Properties

Label 1690.2.e.p.191.1
Level $1690$
Weight $2$
Character 1690.191
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,1,-3,-6,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.1
Root \(-0.623490 + 1.07992i\) of defining polynomial
Character \(\chi\) \(=\) 1690.191
Dual form 1690.2.e.p.991.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.623490 + 1.07992i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(-0.623490 - 1.07992i) q^{6} +(1.24698 + 2.15983i) q^{7} +1.00000 q^{8} +(0.722521 + 1.25144i) q^{9} +(0.500000 - 0.866025i) q^{10} +(2.90097 - 5.02463i) q^{11} +1.24698 q^{12} -2.49396 q^{14} +(0.623490 - 1.07992i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.14795 - 3.72036i) q^{17} -1.44504 q^{18} +(2.02446 + 3.50647i) q^{19} +(0.500000 + 0.866025i) q^{20} -3.10992 q^{21} +(2.90097 + 5.02463i) q^{22} +(1.55496 - 2.69327i) q^{23} +(-0.623490 + 1.07992i) q^{24} +1.00000 q^{25} -5.54288 q^{27} +(1.24698 - 2.15983i) q^{28} +(2.80194 - 4.85310i) q^{29} +(0.623490 + 1.07992i) q^{30} +7.70171 q^{31} +(-0.500000 - 0.866025i) q^{32} +(3.61745 + 6.26561i) q^{33} +4.29590 q^{34} +(-1.24698 - 2.15983i) q^{35} +(0.722521 - 1.25144i) q^{36} +(1.33513 - 2.31251i) q^{37} -4.04892 q^{38} -1.00000 q^{40} +(6.27144 - 10.8624i) q^{41} +(1.55496 - 2.69327i) q^{42} +(-3.49127 - 6.04706i) q^{43} -5.80194 q^{44} +(-0.722521 - 1.25144i) q^{45} +(1.55496 + 2.69327i) q^{46} +3.87800 q^{47} +(-0.623490 - 1.07992i) q^{48} +(0.390084 - 0.675645i) q^{49} +(-0.500000 + 0.866025i) q^{50} +5.35690 q^{51} -4.93362 q^{53} +(2.77144 - 4.80027i) q^{54} +(-2.90097 + 5.02463i) q^{55} +(1.24698 + 2.15983i) q^{56} -5.04892 q^{57} +(2.80194 + 4.85310i) q^{58} +(5.00753 + 8.67330i) q^{59} -1.24698 q^{60} +(2.46681 + 4.27264i) q^{61} +(-3.85086 + 6.66988i) q^{62} +(-1.80194 + 3.12105i) q^{63} +1.00000 q^{64} -7.23490 q^{66} +(-4.00753 + 6.94125i) q^{67} +(-2.14795 + 3.72036i) q^{68} +(1.93900 + 3.35845i) q^{69} +2.49396 q^{70} +(-2.74094 - 4.74745i) q^{71} +(0.722521 + 1.25144i) q^{72} -8.67456 q^{73} +(1.33513 + 2.31251i) q^{74} +(-0.623490 + 1.07992i) q^{75} +(2.02446 - 3.50647i) q^{76} +14.4698 q^{77} -1.82371 q^{79} +(0.500000 - 0.866025i) q^{80} +(1.28836 - 2.23151i) q^{81} +(6.27144 + 10.8624i) q^{82} +14.6407 q^{83} +(1.55496 + 2.69327i) q^{84} +(2.14795 + 3.72036i) q^{85} +6.98254 q^{86} +(3.49396 + 6.05171i) q^{87} +(2.90097 - 5.02463i) q^{88} +(-0.227365 + 0.393808i) q^{89} +1.44504 q^{90} -3.10992 q^{92} +(-4.80194 + 8.31720i) q^{93} +(-1.93900 + 3.35845i) q^{94} +(-2.02446 - 3.50647i) q^{95} +1.24698 q^{96} +(4.34601 + 7.52751i) q^{97} +(0.390084 + 0.675645i) q^{98} +8.38404 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + q^{3} - 3 q^{4} - 6 q^{5} + q^{6} - 2 q^{7} + 6 q^{8} + 4 q^{9} + 3 q^{10} + 13 q^{11} - 2 q^{12} + 4 q^{14} - q^{15} - 3 q^{16} + q^{17} - 8 q^{18} + 3 q^{19} + 3 q^{20} - 20 q^{21}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.623490 + 1.07992i −0.359972 + 0.623490i −0.987956 0.154737i \(-0.950547\pi\)
0.627984 + 0.778226i \(0.283880\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.00000 −0.447214
\(6\) −0.623490 1.07992i −0.254539 0.440874i
\(7\) 1.24698 + 2.15983i 0.471314 + 0.816340i 0.999462 0.0328129i \(-0.0104465\pi\)
−0.528148 + 0.849153i \(0.677113\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.722521 + 1.25144i 0.240840 + 0.417148i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) 2.90097 5.02463i 0.874675 1.51498i 0.0175665 0.999846i \(-0.494408\pi\)
0.857109 0.515136i \(-0.172259\pi\)
\(12\) 1.24698 0.359972
\(13\) 0 0
\(14\) −2.49396 −0.666539
\(15\) 0.623490 1.07992i 0.160984 0.278833i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.14795 3.72036i −0.520954 0.902319i −0.999703 0.0243671i \(-0.992243\pi\)
0.478749 0.877952i \(-0.341090\pi\)
\(18\) −1.44504 −0.340600
\(19\) 2.02446 + 3.50647i 0.464443 + 0.804438i 0.999176 0.0405824i \(-0.0129213\pi\)
−0.534734 + 0.845021i \(0.679588\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) −3.10992 −0.678639
\(22\) 2.90097 + 5.02463i 0.618489 + 1.07125i
\(23\) 1.55496 2.69327i 0.324231 0.561585i −0.657125 0.753781i \(-0.728228\pi\)
0.981356 + 0.192196i \(0.0615611\pi\)
\(24\) −0.623490 + 1.07992i −0.127269 + 0.220437i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.54288 −1.06673
\(28\) 1.24698 2.15983i 0.235657 0.408170i
\(29\) 2.80194 4.85310i 0.520307 0.901198i −0.479414 0.877589i \(-0.659151\pi\)
0.999721 0.0236092i \(-0.00751573\pi\)
\(30\) 0.623490 + 1.07992i 0.113833 + 0.197165i
\(31\) 7.70171 1.38327 0.691634 0.722248i \(-0.256891\pi\)
0.691634 + 0.722248i \(0.256891\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 3.61745 + 6.26561i 0.629717 + 1.09070i
\(34\) 4.29590 0.736740
\(35\) −1.24698 2.15983i −0.210778 0.365078i
\(36\) 0.722521 1.25144i 0.120420 0.208574i
\(37\) 1.33513 2.31251i 0.219493 0.380174i −0.735160 0.677894i \(-0.762893\pi\)
0.954653 + 0.297720i \(0.0962263\pi\)
\(38\) −4.04892 −0.656821
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 6.27144 10.8624i 0.979434 1.69643i 0.314984 0.949097i \(-0.398001\pi\)
0.664450 0.747333i \(-0.268666\pi\)
\(42\) 1.55496 2.69327i 0.239935 0.415580i
\(43\) −3.49127 6.04706i −0.532414 0.922168i −0.999284 0.0378418i \(-0.987952\pi\)
0.466870 0.884326i \(-0.345382\pi\)
\(44\) −5.80194 −0.874675
\(45\) −0.722521 1.25144i −0.107707 0.186554i
\(46\) 1.55496 + 2.69327i 0.229266 + 0.397100i
\(47\) 3.87800 0.565665 0.282832 0.959169i \(-0.408726\pi\)
0.282832 + 0.959169i \(0.408726\pi\)
\(48\) −0.623490 1.07992i −0.0899930 0.155872i
\(49\) 0.390084 0.675645i 0.0557262 0.0965207i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 5.35690 0.750115
\(52\) 0 0
\(53\) −4.93362 −0.677685 −0.338843 0.940843i \(-0.610035\pi\)
−0.338843 + 0.940843i \(0.610035\pi\)
\(54\) 2.77144 4.80027i 0.377145 0.653234i
\(55\) −2.90097 + 5.02463i −0.391167 + 0.677520i
\(56\) 1.24698 + 2.15983i 0.166635 + 0.288620i
\(57\) −5.04892 −0.668745
\(58\) 2.80194 + 4.85310i 0.367912 + 0.637243i
\(59\) 5.00753 + 8.67330i 0.651925 + 1.12917i 0.982655 + 0.185442i \(0.0593717\pi\)
−0.330730 + 0.943725i \(0.607295\pi\)
\(60\) −1.24698 −0.160984
\(61\) 2.46681 + 4.27264i 0.315843 + 0.547056i 0.979616 0.200878i \(-0.0643794\pi\)
−0.663773 + 0.747934i \(0.731046\pi\)
\(62\) −3.85086 + 6.66988i −0.489059 + 0.847075i
\(63\) −1.80194 + 3.12105i −0.227023 + 0.393215i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −7.23490 −0.890554
