gp: [N,k,chi] = [17,4,Mod(1,17)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(17, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("17.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
17 17 1 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 + 3 T_{2} + 3 T 2 + 3
T2 + 3
acting on S 4 n e w ( Γ 0 ( 17 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(17)) S 4 n e w ( Γ 0 ( 1 7 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 3 T + 3 T + 3
T + 3
3 3 3
T + 8 T + 8 T + 8
T + 8
5 5 5
T − 6 T - 6 T − 6
T - 6
7 7 7
T + 28 T + 28 T + 2 8
T + 28
11 11 1 1
T + 24 T + 24 T + 2 4
T + 24
13 13 1 3
T + 58 T + 58 T + 5 8
T + 58
17 17 1 7
T − 17 T - 17 T − 1 7
T - 17
19 19 1 9
T − 116 T - 116 T − 1 1 6
T - 116
23 23 2 3
T + 60 T + 60 T + 6 0
T + 60
29 29 2 9
T − 30 T - 30 T − 3 0
T - 30
31 31 3 1
T + 172 T + 172 T + 1 7 2
T + 172
37 37 3 7
T + 58 T + 58 T + 5 8
T + 58
41 41 4 1
T + 342 T + 342 T + 3 4 2
T + 342
43 43 4 3
T + 148 T + 148 T + 1 4 8
T + 148
47 47 4 7
T − 288 T - 288 T − 2 8 8
T - 288
53 53 5 3
T − 318 T - 318 T − 3 1 8
T - 318
59 59 5 9
T − 252 T - 252 T − 2 5 2
T - 252
61 61 6 1
T − 110 T - 110 T − 1 1 0
T - 110
67 67 6 7
T + 484 T + 484 T + 4 8 4
T + 484
71 71 7 1
T + 708 T + 708 T + 7 0 8
T + 708
73 73 7 3
T − 362 T - 362 T − 3 6 2
T - 362
79 79 7 9
T + 484 T + 484 T + 4 8 4
T + 484
83 83 8 3
T − 756 T - 756 T − 7 5 6
T - 756
89 89 8 9
T + 774 T + 774 T + 7 7 4
T + 774
97 97 9 7
T + 382 T + 382 T + 3 8 2
T + 382
show more
show less