.577307
\(876\) 2.45336 4.24935i 0.0828915 0.143572i
\(877\) −12.5150 + 21.6766i −0.422602 + 0.731968i −0.996193 0.0871736i \(-0.972217\pi\)
0.573591 + 0.819142i \(0.305550\pi\)
\(878\) 5.86649 + 10.1611i 0.197984 + 0.342919i
\(879\) −4.15136 + 7.19037i −0.140022 + 0.242525i
\(880\) −0.180922 0.313366i −0.00609888 0.0105636i
\(881\) 20.3960 0.687158 0.343579 0.939124i \(-0.388361\pi\)
0.343579 + 0.939124i \(0.388361\pi\)
\(882\) −8.28548 −0.278987
\(883\) 5.31403 + 9.20416i 0.178831 + 0.309745i 0.941480 0.337068i \(-0.109435\pi\)
−0.762649 + 0.646812i \(0.776102\pi\)
\(884\) 5.36319 + 9.28931i 0.180384 + 0.312433i
\(885\) 14.4953 0.487253
\(886\) −29.7962 −1.00102
\(887\) −28.1694 48.7908i −0.945835 1.63823i −0.754071 0.656793i \(-0.771913\pi\)
−0.191764 0.981441i \(-0.561421\pi\)
\(888\) 0.632226 1.09505i 0.0212161 0.0367474i
\(889\) 0.0949225 + 0.164411i 0.00318360 + 0.00551415i
\(890\) −2.54189 + 4.40268i −0.0852043 + 0.147578i
\(891\) −11.1420 + 19.2986i −0.373272 + 0.646526i
\(892\) −3.69789 −0.123815
\(893\) 0 0
\(894\) −1.76239 −0.0589432
\(895\) 26.9898 46.7477i 0.902169 1.56260i
\(896\) 6.42989 11.1369i 0.214808 0.372058i
\(897\) 2.47565 + 4.28795i 0.0826596 + 0.143171i
\(898\) −8.28389 + 14.3481i −0.276437 + 0.478803i
\(899\) 3.37005 + 5.83710i 0.112398 + 0.194678i
\(900\) 4.70409 0.156803
\(901\) 10.0915 0.336197
\(902\) 6.73530 + 11.6659i 0.224261 + 0.388431i
\(903\) −2.40033 4.15749i −0.0798780 0.138353i
\(904\) −20.9331 −0.696226
\(905\) −40.7648 −1.35507
\(906\) −3.41488 5.91474i −0.113452 0.196504i
\(907\) −2.96182 + 5.13002i −0.0983456 + 0.170340i −0.911000 0.412406i \(-0.864688\pi\)
0.812654 + 0.582746i \(0.198022\pi\)
\(908\) 8.41622 + 14.5773i 0.279302 + 0.483765i
\(909\) −10.7606 + 18.6379i −0.356906 + 0.618179i
\(910\) 11.0706 19.1748i 0.366986 0.635638i
\(911\) 34.0591 1.12843 0.564215 0.825628i \(-0.309179\pi\)
0.564215 + 0.825628i \(0.309179\pi\)
\(912\) 0 0
\(913\) 8.57129 0.283668
\(914\) 6.27837 10.8745i 0.207670 0.359695i
\(915\) −2.95677 + 5.12127i −0.0977477 + 0.169304i
\(916\) 5.77409 + 10.0010i 0.190781 + 0.330443i
\(917\) −2.85369 + 4.94274i −0.0942372 + 0.163224i
\(918\) 2.21048 + 3.82867i 0.0729569 + 0.126365i
\(919\) −6.27395 −0.206958 −0.103479 0.994632i \(-0.532998\pi\)
−0.103479 + 0.994632i \(0.532998\pi\)
\(920\) −12.6364 −0.416610
\(921\) −5.72534 9.91658i −0.188656 0.326762i
\(922\) −6.12407 10.6072i −0.201686 0.349330i
\(923\) 72.7957 2.39610
\(924\) −4.18479 −0.137670
\(925\) −0.591052 1.02373i −0.0194337 0.0336601i
\(926\) −0.775129 + 1.34256i −0.0254723 + 0.0441194i
\(927\) 0.0197625 + 0.0342296i 0.000649085 + 0.00112425i
\(928\) 9.77631 16.9331i 0.320923 0.555855i
\(929\) −14.1616 + 24.5287i −0.464628 + 0.804759i −0.999185 0.0403735i \(-0.987145\pi\)
0.534557 + 0.845133i \(0.320479\pi\)
\(930\) 2.30272 0.0755091
\(931\) 0 0
\(932\) 29.6682 0.971814
\(933\) 3.85638 6.67945i 0.126252 0.218675i
\(934\) 9.69166 16.7864i 0.317121 0.549269i
\(935\) 7.13816 + 12.3636i 0.233443 + 0.404335i
\(936\) 20.3940 35.3234i 0.666598 1.15458i