\(67\) −4.00753 + 6.94125i −0.489598 + 0.848009i −0.999928 0.0119698i \(-0.996190\pi\)
0.510330 + 0.859978i \(0.329523\pi\)
\(68\) −2.14795 + 3.72036i −0.260477 + 0.451159i
\(69\) 1.93900 + 3.35845i 0.233428 + 0.404310i
\(70\) 2.49396 0.298085
\(71\) −2.74094 4.74745i −0.325290 0.563418i 0.656281 0.754516i \(-0.272128\pi\)
−0.981571 + 0.191098i \(0.938795\pi\)
\(72\) 0.722521 + 1.25144i 0.0851499 + 0.147484i
\(73\) −8.67456 −1.01528 −0.507640 0.861569i \(-0.669482\pi\)
−0.507640 + 0.861569i \(0.669482\pi\)
\(74\) 1.33513 + 2.31251i 0.155205 + 0.268823i
\(75\) −0.623490 + 1.07992i −0.0719944 + 0.124698i
\(76\) 2.02446 3.50647i 0.232221 0.402219i
\(77\) 14.4698 1.64899
\(78\) 0 0
\(79\) −1.82371 −0.205183 −0.102592 0.994724i \(-0.532713\pi\)
−0.102592 + 0.994724i \(0.532713\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) 1.28836 2.23151i 0.143152 0.247946i
\(82\) 6.27144 + 10.8624i 0.692564 + 1.19956i
\(83\) 14.6407 1.60703 0.803513 0.595287i \(-0.202961\pi\)
0.803513 + 0.595287i \(0.202961\pi\)
\(84\) 1.55496 + 2.69327i 0.169660 + 0.293859i
\(85\) 2.14795 + 3.72036i 0.232978 + 0.403529i
\(86\) 6.98254 0.752947
\(87\) 3.49396 + 6.05171i 0.374592 + 0.648812i
\(88\) 2.90097 5.02463i 0.309244 0.535627i
\(89\) −0.227365 + 0.393808i −0.0241007 + 0.0417436i −0.877824 0.478983i \(-0.841006\pi\)
0.853724 + 0.520727i \(0.174339\pi\)
\(90\) 1.44504 0.152321
\(91\) 0 0
\(92\) −3.10992 −0.324231
\(93\) −4.80194 + 8.31720i −0.497938 + 0.862453i
\(94\) −1.93900 + 3.35845i −0.199993 + 0.346398i
\(95\) −2.02446 3.50647i −0.207705 0.359756i
\(96\) 1.24698 0.127269
\(97\) 4.34601 + 7.52751i 0.441271 + 0.764303i 0.997784 0.0665356i \(-0.0211946\pi\)
−0.556514 + 0.830839i \(0.687861\pi\)
\(98\) 0.390084 + 0.675645i 0.0394044 + 0.0682504i
\(99\) 8.38404 0.842628
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −7.87263 + 13.6358i −0.783355 + 1.35681i 0.146621 + 0.989193i \(0.453160\pi\)
−0.929977 + 0.367619i \(0.880173\pi\)
\(102\) −2.67845 + 4.63921i −0.265206 + 0.459350i
\(103\) −3.70171 −0.364740 −0.182370 0.983230i \(-0.558377\pi\)
−0.182370 + 0.983230i \(0.558377\pi\)
\(104\) 0 0
\(105\) 3.10992 0.303497
\(106\) 2.46681 4.27264i 0.239598 0.414996i
\(107\) −7.54019 + 13.0600i −0.728938 + 1.26256i 0.228395 + 0.973569i \(0.426652\pi\)
−0.957333 + 0.288988i \(0.906681\pi\)
\(108\) 2.77144 + 4.80027i 0.266682 + 0.461906i
\(109\) 17.4819 1.67446 0.837230 0.546851i \(-0.184173\pi\)
0.837230 + 0.546851i \(0.184173\pi\)
\(110\) −2.90097 5.02463i −0.276597 0.479079i
\(111\) 1.66487 + 2.88365i 0.158023 + 0.273704i
\(112\) −2.49396 −0.235657
\(113\) 4.11745 + 7.13163i 0.387337 + 0.670887i 0.992090 0.125525i \(-0.0400617\pi\)
−0.604753 + 0.796413i \(0.706728\pi\)
\(114\) 2.52446 4.37249i 0.236437 0.409521i
\(115\) −1.55496 + 2.69327i −0.145001 + 0.251148i
\(116\) −5.60388 −0.520307
\(117\) 0 0
\(118\) −10.0151 −0.921962
\(119\) 5.35690 9.27842i 0.491066 0.850551i
\(120\) 0.623490 1.07992i 0.0569166 0.0985824i
\(121\) −11.3312 19.6263i −1.03011 1.78421i
\(122\) −4.93362 −0.446669
\(123\) 7.82036 + 13.5453i 0.705138 + 1.22133i
\(124\) −3.85086 6.66988i −0.345817 0.598973i
\(125\) −1.00000 −0.0894427
\(126\) −1.80194 3.12105i −0.160529 0.278045i
\(127\) 6.51573 11.2856i 0.578177 1.00143i −0.417511 0.908672i \(-0.637097\pi\)
0.995688 0.0927609i \(-0.0295692\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 8.70709 0.766616
\(130\) 0 0
\(131\) 9.82908 0.858771 0.429386 0.903121i \(-0.358730\pi\)
0.429386 + 0.903121i \(0.358730\pi\)
\(132\) 3.61745 6.26561i 0.314859 0.545351i
\(133\) −5.04892 + 8.74498i −0.437797 + 0.758286i
\(134\) −4.00753 6.94125i −0.346198 0.599633i
\(135\) 5.54288 0.477055
\(136\) −2.14795 3.72036i −0.184185 0.319018i
\(137\) 2.37651 + 4.11624i 0.203039 + 0.351674i 0.949506 0.313748i \(-0.101585\pi\)
−0.746467 + 0.665422i \(0.768252\pi\)
\(138\) −3.87800 −0.330117
\(139\) 1.19687 + 2.07303i 0.101517 + 0.175832i 0.912310 0.409501i \(-0.134297\pi\)
−0.810793 + 0.585333i \(0.800964\pi\)
\(140\) −1.24698 + 2.15983i −0.105389 + 0.182539i
\(141\) −2.41789 + 4.18792i −0.203623 + 0.352686i
\(142\) 5.48188 0.460029
\(143\) 0 0
\(144\) −1.44504 −0.120420
\(145\) −2.80194 + 4.85310i −0.232688 + 0.403028i
\(146\) 4.33728 7.51239i 0.358956 0.621730i
\(147\) 0.486426 + 0.842515i 0.0401198 + 0.0694895i
\(148\) −2.67025 −0.219493
\(149\) 10.4058 + 18.0234i 0.852477 + 1.47653i 0.878966 + 0.476885i \(0.158234\pi\)
−0.0264882 + 0.999649i \(0.508432\pi\)
\(150\) −0.623490 1.07992i −0.0509077 0.0881748i
\(151\) −5.95646 −0.484730 −0.242365 0.970185i \(-0.577923\pi\)
−0.242365 + 0.970185i \(0.577923\pi\)
\(152\) 2.02446 + 3.50647i 0.164205 + 0.284412i
\(153\) 3.10388 5.37607i 0.250933 0.434630i
\(154\) −7.23490 + 12.5312i −0.583005 + 1.00979i
\(155\) −7.70171 −0.618616
\(156\) 0 0
\(157\) 8.19567 0.654086 0.327043 0.945010i \(-0.393948\pi\)
0.327043 + 0.945010i \(0.393948\pi\)
\(158\) 0.911854 1.57938i 0.0725432 0.125649i
\(159\) 3.07606 5.32790i 0.243948 0.422530i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 7.75600 0.611259
\(162\) 1.28836 + 2.23151i 0.101223 + 0.175324i
\(163\) −8.44385 14.6252i −0.661373 1.14553i −0.980255 0.197737i \(-0.936641\pi\)
0.318882 0.947794i \(-0.396693\pi\)
\(164\) −12.5429 −0.979434
\(165\) −3.61745 6.26561i −0.281618 0.487777i
\(166\) −7.32036 + 12.6792i −0.568170 + 0.984099i
\(167\) 9.82908 17.0245i 0.760597 1.31739i −0.181946 0.983309i \(-0.558239\pi\)
0.942543 0.334085i \(-0.108427\pi\)
\(168\) −3.10992 −0.239935
\(169\) 0 0
\(170\) −4.29590 −0.329480
\(171\) −2.92543 + 5.06699i −0.223713 + 0.387482i
\(172\) −3.49127 + 6.04706i −0.266207 + 0.461084i
\(173\) 8.43296 + 14.6063i 0.641146 + 1.11050i 0.985177 + 0.171539i \(0.0548741\pi\)
−0.344031 + 0.938958i \(0.611793\pi\)
\(174\) −6.98792 −0.529753
\(175\) 1.24698 + 2.15983i 0.0942628 + 0.163268i
\(176\) 2.90097 + 5.02463i 0.218669 + 0.378745i
\(177\) −12.4886 −0.938699
\(178\) −0.227365 0.393808i −0.0170417 0.0295172i
\(179\) 2.99880 5.19408i 0.224141 0.388224i −0.731920 0.681390i \(-0.761376\pi\)
0.956061 + 0.293166i \(0.0947090\pi\)
\(180\) −0.722521 + 1.25144i −0.0538535 + 0.0932771i
\(181\) −16.5676 −1.23146 −0.615731 0.787956i \(-0.711139\pi\)
−0.615731 + 0.787956i \(0.711139\pi\)
\(182\) 0 0
\(183\) −6.15213 −0.454778
\(184\) 1.55496 2.69327i 0.114633 0.198550i
\(185\) −1.33513 + 2.31251i −0.0981604 + 0.170019i
\(186\) −4.80194 8.31720i −0.352095 0.609847i
\(187\) −24.9245 −1.82266
\(188\) −1.93900 3.35845i −0.141416 0.244940i
