Properties

Label 17.4
Level 17
Weight 4
Dimension 28
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 96
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 17 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(17))\).

Total New Old
Modular forms 44 42 2
Cusp forms 28 28 0
Eisenstein series 16 14 2

Trace form

\( 28 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 8 q^{9} - 112 q^{10} - 120 q^{11} - 104 q^{12} + 24 q^{13} + 152 q^{14} + 328 q^{15} + 432 q^{16} + 120 q^{17} + 432 q^{18} + 72 q^{19}+ \cdots - 2616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
17.4.a \(\chi_{17}(1, \cdot)\) 17.4.a.a 1 1
17.4.a.b 3
17.4.b \(\chi_{17}(16, \cdot)\) 17.4.b.a 4 1
17.4.c \(\chi_{17}(4, \cdot)\) 17.4.c.a 8 2
17.4.d \(\chi_{17}(2, \cdot)\) 17.4.d.a 12 4