\(937\) 10.0360 + 17.3828i 0.327860 + 0.567871i 0.982087 0.188428i \(-0.0603391\pi\)
−0.654227 + 0.756299i \(0.727006\pi\)
\(938\) −23.4884 −0.766925
\(939\) −10.3856 −0.338920
\(940\) −1.11334 1.92836i −0.0363132 0.0628963i
\(941\) 2.69759 + 4.67236i 0.0879388 + 0.152314i 0.906640 0.421906i \(-0.138639\pi\)
−0.818701 + 0.574220i \(0.805305\pi\)
\(942\) −4.85441 −0.158165
\(943\) 7.89723 0.257169
\(944\) 0.225337 + 0.390296i 0.00733411 + 0.0127030i
\(945\) −7.23783 + 12.5363i −0.235446 + 0.407805i
\(946\) 7.20099 + 12.4725i 0.234124 + 0.405515i
\(947\) −3.32160 + 5.75319i −0.107938 + 0.186953i −0.914935 0.403602i \(-0.867758\pi\)
0.806997 + 0.590556i \(0.201091\pi\)
\(948\) −2.27244 + 3.93598i −0.0738055 + 0.127835i
\(949\) −39.7743 −1.29113
\(950\) 0 0
\(951\) 15.0833 0.489109
\(952\) 4.40673 7.63267i 0.142823 0.247376i
\(953\) −7.41194 + 12.8379i −0.240096 + 0.415859i −0.960742 0.277445i \(-0.910512\pi\)
0.720645 + 0.693304i \(0.243846\pi\)
\(954\) −7.29426 12.6340i −0.236160 0.409042i
\(955\) 23.9898 41.5515i 0.776291 1.34458i
\(956\) −14.3068 24.7800i −0.462713 0.801443i
\(957\) −6.29498 −0.203488
\(958\) 22.3865 0.723275
\(959\) 18.3614 + 31.8029i 0.592922 + 1.02697i
\(960\) −3.39646 5.88284i −0.109620 0.189868i
\(961\) −27.2226 −0.878147
\(962\) −3.89662 −0.125632
\(963\) 4.82841 + 8.36305i 0.155593 + 0.269496i
\(964\) −0.182571 + 0.316222i −0.00588022 + 0.0101848i
\(965\) −16.3341 28.2915i −0.525813 0.910735i
\(966\) 0.773318 1.33943i 0.0248811 0.0430953i
\(967\) −10.6108 + 18.3785i −0.341221 + 0.591012i −0.984660 0.174486i \(-0.944174\pi\)
0.643439 + 0.765497i \(0.277507\pi\)
\(968\) 1.81076 0.0582002
\(969\) 0 0
\(970\) 4.05913 0.130331
\(971\) −18.8033 + 32.5684i −0.603428 + 1.04517i 0.388870 + 0.921293i \(0.372866\pi\)
−0.992298 + 0.123875i \(0.960468\pi\)
\(972\) −7.72890 + 13.3869i −0.247905 + 0.429384i
\(973\) 14.4684 + 25.0600i 0.463835 + 0.803386i
\(974\) 9.89780 17.1435i 0.317146 0.549313i
\(975\) 1.98680 + 3.44123i 0.0636284 + 0.110208i
\(976\) −0.183859 −0.00588518
\(977\) 46.0215 1.47236 0.736179 0.676787i \(-0.236628\pi\)
0.736179 + 0.676787i \(0.236628\pi\)
\(978\) 0.473126 + 0.819478i 0.0151289 + 0.0262040i
\(979\) −3.89440 6.74530i −0.124466 0.215581i
\(980\) −10.7716 −0.344085
\(981\) 20.0223 0.639262
\(982\) 6.87417 + 11.9064i 0.219364 + 0.379949i
\(983\) 30.2982 52.4780i 0.966362 1.67379i 0.260452 0.965487i \(-0.416128\pi\)
0.705910 0.708302i \(-0.250538\pi\)
\(984\) 3.38965 + 5.87105i 0.108058 + 0.187162i
\(985\) −29.3726 + 50.8748i −0.935888 + 1.62101i
\(986\) 2.52007 4.36488i 0.0802553 0.139006i
\(987\) 0.716881 0.0228186
\(988\) 0 0
\(989\) 8.44326 0.268480
\(990\) 10.3191 17.8732i 0.327962 0.568047i
\(991\) 20.9491 36.2849i 0.665470 1.15263i −0.313688 0.949526i \(-0.601565\pi\)
0.979158 0.203101i \(-0.0651020\pi\)
\(992\) −5.47906 9.49000i −0.173960 0.301308i
\(993\) 0.454956 0.788006i 0.0144376 0.0250066i
\(994\) −11.3696 19.6927i −0.360621 0.624614i
\(995\) −23.3500 −0.740244
\(996\) 1.63991 0.0519626