\(189\) −6.91185 11.9717i −0.502763 0.870812i
\(190\) 4.04892 0.293739
\(191\) −6.39612 11.0784i −0.462807 0.801606i 0.536292 0.844032i \(-0.319824\pi\)
−0.999100 + 0.0424265i \(0.986491\pi\)
\(192\) −0.623490 + 1.07992i −0.0449965 + 0.0779362i
\(193\) −11.7925 + 20.4253i −0.848846 + 1.47024i 0.0333930 + 0.999442i \(0.489369\pi\)
−0.882239 + 0.470802i \(0.843965\pi\)
\(194\) −8.69202 −0.624051
\(195\) 0 0
\(196\) −0.780167 −0.0557262
\(197\) −0.987918 + 1.71112i −0.0703863 + 0.121913i −0.899071 0.437804i \(-0.855757\pi\)
0.828684 + 0.559716i \(0.189090\pi\)
\(198\) −4.19202 + 7.26079i −0.297914 + 0.516002i
\(199\) −0.417895 0.723815i −0.0296238 0.0513099i 0.850833 0.525436i \(-0.176098\pi\)
−0.880457 + 0.474126i \(0.842764\pi\)
\(200\) 1.00000 0.0707107
\(201\) −4.99731 8.65560i −0.352483 0.610519i
\(202\) −7.87263 13.6358i −0.553916 0.959411i
\(203\) 13.9758 0.980911
\(204\) −2.67845 4.63921i −0.187529 0.324810i
\(205\) −6.27144 + 10.8624i −0.438016 + 0.758666i
\(206\) 1.85086 3.20578i 0.128955 0.223357i
\(207\) 4.49396 0.312352
\(208\) 0 0
\(209\) 23.4916 1.62495
\(210\) −1.55496 + 2.69327i −0.107302 + 0.185853i
\(211\) −4.68114 + 8.10797i −0.322263 + 0.558175i −0.980955 0.194237i \(-0.937777\pi\)
0.658692 + 0.752413i \(0.271110\pi\)
\(212\) 2.46681 + 4.27264i 0.169421 + 0.293446i
\(213\) 6.83579 0.468381
\(214\) −7.54019 13.0600i −0.515437 0.892762i
\(215\) 3.49127 + 6.04706i 0.238103 + 0.412406i
\(216\) −5.54288 −0.377145
\(217\) 9.60388 + 16.6344i 0.651954 + 1.12922i
\(218\) −8.74094 + 15.1398i −0.592011 + 1.02539i
\(219\) 5.40850 9.36780i 0.365473 0.633017i
\(220\) 5.80194 0.391167
\(221\) 0 0
\(222\) −3.32975 −0.223478
\(223\) 3.15883 5.47126i 0.211531 0.366383i −0.740663 0.671877i \(-0.765488\pi\)
0.952194 + 0.305494i \(0.0988217\pi\)
\(224\) 1.24698 2.15983i 0.0833173 0.144310i
\(225\) 0.722521 + 1.25144i 0.0481681 + 0.0834295i
\(226\) −8.23490 −0.547777
\(227\) −2.44720 4.23867i −0.162426 0.281330i 0.773312 0.634026i \(-0.218599\pi\)
−0.935738 + 0.352695i \(0.885265\pi\)
\(228\) 2.52446 + 4.37249i 0.167186 + 0.289575i
\(229\) −0.689629 −0.0455719 −0.0227860 0.999740i \(-0.507254\pi\)
−0.0227860 + 0.999740i \(0.507254\pi\)
\(230\) −1.55496 2.69327i −0.102531 0.177589i
\(231\) −9.02177 + 15.6262i −0.593589 + 1.02813i
\(232\) 2.80194 4.85310i 0.183956 0.318622i
\(233\) 14.1806 0.929002 0.464501 0.885573i \(-0.346234\pi\)
0.464501 + 0.885573i \(0.346234\pi\)
\(234\) 0 0
\(235\) −3.87800 −0.252973
\(236\) 5.00753 8.67330i 0.325963 0.564584i
\(237\) 1.13706 1.96945i 0.0738602 0.127930i
\(238\) 5.35690 + 9.27842i 0.347236 + 0.601430i
\(239\) −25.7754 −1.66727 −0.833635 0.552315i \(-0.813745\pi\)
−0.833635 + 0.552315i \(0.813745\pi\)
\(240\) 0.623490 + 1.07992i 0.0402461 + 0.0697083i
\(241\) 3.93362 + 6.81324i 0.253387 + 0.438879i 0.964456 0.264243i \(-0.0851221\pi\)
−0.711069 + 0.703122i \(0.751789\pi\)
\(242\) 22.6625 1.45680
\(243\) −6.70775 11.6182i −0.430302 0.745306i
\(244\) 2.46681 4.27264i 0.157921 0.273528i
\(245\) −0.390084 + 0.675645i −0.0249215 + 0.0431654i
\(246\) −15.6407 −0.997215
\(247\) 0 0
\(248\) 7.70171 0.489059
\(249\) −9.12833 + 15.8107i −0.578485 + 1.00196i
\(250\) 0.500000 0.866025i 0.0316228 0.0547723i
\(251\) −9.98911 17.3017i −0.630507 1.09207i −0.987448 0.157944i \(-0.949514\pi\)
0.356941 0.934127i \(-0.383820\pi\)
\(252\) 3.60388 0.227023
\(253\) −9.02177 15.6262i −0.567194 0.982409i
\(254\) 6.51573 + 11.2856i 0.408833 + 0.708120i
\(255\) −5.35690 −0.335462
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.7262 22.0424i 0.793837 1.37497i −0.129739 0.991548i \(-0.541414\pi\)
0.923575 0.383417i \(-0.125253\pi\)
\(258\) −4.35354 + 7.54056i −0.271040 + 0.469455i
\(259\) 6.65950 0.413801
\(260\) 0 0
\(261\) 8.09783 0.501243
\(262\) −4.91454 + 8.51224i −0.303621 + 0.525888i
\(263\) 9.98792 17.2996i 0.615881 1.06674i −0.374348 0.927288i \(-0.622133\pi\)
0.990229 0.139450i \(-0.0445333\pi\)
\(264\) 3.61745 + 6.26561i 0.222639 + 0.385621i
\(265\) 4.93362 0.303070
\(266\) −5.04892 8.74498i −0.309569 0.536189i
\(267\) −0.283520 0.491071i −0.0173511 0.0300530i
\(268\) 8.01507 0.489598
\(269\) 8.07069 + 13.9788i 0.492079 + 0.852305i 0.999958 0.00912292i \(-0.00290396\pi\)
−0.507880 + 0.861428i \(0.669571\pi\)
\(270\) −2.77144 + 4.80027i −0.168664 + 0.292135i
\(271\) 7.55257 13.0814i 0.458786 0.794640i −0.540111 0.841594i \(-0.681618\pi\)
0.998897 + 0.0469534i \(0.0149512\pi\)
\(272\) 4.29590 0.260477
\(273\) 0 0
\(274\) −4.75302 −0.287140
\(275\) 2.90097 5.02463i 0.174935 0.302996i
\(276\) 1.93900 3.35845i 0.116714 0.202155i
\(277\) 12.2470 + 21.2124i 0.735850 + 1.27453i 0.954350 + 0.298692i \(0.0965503\pi\)
−0.218500 + 0.975837i \(0.570116\pi\)
\(278\) −2.39373 −0.143566
\(279\) 5.56465 + 9.63825i 0.333147 + 0.577027i
\(280\) −1.24698 2.15983i −0.0745213 0.129075i
\(281\) −23.3381 −1.39223 −0.696117 0.717928i \(-0.745091\pi\)
−0.696117 + 0.717928i \(0.745091\pi\)
\(282\) −2.41789 4.18792i −0.143984 0.249387i
\(283\) 5.71110 9.89192i 0.339490 0.588014i −0.644847 0.764312i \(-0.723079\pi\)
0.984337 + 0.176298i \(0.0564122\pi\)
\(284\) −2.74094 + 4.74745i −0.162645 + 0.281709i
\(285\) 5.04892 0.299072
\(286\) 0 0
\(287\) 31.2814 1.84648
\(288\) 0.722521 1.25144i 0.0425750 0.0737420i
\(289\) −0.727365 + 1.25983i −0.0427862 + 0.0741079i
\(290\) −2.80194 4.85310i −0.164535 0.284984i
\(291\) −10.8388 −0.635380
\(292\) 4.33728 + 7.51239i 0.253820 + 0.439629i
\(293\) −12.2078 21.1444i −0.713184 1.23527i −0.963656 0.267148i \(-0.913919\pi\)
0.250471 0.968124i \(-0.419414\pi\)
\(294\) −0.972853 −0.0567379
\(295\) −5.00753 8.67330i −0.291550 0.504979i
\(296\) 1.33513 2.31251i 0.0776026 0.134412i
\(297\) −16.0797 + 27.8509i −0.933040 + 1.61607i
\(298\) −20.8116 −1.20559
\(299\) 0 0
\(300\) 1.24698 0.0719944
\(301\) 8.70709 15.0811i 0.501868 0.869261i
\(302\) 2.97823 5.15845i 0.171378 0.296835i
\(303\) −9.81700 17.0035i −0.563972 0.976828i
\(304\) −4.04892 −0.232221
\(305\) −2.46681 4.27264i −0.141249 0.244651i
\(306\) 3.10388 + 5.37607i 0.177437 + 0.307329i
\(307\) 7.70410 0.439696 0.219848 0.975534i \(-0.429444\pi\)
0.219848 + 0.975534i \(0.429444\pi\)
\(308\) −7.23490 12.5312i −0.412247 0.714032i
\(309\) 2.30798 3.99754i 0.131296 0.227412i
\(310\) 3.85086 6.66988i 0.218714 0.378824i
\(311\) 4.71379 0.267295 0.133647 0.991029i \(-0.457331\pi\)
0.133647 + 0.991029i \(0.457331\pi\)
\(312\) 0 0
\(313\) 8.49157 0.479972 0.239986 0.970776i \(-0.422857\pi\)
0.239986 + 0.970776i \(0.422857\pi\)
\(314\) −4.09783 + 7.09766i −0.231254 + 0.400544i
\(315\) 1.80194 3.12105i 0.101528 0.175851i
\(316\) 0.911854 + 1.57938i 0.0512958 + 0.0888469i
\(317\) −27.0508 −1.51933 −0.759663 0.650317i \(-0.774636\pi\)
−0.759663 + 0.650317i \(0.774636\pi\)
\(318\) 3.07606 + 5.32790i 0.172497 + 0.298774i
\(319\) −16.2567 28.1574i −0.910199 1.57651i
\(320\) −1.00000 −0.0559017
\(321\) −9.40246 16.2855i −0.524794 0.908970i
\(322\) −3.87800 + 6.71690i −0.216113 + 0.374318i
\(323\) 8.69687 15.0634i 0.483907 0.838151i
\(324\) −2.57673 −0.143152
\(325\) 0 0
\(326\) 16.8877 0.935323
\(327\) −10.8998 + 18.8790i −0.602759 + 1.04401i
\(328\) 6.27144 10.8624i 0.346282 0.599778i
\(329\) 4.83579 + 8.37583i 0.266606 + 0.461775i
\(330\) 7.23490 0.398268
\(331\) −14.3720 24.8930i −0.789954 1.36824i −0.925994 0.377538i \(-0.876771\pi\)
0.136040 0.990703i \(-0.456563\pi\)
\(332\) −7.32036 12.6792i −0.401757 0.695863i
\(333\) 3.85862 0.211451
\(334\) 9.82908 + 17.0245i 0.537824 + 0.931538i
\(335\) 4.00753 6.94125i 0.218955 0.379241i
\(336\) 1.55496 2.69327i 0.0848299 0.146930i
\(337\) −34.5972 −1.88463 −0.942314 0.334730i \(-0.891355\pi\)
−0.942314 + 0.334730i \(0.891355\pi\)
\(338\) 0 0
\(339\) −10.2687 −0.557722
\(340\) 2.14795 3.72036i 0.116489 0.201765i
\(341\) 22.3424 38.6982i 1.20991 2.09563i
\(342\) −2.92543 5.06699i −0.158189 0.273991i
\(343\) 19.4034 1.04769
\(344\) −3.49127 6.04706i −0.188237 0.326036i
\(345\) −1.93900 3.35845i −0.104392 0.180813i
\(346\) −16.8659 −0.906718
\(347\) 14.1521 + 24.5122i 0.759726 + 1.31588i 0.942990 + 0.332820i \(0.108000\pi\)
−0.183264 + 0.983064i \(0.558666\pi\)
\(348\) 3.49396 6.05171i 0.187296 0.324406i
\(349\) 8.41550 14.5761i 0.450471 0.780240i −0.547944 0.836515i \(-0.684589\pi\)
0.998415 + 0.0562757i \(0.0179226\pi\)
\(350\) −2.49396 −0.133308
\(351\) 0 0
\(352\) −5.80194 −0.309244
\(353\) −11.8714 + 20.5619i −0.631852 + 1.09440i 0.355320 + 0.934745i \(0.384372\pi\)
−0.987173 + 0.159656i \(0.948962\pi\)
\(354\) 6.24429 10.8154i 0.331880 0.574834i
\(355\) 2.74094 + 4.74745i 0.145474 + 0.251968i
\(356\) 0.454731 0.0241007
\(357\) 6.67994 + 11.5700i 0.353540 + 0.612349i
\(358\) 2.99880 + 5.19408i 0.158492 + 0.274516i
\(359\) 26.8310 1.41609 0.708043 0.706169i \(-0.249578\pi\)
0.708043 + 0.706169i \(0.249578\pi\)
\(360\) −0.722521 1.25144i −0.0380802 0.0659568i
\(361\) 1.30313 2.25709i 0.0685860 0.118794i
\(362\) 8.28382 14.3480i 0.435388 0.754114i
\(363\) 28.2597 1.48325
\(364\) 0 0
\(365\) 8.67456 0.454047
\(366\) 3.07606 5.32790i 0.160788 0.278494i
\(367\) 9.04892 15.6732i 0.472350 0.818134i −0.527150 0.849772i \(-0.676739\pi\)
0.999499 + 0.0316388i \(0.0100726\pi\)
\(368\) 1.55496 + 2.69327i 0.0810578 + 0.140396i
\(369\) 18.1250 0.943549
\(370\) −1.33513 2.31251i −0.0694099 0.120221i
\(371\) −6.15213 10.6558i −0.319403 0.553222i
\(372\) 9.60388 0.497938
\(373\) −7.18598 12.4465i −0.372076 0.644454i 0.617809 0.786328i \(-0.288021\pi\)
−0.989885 + 0.141874i \(0.954687\pi\)
\(374\) 12.4623 21.5853i 0.644408 1.11615i
\(375\) 0.623490 1.07992i 0.0321969 0.0557666i
\(376\) 3.87800 0.199993
\(377\) 0 0
\(378\) 13.8237 0.711015
\(379\) −13.0903 + 22.6731i −0.672404 + 1.16464i 0.304817 + 0.952411i \(0.401405\pi\)
−0.977221 + 0.212226i \(0.931929\pi\)
\(380\) −2.02446 + 3.50647i −0.103853 + 0.179878i
\(381\) 8.12498 + 14.0729i 0.416255 + 0.720976i
\(382\) 12.7922 0.654508
\(383\) 5.67456 + 9.82863i 0.289957 + 0.502220i 0.973799 0.227410i \(-0.0730258\pi\)
−0.683842 + 0.729630i \(0.739692\pi\)
\(384\) −0.623490 1.07992i −0.0318173 0.0551092i
\(385\) −14.4698 −0.737449
\(386\) −11.7925 20.4253i −0.600225 1.03962i
\(387\) 5.04503 8.73825i 0.256453 0.444190i
\(388\) 4.34601 7.52751i 0.220635 0.382151i
\(389\) −12.8465 −0.651346 −0.325673 0.945483i \(-0.605591\pi\)
−0.325673 + 0.945483i \(0.605591\pi\)
\(390\) 0 0
\(391\) −13.3599 −0.675638
\(392\) 0.390084 0.675645i 0.0197022 0.0341252i
\(393\) −6.12833 + 10.6146i −0.309134 + 0.535435i
\(394\) −0.987918 1.71112i −0.0497706 0.0862052i
\(395\) 1.82371 0.0917607
\(396\) −4.19202 7.26079i −0.210657 0.364869i
\(397\) 9.37196 + 16.2327i 0.470365 + 0.814697i 0.999426 0.0338877i \(-0.0107888\pi\)
−0.529060 + 0.848584i \(0.677456\pi\)
\(398\) 0.835790 0.0418943
\(399\) −6.29590 10.9048i −0.315189 0.545924i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 9.91066 17.1658i 0.494915 0.857217i −0.505068 0.863079i \(-0.668533\pi\)
0.999983 + 0.00586217i \(0.00186600\pi\)
\(402\) 9.99462 0.498486
\(403\) 0 0
\(404\) 15.7453 0.783355
\(405\) −1.28836 + 2.23151i −0.0640193 + 0.110885i
\(406\) −6.98792 + 12.1034i −0.346805 + 0.600683i
\(407\) −7.74632 13.4170i −0.383971 0.665057i
\(408\) 5.35690 0.265206
\(409\) −9.47434 16.4100i −0.468476 0.811425i 0.530875 0.847450i \(-0.321863\pi\)
−0.999351 + 0.0360258i \(0.988530\pi\)
\(410\) −6.27144 10.8624i −0.309724 0.536458i
\(411\) −5.92692 −0.292353
\(412\) 1.85086 + 3.20578i 0.0911851 + 0.157937i
\(413\) −12.4886 + 21.6309i −0.614523 + 1.06438i
\(414\) −2.24698 + 3.89188i −0.110433 + 0.191276i
\(415\) −14.6407 −0.718684
\(416\) 0 0
\(417\) −2.98493 −0.146173
\(418\) −11.7458 + 20.3443i −0.574505 + 0.995072i
\(419\) −0.933624 + 1.61708i −0.0456105 + 0.0789998i −0.887929 0.459980i \(-0.847857\pi\)
0.842319 + 0.538980i \(0.181190\pi\)
\(420\) −1.55496 2.69327i −0.0758742 0.131418i
\(421\) 27.3250 1.33174 0.665869 0.746069i \(-0.268061\pi\)
0.665869 + 0.746069i \(0.268061\pi\)
\(422\) −4.68114 8.10797i −0.227874 0.394690i
\(423\) 2.80194 + 4.85310i 0.136235 + 0.235966i
\(424\) −4.93362 −0.239598
\(425\) −2.14795 3.72036i −0.104191 0.180464i
\(426\) −3.41789 + 5.91997i −0.165598 + 0.286823i
\(427\) −6.15213 + 10.6558i −0.297722 + 0.515670i
\(428\) 15.0804 0.728938
\(429\) 0 0
\(430\) −6.98254 −0.336728
\(431\) 0.780167 1.35129i 0.0375793 0.0650893i −0.846624 0.532191i \(-0.821369\pi\)
0.884203 + 0.467102i \(0.154702\pi\)
\(432\) 2.77144 4.80027i 0.133341 0.230953i
\(433\) 12.0782 + 20.9201i 0.580442 + 1.00536i 0.995427 + 0.0955270i \(0.0304536\pi\)
−0.414985 + 0.909828i \(0.636213\pi\)
\(434\) −19.2078 −0.922002
\(435\) −3.49396 6.05171i −0.167523 0.290158i
\(436\) −8.74094 15.1398i −0.418615 0.725063i
\(437\) 12.5918 0.602347
\(438\) 5.40850 + 9.36780i 0.258428 + 0.447611i
\(439\) −10.6799 + 18.4982i −0.509726 + 0.882871i 0.490211 + 0.871604i \(0.336920\pi\)
−0.999937 + 0.0112669i \(0.996414\pi\)
\(440\) −2.90097 + 5.02463i −0.138298 + 0.239540i
\(441\) 1.12737 0.0536845
\(442\) 0 0