\(997\) −16.8576 29.1982i −0.533884 0.924715i −0.999216 0.0395787i \(-0.987398\pi\)
0.465332 0.885136i \(-0.345935\pi\)
\(998\) −12.5826 21.7937i −0.398295 0.689867i
\(999\) 2.54757 0.0806016
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.2.c.h.68.3 6
19.2 odd 18 361.2.e.f.234.1 6
19.3 odd 18 19.2.e.a.4.1 6
19.4 even 9 361.2.e.h.62.1 6
19.5 even 9 361.2.e.a.28.1 6
19.6 even 9 361.2.e.b.54.1 6
19.7 even 3 inner 361.2.c.h.292.3 6
19.8 odd 6 361.2.a.g.1.3 3
19.9 even 9 361.2.e.a.245.1 6
19.10 odd 18 361.2.e.g.245.1 6
19.11 even 3 361.2.a.h.1.1 3
19.12 odd 6 361.2.c.i.292.1 6
19.13 odd 18 361.2.e.f.54.1 6
19.14 odd 18 361.2.e.g.28.1 6
19.15 odd 18 19.2.e.a.5.1 yes 6
19.16 even 9 361.2.e.h.99.1 6
19.17 even 9 361.2.e.b.234.1 6
19.18 odd 2 361.2.c.i.68.1 6
57.8 even 6 3249.2.a.z.1.1 3
57.11 odd 6 3249.2.a.s.1.3 3
57.41 even 18 171.2.u.c.118.1 6
57.53 even 18 171.2.u.c.100.1 6
76.3 even 18 304.2.u.b.289.1 6
76.11 odd 6 5776.2.a.bi.1.3 3
76.15 even 18 304.2.u.b.81.1 6
76.27 even 6 5776.2.a.br.1.1 3
95.3 even 36 475.2.u.a.99.1 12
95.22 even 36 475.2.u.a.99.2 12
95.34 odd 18 475.2.l.a.176.1 6
95.49 even 6 9025.2.a.x.1.3 3
95.53 even 36 475.2.u.a.24.2 12
95.72 even 36 475.2.u.a.24.1 12
95.79 odd 18 475.2.l.a.251.1 6
95.84 odd 6 9025.2.a.bd.1.1 3
133.3 even 18 931.2.v.a.422.1 6
133.34 even 18 931.2.w.a.442.1 6
133.41 even 18 931.2.w.a.99.1 6
133.53 odd 18 931.2.x.a.765.1 6
133.60 odd 18 931.2.v.b.422.1 6
133.72 odd 18 931.2.v.b.214.1 6
133.79 odd 18 931.2.x.a.802.1 6
133.110 even 18 931.2.v.a.214.1 6
133.117 even 18 931.2.x.b.802.1 6
133.129 even 18 931.2.x.b.765.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.2.e.a.4.1 6 19.3 odd 18
19.2.e.a.5.1 yes 6 19.15 odd 18
171.2.u.c.100.1 6 57.53 even 18
171.2.u.c.118.1 6 57.41 even 18
304.2.u.b.81.1 6 76.15 even 18
304.2.u.b.289.1 6 76.3 even 18
361.2.a.g.1.3 3 19.8 odd 6
361.2.a.h.1.1 3 19.11 even 3
361.2.c.h.68.3 6 1.1 even 1 trivial
361.2.c.h.292.3 6 19.7 even 3 inner
361.2.c.i.68.1 6 19.18 odd 2
361.2.c.i.292.1 6 19.12 odd 6
361.2.e.a.28.1 6 19.5 even 9
361.2.e.a.245.1 6 19.9 even 9
361.2.e.b.54.1 6 19.6 even 9
361.2.e.b.234.1 6 19.17 even 9
361.2.e.f.54.1 6 19.13 odd 18
361.2.e.f.234.1 6 19.2 odd 18
361.2.e.g.28.1 6 19.14 odd 18
361.2.e.g.245.1 6 19.10 odd 18
361.2.e.h.62.1 6 19.4 even 9
361.2.e.h.99.1 6 19.16 even 9
475.2.l.a.176.1 6 95.34 odd 18
475.2.l.a.251.1 6 95.79 odd 18
475.2.u.a.24.1 12 95.72 even 36
475.2.u.a.24.2 12 95.53 even 36
475.2.u.a.99.1 12 95.3 even 36
475.2.u.a.99.2 12 95.22 even 36
931.2.v.a.214.1 6 133.110 even 18
931.2.v.a.422.1 6 133.3 even 18
931.2.v.b.214.1 6 133.72 odd 18
931.2.v.b.422.1 6 133.60 odd 18
931.2.w.a.99.1 6 133.41 even 18
931.2.w.a.442.1 6 133.34 even 18
931.2.x.a.765.1 6 133.53 odd 18
931.2.x.a.802.1 6 133.79 odd 18
931.2.x.b.765.1 6 133.129 even 18
931.2.x.b.802.1 6 133.117 even 18
3249.2.a.s.1.3 3 57.11 odd 6
3249.2.a.z.1.1 3 57.8 even 6
5776.2.a.bi.1.3 3 76.11 odd 6
5776.2.a.br.1.1 3 76.27 even 6
9025.2.a.x.1.3 3 95.49 even 6
9025.2.a.bd.1.1 3 95.84 odd 6