\(443\) −16.5351 −0.785607 −0.392803 0.919623i \(-0.628495\pi\)
−0.392803 + 0.919623i \(0.628495\pi\)
\(444\) 1.66487 2.88365i 0.0790114 0.136852i
\(445\) 0.227365 0.393808i 0.0107781 0.0186683i
\(446\) 3.15883 + 5.47126i 0.149575 + 0.259072i
\(447\) −25.9517 −1.22747
\(448\) 1.24698 + 2.15983i 0.0589142 + 0.102042i
\(449\) 3.28352 + 5.68722i 0.154959 + 0.268397i 0.933044 0.359762i \(-0.117142\pi\)
−0.778085 + 0.628159i \(0.783809\pi\)
\(450\) −1.44504 −0.0681199
\(451\) −36.3865 63.0233i −1.71337 2.96765i
\(452\) 4.11745 7.13163i 0.193669 0.335444i
\(453\) 3.71379 6.43248i 0.174489 0.302224i
\(454\) 4.89440 0.229705
\(455\) 0 0
\(456\) −5.04892 −0.236437
\(457\) −12.0858 + 20.9331i −0.565348 + 0.979211i 0.431670 + 0.902032i \(0.357925\pi\)
−0.997017 + 0.0771791i \(0.975409\pi\)
\(458\) 0.344814 0.597236i 0.0161121 0.0279070i
\(459\) 11.9058 + 20.6215i 0.555716 + 0.962528i
\(460\) 3.10992 0.145001
\(461\) −11.7899 20.4206i −0.549108 0.951084i −0.998336 0.0576662i \(-0.981634\pi\)
0.449228 0.893417i \(-0.351699\pi\)
\(462\) −9.02177 15.6262i −0.419731 0.726995i
\(463\) −1.68233 −0.0781846 −0.0390923 0.999236i \(-0.512447\pi\)
−0.0390923 + 0.999236i \(0.512447\pi\)
\(464\) 2.80194 + 4.85310i 0.130077 + 0.225299i
\(465\) 4.80194 8.31720i 0.222685 0.385701i
\(466\) −7.09030 + 12.2808i −0.328452 + 0.568895i
\(467\) 0.376273 0.0174118 0.00870592 0.999962i \(-0.497229\pi\)
0.00870592 + 0.999962i \(0.497229\pi\)
\(468\) 0 0
\(469\) −19.9892 −0.923018
\(470\) 1.93900 3.35845i 0.0894395 0.154914i
\(471\) −5.10992 + 8.85063i −0.235453 + 0.407816i
\(472\) 5.00753 + 8.67330i 0.230490 + 0.399221i
\(473\) −40.5123 −1.86276
\(474\) 1.13706 + 1.96945i 0.0522270 + 0.0904599i
\(475\) 2.02446 + 3.50647i 0.0928885 + 0.160888i
\(476\) −10.7138 −0.491066
\(477\) −3.56465 6.17415i −0.163214 0.282695i
\(478\) 12.8877 22.3221i 0.589469 1.02099i
\(479\) 5.01507 8.68635i 0.229144 0.396889i −0.728411 0.685141i \(-0.759741\pi\)
0.957555 + 0.288252i \(0.0930739\pi\)
\(480\) −1.24698 −0.0569166
\(481\) 0 0
\(482\) −7.86725 −0.358343
\(483\) −4.83579 + 8.37583i −0.220036 + 0.381114i
\(484\) −11.3312 + 19.6263i −0.515056 + 0.892104i
\(485\) −4.34601 7.52751i −0.197342 0.341807i
\(486\) 13.4155 0.608540
\(487\) 7.66487 + 13.2760i 0.347329 + 0.601591i 0.985774 0.168076i \(-0.0537555\pi\)
−0.638445 + 0.769667i \(0.720422\pi\)
\(488\) 2.46681 + 4.27264i 0.111667 + 0.193414i
\(489\) 21.0586 0.952303
\(490\) −0.390084 0.675645i −0.0176222 0.0305225i
\(491\) −4.59634 + 7.96110i −0.207430 + 0.359279i −0.950904 0.309485i \(-0.899843\pi\)
0.743474 + 0.668765i \(0.233177\pi\)
\(492\) 7.82036 13.5453i 0.352569 0.610667i
\(493\) −24.0737 −1.08422
\(494\) 0 0
\(495\) −8.38404 −0.376835
\(496\) −3.85086 + 6.66988i −0.172908 + 0.299486i
\(497\) 6.83579 11.8399i 0.306627 0.531094i
\(498\) −9.12833 15.8107i −0.409050 0.708496i
\(499\) −2.74632 −0.122942 −0.0614710 0.998109i \(-0.519579\pi\)
−0.0614710 + 0.998109i \(0.519579\pi\)
\(500\) 0.500000 + 0.866025i 0.0223607 + 0.0387298i
\(501\) 12.2567 + 21.2292i 0.547588 + 0.948449i
\(502\) 19.9782 0.891672
\(503\) 6.28382 + 10.8839i 0.280181 + 0.485289i 0.971429 0.237329i \(-0.0762720\pi\)
−0.691248 + 0.722618i \(0.742939\pi\)
\(504\) −1.80194 + 3.12105i −0.0802647 + 0.139023i
\(505\) 7.87263 13.6358i 0.350327 0.606785i
\(506\) 18.0435 0.802133
\(507\) 0 0
\(508\) −13.0315 −0.578177
\(509\) 0.0338518 0.0586331i 0.00150046 0.00259887i −0.865274 0.501299i \(-0.832856\pi\)
0.866775 + 0.498700i \(0.166189\pi\)
\(510\) 2.67845 4.63921i 0.118604 0.205428i
\(511\) −10.8170 18.7356i −0.478516 0.828814i
\(512\) 1.00000 0.0441942
\(513\) −11.2213 19.4359i −0.495434 0.858116i
\(514\) 12.7262 + 22.0424i 0.561327 + 0.972247i
\(515\) 3.70171 0.163117
\(516\) −4.35354 7.54056i −0.191654 0.331955i
\(517\) 11.2500 19.4855i 0.494773 0.856972i
\(518\) −3.32975 + 5.76729i −0.146301 + 0.253400i
\(519\) −21.0315 −0.923179
\(520\) 0 0
\(521\) 8.18060 0.358399 0.179199 0.983813i \(-0.442649\pi\)
0.179199 + 0.983813i \(0.442649\pi\)
\(522\) −4.04892 + 7.01293i −0.177216 + 0.306948i
\(523\) −8.46562 + 14.6629i −0.370176 + 0.641163i −0.989592 0.143900i \(-0.954036\pi\)
0.619417 + 0.785062i \(0.287369\pi\)
\(524\) −4.91454 8.51224i −0.214693 0.371859i
\(525\) −3.10992 −0.135728
\(526\) 9.98792 + 17.2996i 0.435494 + 0.754298i
\(527\) −16.5429 28.6531i −0.720619 1.24815i
\(528\) −7.23490 −0.314859
\(529\) 6.66421 + 11.5428i 0.289748 + 0.501859i
\(530\) −2.46681 + 4.27264i −0.107151 + 0.185592i
\(531\) −7.23609 + 12.5333i −0.314020 + 0.543898i
\(532\) 10.0978 0.437797
\(533\) 0 0
\(534\) 0.567040 0.0245382
\(535\) 7.54019 13.0600i 0.325991 0.564633i
\(536\) −4.00753 + 6.94125i −0.173099 + 0.299816i
\(537\) 3.73945 + 6.47691i 0.161369 + 0.279499i
\(538\) −16.1414 −0.695904
\(539\) −2.26324 3.92005i −0.0974847 0.168848i
\(540\) −2.77144 4.80027i −0.119264 0.206571i
\(541\) 16.5676 0.712298 0.356149 0.934429i \(-0.384090\pi\)
0.356149 + 0.934429i \(0.384090\pi\)
\(542\) 7.55257 + 13.0814i 0.324410 + 0.561895i
\(543\) 10.3297 17.8916i 0.443292 0.767804i
\(544\) −2.14795 + 3.72036i −0.0920925 + 0.159509i
\(545\) −17.4819 −0.748841
\(546\) 0 0
\(547\) −3.57540 −0.152873 −0.0764365 0.997074i \(-0.524354\pi\)
−0.0764365 + 0.997074i \(0.524354\pi\)
\(548\) 2.37651 4.11624i 0.101519 0.175837i
\(549\) −3.56465 + 6.17415i −0.152135 + 0.263506i
\(550\) 2.90097 + 5.02463i 0.123698 + 0.214251i
\(551\) 22.6896 0.966611
\(552\) 1.93900 + 3.35845i 0.0825294 + 0.142945i
\(553\) −2.27413 3.93890i −0.0967057 0.167499i
\(554\) −24.4940 −1.04065
\(555\) −1.66487 2.88365i −0.0706700 0.122404i
\(556\) 1.19687 2.07303i 0.0507584 0.0879162i
\(557\) −19.9463 + 34.5480i −0.845152 + 1.46385i 0.0403377 + 0.999186i \(0.487157\pi\)
−0.885489 + 0.464660i \(0.846177\pi\)
\(558\) −11.1293 −0.471141
\(559\) 0 0
\(560\) 2.49396 0.105389
\(561\) 15.5402 26.9164i 0.656107 1.13641i
\(562\) 11.6691 20.2114i 0.492229 0.852566i
\(563\) 1.82371 + 3.15875i 0.0768601 + 0.133126i 0.901894 0.431958i \(-0.142177\pi\)
−0.825034 + 0.565084i \(0.808844\pi\)
\(564\) 4.83579 0.203623
\(565\) −4.11745 7.13163i −0.173222 0.300030i
\(566\) 5.71110 + 9.89192i 0.240056 + 0.415788i
\(567\) 6.42626 0.269877
\(568\) −2.74094 4.74745i −0.115007 0.199198i
\(569\) −9.17606 + 15.8934i −0.384680 + 0.666286i −0.991725 0.128382i \(-0.959022\pi\)
0.607045 + 0.794668i \(0.292355\pi\)
\(570\) −2.52446 + 4.37249i −0.105738 + 0.183143i
\(571\) −19.1987 −0.803439 −0.401719 0.915763i \(-0.631587\pi\)
−0.401719 + 0.915763i \(0.631587\pi\)
\(572\) 0 0
\(573\) 15.9517 0.666391
\(574\) −15.6407 + 27.0905i −0.652831 + 1.13074i
\(575\) 1.55496 2.69327i 0.0648462 0.112317i
\(576\) 0.722521 + 1.25144i 0.0301050 + 0.0521435i
\(577\) 35.2218 1.46630 0.733150 0.680067i \(-0.238049\pi\)
0.733150 + 0.680067i \(0.238049\pi\)
\(578\) −0.727365 1.25983i −0.0302544 0.0524022i
\(579\) −14.7051 25.4699i −0.611122 1.05849i
\(580\) 5.60388 0.232688
\(581\) 18.2567 + 31.6215i 0.757414 + 1.31188i
\(582\) 5.41939 9.38665i 0.224641 0.389089i
\(583\) −14.3123 + 24.7896i −0.592755 + 1.02668i
\(584\) −8.67456 −0.358956
\(585\) 0 0
\(586\) 24.4155 1.00860
\(587\) 16.2298 28.1109i 0.669876 1.16026i −0.308062 0.951366i \(-0.599680\pi\)
0.977938 0.208893i \(-0.0669862\pi\)
\(588\) 0.486426 0.842515i 0.0200599 0.0347447i
\(589\) 15.5918 + 27.0058i 0.642449 + 1.11275i
\(590\) 10.0151 0.412314
\(591\) −1.23191 2.13374i −0.0506742 0.0877702i
\(592\) 1.33513 + 2.31251i 0.0548733 + 0.0950434i
\(593\) 9.57135 0.393048 0.196524 0.980499i \(-0.437035\pi\)
0.196524 + 0.980499i \(0.437035\pi\)
\(594\) −16.0797 27.8509i −0.659759 1.14274i
\(595\) −5.35690 + 9.27842i −0.219611 + 0.380378i
\(596\) 10.4058 18.0234i 0.426239 0.738267i
\(597\) 1.04221 0.0426549
\(598\) 0 0
\(599\) −29.0858 −1.18841 −0.594206 0.804313i \(-0.702534\pi\)
−0.594206 + 0.804313i \(0.702534\pi\)
\(600\) −0.623490 + 1.07992i −0.0254539 + 0.0440874i
\(601\) 3.15615 5.46660i 0.128742 0.222987i −0.794448 0.607333i \(-0.792239\pi\)
0.923189 + 0.384345i \(0.125573\pi\)
\(602\) 8.70709 + 15.0811i 0.354874 + 0.614660i
\(603\) −11.5821 −0.471660
\(604\) 2.97823 + 5.15845i 0.121182 + 0.209894i
\(605\) 11.3312 + 19.6263i 0.460680 + 0.797922i
\(606\) 19.6340 0.797577
\(607\) −16.2325 28.1155i −0.658857 1.14117i −0.980912 0.194453i \(-0.937707\pi\)
0.322055 0.946721i \(-0.395626\pi\)
\(608\) 2.02446 3.50647i 0.0821026 0.142206i
\(609\) −8.71379 + 15.0927i −0.353101 + 0.611588i
\(610\) 4.93362 0.199757
\(611\) 0 0
\(612\) −6.20775 −0.250933
\(613\) 14.8509 25.7224i 0.599820 1.03892i −0.393027 0.919527i \(-0.628572\pi\)
0.992847 0.119392i \(-0.0380946\pi\)
\(614\) −3.85205 + 6.67195i −0.155456 + 0.269258i
\(615\) −7.82036 13.5453i −0.315347 0.546197i
\(616\) 14.4698 0.583005
\(617\) 5.42782 + 9.40126i 0.218516 + 0.378481i 0.954354 0.298676i \(-0.0965451\pi\)
−0.735839 + 0.677157i \(0.763212\pi\)
\(618\) 2.30798 + 3.99754i 0.0928405 + 0.160804i
\(619\) −23.2948 −0.936298 −0.468149 0.883649i \(-0.655079\pi\)
−0.468149 + 0.883649i \(0.655079\pi\)
\(620\) 3.85086 + 6.66988i 0.154654 + 0.267869i
\(621\) −8.61894 + 14.9284i −0.345866 + 0.599058i
\(622\) −2.35690 + 4.08226i −0.0945029 + 0.163684i
\(623\) −1.13408 −0.0454359
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −4.24578 + 7.35391i −0.169696 + 0.293921i
\(627\) −14.6468 + 25.3689i −0.584935 + 1.01314i
\(628\) −4.09783 7.09766i −0.163521 0.283227i
\(629\) −11.4711 −0.457384
\(630\) 1.80194 + 3.12105i 0.0717909 + 0.124346i
\(631\) −3.36227 5.82363i −0.133850 0.231835i 0.791308 0.611418i \(-0.209401\pi\)
−0.925158 + 0.379583i \(0.876067\pi\)
\(632\) −1.82371 −0.0725432
\(633\) −5.83728 10.1105i −0.232011 0.401855i
\(634\) 13.5254 23.4267i 0.537163 0.930394i
\(635\) −6.51573 + 11.2856i −0.258569 + 0.447854i
\(636\) −6.15213 −0.243948
\(637\) 0 0
\(638\) 32.5133 1.28722
\(639\) 3.96077 6.86026i 0.156686 0.271388i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) −4.66219 8.07514i −0.184145 0.318949i 0.759143 0.650924i \(-0.225618\pi\)
−0.943288 + 0.331975i \(0.892285\pi\)
\(642\) 18.8049 0.742171
\(643\) 6.10723 + 10.5780i 0.240846 + 0.417157i 0.960955 0.276703i \(-0.0892419\pi\)
−0.720110 + 0.693860i \(0.755909\pi\)
\(644\) −3.87800 6.71690i −0.152815 0.264683i
\(645\) −8.70709 −0.342841
\(646\) 8.69687 + 15.0634i 0.342174 + 0.592662i
\(647\) 18.4426 31.9436i 0.725055 1.25583i −0.233896 0.972262i \(-0.575147\pi\)
0.958951 0.283571i \(-0.0915192\pi\)
\(648\) 1.28836 2.23151i 0.0506117 0.0876621i
\(649\) 58.1068 2.28089
\(650\) 0 0
\(651\) −23.9517 −0.938740
\(652\) −8.44385 + 14.6252i −0.330687 + 0.572766i
\(653\) 19.3327 33.4853i 0.756548 1.31038i −0.188053 0.982159i \(-0.560218\pi\)
0.944601 0.328221i \(-0.106449\pi\)
\(654\) −10.8998 18.8790i −0.426215 0.738226i
\(655\) −9.82908 −0.384054
\(656\) 6.27144 + 10.8624i 0.244859 + 0.424107i
\(657\) −6.26755 10.8557i −0.244521 0.423522i
\(658\) −9.67158 −0.377037
\(659\) 0.596343 + 1.03290i 0.0232302 + 0.0402359i 0.877407 0.479747i \(-0.159272\pi\)
−0.854177 + 0.519983i \(0.825938\pi\)
\(660\) −3.61745 + 6.26561i −0.140809 + 0.243888i
\(661\) −1.96615 + 3.40547i −0.0764743 + 0.132457i −0.901726 0.432307i \(-0.857700\pi\)
0.825252 + 0.564764i \(0.191033\pi\)
\(662\) 28.7439 1.11716
\(663\) 0 0
\(664\) 14.6407 0.568170
\(665\) 5.04892 8.74498i 0.195789 0.339116i
\(666\) −1.92931 + 3.34167i −0.0747593 + 0.129487i
\(667\) −8.71379 15.0927i −0.337399 0.584393i
\(668\) −19.6582 −0.760597
\(669\) 3.93900 + 6.82255i 0.152291 + 0.263775i
\(670\) 4.00753 + 6.94125i 0.154824 + 0.268164i
\(671\) 28.6246 1.10504
\(672\) 1.55496 + 2.69327i 0.0599838 + 0.103895i
\(673\) −2.43512 + 4.21775i −0.0938668 + 0.162582i −0.909135 0.416501i \(-0.863256\pi\)
0.815268 + 0.579083i \(0.196589\pi\)
\(674\) 17.2986 29.9620i 0.666317 1.15409i
\(675\) −5.54288 −0.213345
\(676\) 0 0
\(677\) −14.6461 −0.562895 −0.281447 0.959577i \(-0.590815\pi\)
−0.281447 + 0.959577i \(0.590815\pi\)
\(678\) 5.13437 8.89300i 0.197184 0.341534i
\(679\) −10.8388 + 18.7733i −0.415954 + 0.720453i
\(680\) 2.14795 + 3.72036i 0.0823701 + 0.142669i
\(681\) 6.10321 0.233876
\(682\) 22.3424 + 38.6982i 0.855536 + 1.48183i
\(683\) 17.5999 + 30.4839i 0.673440 + 1.16643i 0.976922 + 0.213595i \(0.0685173\pi\)
−0.303482 + 0.952837i \(0.598149\pi\)
\(684\) 5.85086 0.223713
\(685\) −2.37651 4.11624i −0.0908018 0.157273i
\(686\) −9.70171 + 16.8039i −0.370413 + 0.641574i
\(687\) 0.429976 0.744741i 0.0164046 0.0284136i
\(688\) 6.98254 0.266207
\(689\) 0 0
\(690\) 3.87800 0.147633
\(691\) −20.7925 + 36.0137i −0.790986 + 1.37003i 0.134372 + 0.990931i \(0.457098\pi\)
−0.925357 + 0.379096i \(0.876235\pi\)
\(692\) 8.43296 14.6063i 0.320573 0.555249i
\(693\) 10.4547 + 18.1081i 0.397142 + 0.687871i
\(694\) −28.3043 −1.07441
\(695\) −1.19687 2.07303i −0.0453997 0.0786346i
\(696\) 3.49396 + 6.05171i 0.132438 + 0.229390i
\(697\) −53.8829 −2.04096
\(698\) 8.41550 + 14.5761i 0.318531 + 0.551713i
\(699\) −8.84146 + 15.3139i −0.334415 + 0.579223i
\(700\) 1.24698 2.15983i 0.0471314 0.0816340i
\(701\) 5.61463 0.212062 0.106031 0.994363i \(-0.466186\pi\)
0.106031 + 0.994363i \(0.466186\pi\)
\(702\) 0 0
\(703\) 10.8116 0.407768
\(704\) 2.90097 5.02463i 0.109334 0.189373i
\(705\) 2.41789 4.18792i 0.0910632 0.157726i
\(706\) −11.8714 20.5619i −0.446787 0.773858i
\(707\) −39.2680 −1.47683
\(708\) 6.24429 + 10.8154i 0.234675 + 0.406469i
\(709\) 17.4330 + 30.1948i 0.654709 + 1.13399i 0.981967 + 0.189054i \(0.0605420\pi\)
−0.327258 + 0.944935i \(0.606125\pi\)
\(710\) −5.48188 −0.205731
\(711\) −1.31767 2.28227i −0.0494164 0.0855917i
\(712\) −0.227365 + 0.393808i −0.00852087 + 0.0147586i
\(713\) 11.9758 20.7428i 0.448499 0.776822i
\(714\) −13.3599 −0.499981
\(715\) 0 0
\(716\) −5.99761 −0.224141
\(717\) 16.0707 27.8352i 0.600171 1.03953i
\(718\) −13.4155 + 23.2363i −0.500662 + 0.867172i
\(719\) 0.951083 + 1.64732i 0.0354694 + 0.0614348i 0.883215 0.468968i \(-0.155374\pi\)
−0.847746 + 0.530403i \(0.822041\pi\)
\(720\) 1.44504 0.0538535
\(721\) −4.61596 7.99507i −0.171907 0.297752i
\(722\) 1.30313 + 2.25709i 0.0484976 + 0.0840004i
\(723\) −9.81030 −0.364849
\(724\) 8.28382 + 14.3480i 0.307866 + 0.533239i
\(725\) 2.80194 4.85310i 0.104061 0.180240i
\(726\) −14.1298 + 24.4736i −0.524407 + 0.908300i
\(727\) −23.7211 −0.879766 −0.439883 0.898055i \(-0.644980\pi\)
−0.439883 + 0.898055i \(0.644980\pi\)
\(728\) 0 0
\(729\) 24.4590 0.905890
\(730\) −4.33728 + 7.51239i −0.160530 + 0.278046i
\(731\) −14.9981 + 25.9775i −0.554726 + 0.960814i
\(732\) 3.07606 + 5.32790i 0.113695 + 0.196925i
\(733\) 13.2862 0.490737 0.245369 0.969430i \(-0.421091\pi\)
0.245369 + 0.969430i \(0.421091\pi\)
\(734\) 9.04892 + 15.6732i 0.334002 + 0.578508i
\(735\) −0.486426 0.842515i −0.0179421 0.0310766i
\(736\) −3.10992 −0.114633
\(737\) 23.2515 + 40.2727i 0.856478 + 1.48346i
\(738\) −9.06249 + 15.6967i −0.333595 + 0.577803i
\(739\) 3.17307 5.49592i 0.116723 0.202171i −0.801744 0.597668i \(-0.796094\pi\)
0.918467 + 0.395497i \(0.129428\pi\)
\(740\) 2.67025 0.0981604
\(741\) 0 0
\(742\) 12.3043 0.451704
\(743\) 20.0901 34.7970i 0.737033 1.27658i −0.216793 0.976218i \(-0.569560\pi\)
0.953826 0.300361i \(-0.0971071\pi\)
\(744\) −4.80194 + 8.31720i −0.176048 + 0.304923i
\(745\) −10.4058 18.0234i −0.381239 0.660326i
\(746\) 14.3720 0.526195
\(747\) 10.5782 + 18.3220i 0.387037 + 0.670367i
\(748\) 12.4623 + 21.5853i 0.455665 + 0.789236i
\(749\) −37.6098 −1.37423
\(750\) 0.623490 + 1.07992i 0.0227666 + 0.0394330i
\(751\) −7.76809 + 13.4547i −0.283461 + 0.490970i −0.972235 0.234007i \(-0.924816\pi\)
0.688773 + 0.724977i \(0.258149\pi\)
\(752\) −1.93900 + 3.35845i −0.0707081 + 0.122470i
\(753\) 24.9124 0.907860
\(754\) 0 0
\(755\) 5.95646 0.216778
\(756\) −6.91185 + 11.9717i −0.251382 + 0.435406i
\(757\) −16.1032 + 27.8916i −0.585281 + 1.01374i 0.409559 + 0.912284i \(0.365683\pi\)
−0.994840 + 0.101453i \(0.967651\pi\)
\(758\) −13.0903 22.6731i −0.475461 0.823523i
\(759\) 22.4999 0.816696
\(760\) −2.02446 3.50647i −0.0734348 0.127193i
\(761\) 9.82358 + 17.0149i 0.356104 + 0.616791i 0.987306 0.158828i \(-0.0507714\pi\)
−0.631202 + 0.775619i \(0.717438\pi\)
\(762\) −16.2500 −0.588674
\(763\) 21.7995 + 37.7579i 0.789197 + 1.36693i
\(764\) −6.39612 + 11.0784i −0.231404 + 0.400803i
\(765\) −3.10388 + 5.37607i −0.112221 + 0.194372i
\(766\) −11.3491 −0.410061
\(767\) 0 0
\(768\) 1.24698 0.0449965
\(769\) 3.25116 5.63117i 0.117240 0.203065i −0.801433 0.598084i \(-0.795929\pi\)
0.918673 + 0.395019i \(0.129262\pi\)
\(770\) 7.23490 12.5312i 0.260728 0.451593i
\(771\) 15.8693 + 27.4864i 0.571518 + 0.989898i
\(772\) 23.5851 0.848846
\(773\) −16.1293 27.9368i −0.580130 1.00482i −0.995463 0.0951458i \(-0.969668\pi\)
0.415333 0.909669i \(-0.363665\pi\)
\(774\) 5.04503 + 8.73825i 0.181340 + 0.314090i
\(775\) 7.70171 0.276654
\(776\) 4.34601 + 7.52751i 0.156013 + 0.270222i
\(777\) −4.15213 + 7.19170i −0.148957 + 0.258001i
\(778\) 6.42327 11.1254i 0.230285 0.398866i
\(779\) 50.7851 1.81956
\(780\) 0 0
\(781\) −31.8055 −1.13809
\(782\) 6.67994 11.5700i 0.238874 0.413742i
\(783\) −15.5308 + 26.9001i −0.555025 + 0.961332i
\(784\) 0.390084 + 0.675645i 0.0139316 + 0.0241302i
\(785\) −8.19567 −0.292516
\(786\) −6.12833 10.6146i −0.218590 0.378610i
\(787\) 6.83997 + 11.8472i 0.243819 + 0.422306i 0.961799 0.273757i \(-0.0882665\pi\)
−0.717980 + 0.696064i \(0.754933\pi\)
\(788\) 1.97584 0.0703863
\(789\) 12.4547 + 21.5722i 0.443400 + 0.767992i
\(790\) −0.911854 + 1.57938i −0.0324423 + 0.0561917i
\(791\) −10.2687 + 17.7860i −0.365115 + 0.632397i
\(792\) 8.38404 0.297914
\(793\) 0 0
\(794\) −18.7439 −0.665197
\(795\) −3.07606 + 5.32790i −0.109097 + 0.188961i
\(796\) −0.417895 + 0.723815i −0.0148119 + 0.0256549i
\(797\) 3.88769 + 6.73368i 0.137709 + 0.238519i 0.926629 0.375977i \(-0.122693\pi\)
−0.788920 + 0.614496i \(0.789359\pi\)
\(798\) 12.5918 0.445745
\(799\) −8.32975 14.4275i −0.294685 0.510410i
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) −0.657105 −0.0232177
\(802\) 9.91066 + 17.1658i 0.349957 + 0.606144i
\(803\) −25.1646 + 43.5864i −0.888041 + 1.53813i
\(804\) −4.99731 + 8.65560i −0.176242 + 0.305259i
\(805\) −7.75600 −0.273363
\(806\) 0 0
\(807\) −20.1280 −0.708538
\(808\) −7.87263 + 13.6358i −0.276958 + 0.479705i
\(809\) 21.5770 37.3725i 0.758608 1.31395i −0.184953 0.982747i \(-0.559213\pi\)
0.943561 0.331200i \(-0.107453\pi\)
\(810\) −1.28836 2.23151i −0.0452685 0.0784073i
\(811\) 35.8165 1.25769 0.628844 0.777531i \(-0.283528\pi\)
0.628844 + 0.777531i \(0.283528\pi\)
\(812\) −6.98792 12.1034i −0.245228 0.424747i
\(813\) 9.41789 + 16.3123i 0.330300 + 0.572096i
\(814\) 15.4926 0.543016
\(815\) 8.44385 + 14.6252i 0.295775 + 0.512297i
\(816\) −2.67845 + 4.63921i −0.0937644 + 0.162405i
\(817\) 14.1359 24.4840i 0.494551 0.856588i
\(818\) 18.9487 0.662525
\(819\) 0 0
\(820\) 12.5429 0.438016
\(821\) 3.35152 5.80500i 0.116969 0.202596i −0.801596 0.597866i \(-0.796016\pi\)
0.918565 + 0.395270i \(0.129349\pi\)
\(822\) 2.96346 5.13286i 0.103363 0.179029i
\(823\) −17.8552 30.9261i −0.622392 1.07801i −0.989039 0.147654i \(-0.952828\pi\)
0.366647 0.930360i \(-0.380506\pi\)
\(824\) −3.70171 −0.128955
\(825\) 3.61745 + 6.26561i 0.125943 + 0.218140i
\(826\) −12.4886 21.6309i −0.434533 0.752634i
\(827\) 1.79523 0.0624264 0.0312132 0.999513i \(-0.490063\pi\)
0.0312132 + 0.999513i \(0.490063\pi\)
\(828\) −2.24698 3.89188i −0.0780879 0.135252i
\(829\) −0.366585 + 0.634943i −0.0127320 + 0.0220525i −0.872321 0.488933i \(-0.837386\pi\)
0.859589 + 0.510986i \(0.170720\pi\)
\(830\) 7.32036 12.6792i 0.254093 0.440102i
\(831\) −30.5435 −1.05954
\(832\) 0 0
\(833\) −3.35152 −0.116123
\(834\) 1.49247 2.58503i 0.0516799 0.0895122i
\(835\) −9.82908 + 17.0245i −0.340150 + 0.589156i
\(836\) −11.7458 20.3443i −0.406236 0.703622i
\(837\) −42.6896 −1.47557
\(838\) −0.933624 1.61708i −0.0322515 0.0558613i
\(839\) −13.3056 23.0460i −0.459360 0.795635i 0.539567 0.841942i \(-0.318588\pi\)
−0.998927 + 0.0463079i \(0.985254\pi\)
\(840\) 3.10992 0.107302
\(841\) −1.20171 2.08142i −0.0414383 0.0717732i
\(842\) −13.6625 + 23.6641i −0.470840 + 0.815519i
\(843\) 14.5511 25.2032i 0.501166 0.868044i
\(844\) 9.36227 0.322263
\(845\) 0 0
\(846\) −5.60388 −0.192665
\(847\) 28.2597 48.9472i 0.971013 1.68184i
\(848\) 2.46681 4.27264i 0.0847107 0.146723i
\(849\) 7.12163 + 12.3350i 0.244414 + 0.423337i
\(850\) 4.29590 0.147348
\(851\) −4.15213 7.19170i −0.142333 0.246528i
\(852\) −3.41789 5.91997i −0.117095 0.202815i
\(853\) 4.78746 0.163920 0.0819598 0.996636i \(-0.473882\pi\)
0.0819598 + 0.996636i \(0.473882\pi\)
\(854\) −6.15213 10.6558i −0.210522 0.364634i
\(855\) 2.92543 5.06699i 0.100048 0.173287i
\(856\) −7.54019 + 13.0600i −0.257718 + 0.446381i
\(857\) −24.9748 −0.853122 −0.426561 0.904459i \(-0.640275\pi\)
−0.426561 + 0.904459i \(0.640275\pi\)
\(858\) 0 0
\(859\) −16.2737 −0.555250 −0.277625 0.960690i \(-0.589547\pi\)
−0.277625 + 0.960690i \(0.589547\pi\)
\(860\) 3.49127 6.04706i 0.119051 0.206203i
\(861\) −19.5036 + 33.7813i −0.664683 + 1.15126i
\(862\) 0.780167 + 1.35129i 0.0265726 + 0.0460251i
\(863\) −44.3806 −1.51073 −0.755366 0.655303i \(-0.772541\pi\)
−0.755366 + 0.655303i \(0.772541\pi\)
\(864\) 2.77144 + 4.80027i 0.0942862 + 0.163309i
\(865\) −8.43296 14.6063i −0.286729 0.496630i
\(866\) −24.1564 −0.820869
\(867\) −0.907010 1.57099i −0.0308037 0.0533535i
\(868\) 9.60388 16.6344i 0.325977 0.564608i
\(869\) −5.29052 + 9.16345i −0.179469 + 0.310849i
\(870\) 6.98792 0.236913
\(871\) 0 0
\(872\) 17.4819 0.592011
\(873\) −6.28017 + 10.8776i −0.212551 + 0.368150i
\(874\) −6.29590 + 10.9048i −0.212962 + 0.368861i
\(875\) −1.24698 2.15983i −0.0421556 0.0730156i
\(876\) −10.8170 −0.365473
\(877\) 18.6950 + 32.3807i 0.631285 + 1.09342i 0.987289 + 0.158934i \(0.0508057\pi\)
−0.356004 + 0.934485i \(0.615861\pi\)
\(878\) −10.6799 18.4982i −0.360431 0.624284i
\(879\) 30.4456 1.02691
\(880\) −2.90097 5.02463i −0.0977916 0.169380i
\(881\) −19.0942 + 33.0722i −0.643301 + 1.11423i 0.341390 + 0.939922i \(0.389102\pi\)
−0.984691 + 0.174309i \(0.944231\pi\)
\(882\) −0.563687 + 0.976335i −0.0189803 + 0.0328749i
\(883\) 4.45281 0.149849 0.0749245 0.997189i \(-0.476128\pi\)
0.0749245 + 0.997189i \(0.476128\pi\)
\(884\) 0 0
\(885\) 12.4886 0.419799
\(886\) 8.26755 14.3198i 0.277754 0.481084i
\(887\) −3.03146 + 5.25064i −0.101786 + 0.176299i −0.912421 0.409254i \(-0.865789\pi\)
0.810634 + 0.585553i \(0.199123\pi\)
\(888\) 1.66487 + 2.88365i 0.0558695 + 0.0967689i
\(889\) 32.4999 1.09001
\(890\) 0.227365 + 0.393808i 0.00762130 + 0.0132005i
\(891\) −7.47501 12.9471i −0.250422 0.433744i
\(892\) −6.31767 −0.211531
\(893\) 7.85086 + 13.5981i 0.262719 + 0.455042i
\(894\) 12.9758 22.4748i 0.433977 0.751670i
\(895\) −2.99880 + 5.19408i −0.100239 + 0.173619i
\(896\) −2.49396 −0.0833173
\(897\) 0 0
\(898\) −6.56704 −0.219145
\(899\) 21.5797 37.3772i 0.719724 1.24660i
\(900\) 0.722521 1.25144i 0.0240840 0.0417148i
\(901\) 10.5972 + 18.3548i 0.353043 + 0.611488i
\(902\) 72.7730 2.42308
\(903\) 10.8576 + 18.8058i 0.361317 + 0.625819i
\(904\) 4.11745 + 7.13163i 0.136944 + 0.237195i
\(905\) 16.5676 0.550727
\(906\) 3.71379 + 6.43248i 0.123382 + 0.213705i
\(907\) −12.5558 + 21.7473i −0.416908 + 0.722106i −0.995627 0.0934214i \(-0.970220\pi\)
0.578719 + 0.815527i \(0.303553\pi\)
\(908\) −2.44720 + 4.23867i −0.0812131 + 0.140665i
\(909\) −22.7525 −0.754654
\(910\) 0 0
\(911\) 4.11721 0.136409 0.0682047 0.997671i \(-0.478273\pi\)
0.0682047 + 0.997671i \(0.478273\pi\)
\(912\) 2.52446 4.37249i 0.0835932 0.144788i
\(913\) 42.4722 73.5641i 1.40563 2.43462i
\(914\) −12.0858 20.9331i −0.399761 0.692407i
\(915\) 6.15213 0.203383
\(916\) 0.344814 + 0.597236i 0.0113930 + 0.0197332i
\(917\) 12.2567 + 21.2292i 0.404751 + 0.701049i
\(918\) −23.8116 −0.785901
\(919\) 17.3817 + 30.1059i 0.573368 + 0.993102i 0.996217 + 0.0869019i \(0.0276967\pi\)
−0.422849 + 0.906200i \(0.638970\pi\)
\(920\) −1.55496 + 2.69327i −0.0512655 + 0.0887944i
\(921\) −4.80343 + 8.31978i −0.158278 + 0.274146i
\(922\) 23.5797 0.776556
\(923\) 0 0
\(924\) 18.0435 0.593589
\(925\) 1.33513 2.31251i 0.0438987 0.0760347i
\(926\) 0.841166 1.45694i 0.0276424 0.0478781i
\(927\) −2.67456 4.63248i −0.0878442 0.152151i
\(928\) −5.60388 −0.183956
\(929\) 19.4007 + 33.6031i 0.636517 + 1.10248i 0.986191 + 0.165609i \(0.0529590\pi\)
−0.349674 + 0.936871i \(0.613708\pi\)
\(930\) 4.80194 + 8.31720i 0.157462 + 0.272732i
\(931\) 3.15883 0.103527
\(932\) −7.09030 12.2808i −0.232251 0.402270i
\(933\) −2.93900 + 5.09050i −0.0962186 + 0.166655i
\(934\) −0.188137 + 0.325862i −0.00615602 + 0.0106625i
\(935\) 24.9245 0.815119
\(936\) 0 0
\(937\) −31.7808 −1.03823 −0.519116 0.854704i \(-0.673739\pi\)
−0.519116 + 0.854704i \(0.673739\pi\)
\(938\) 9.99462 17.3112i 0.326336 0.565231i
\(939\) −5.29440 + 9.17018i −0.172776 + 0.299257i
\(940\) 1.93900 + 3.35845i 0.0632432 + 0.109541i
\(941\) −30.2258 −0.985333 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(942\) −5.10992 8.85063i −0.166490 0.288369i
\(943\) −19.5036 33.7813i −0.635126 1.10007i
\(944\) −10.0151 −0.325963
\(945\) 6.91185 + 11.9717i 0.224843 + 0.389439i
\(946\) 20.2561 35.0847i 0.658584 1.14070i
\(947\) 1.27144 2.20220i 0.0413162 0.0715617i −0.844628 0.535354i \(-0.820178\pi\)
0.885944 + 0.463792i \(0.153512\pi\)
\(948\) −2.27413 −0.0738602
\(949\) 0 0
\(950\) −4.04892 −0.131364
\(951\) 16.8659 29.2126i 0.546915 0.947284i
\(952\) 5.35690 9.27842i 0.173618 0.300715i
\(953\) 3.29321 + 5.70400i 0.106677 + 0.184771i 0.914422 0.404761i \(-0.132645\pi\)
−0.807745 + 0.589532i \(0.799312\pi\)
\(954\) 7.12929 0.230819
\(955\) 6.39612 + 11.0784i 0.206974 + 0.358489i
\(956\) 12.8877 + 22.3221i 0.416818 + 0.721949i
\(957\) 40.5435 1.31058
\(958\) 5.01507 + 8.68635i 0.162029 + 0.280643i
\(959\) −5.92692 + 10.2657i −0.191390 + 0.331498i
\(960\) 0.623490 1.07992i 0.0201230 0.0348541i
\(961\) 28.3163 0.913430
\(962\) 0 0
\(963\) −21.7918 −0.702230
\(964\) 3.93362 6.81324i 0.126694 0.219440i
\(965\) 11.7925 20.4253i 0.379615 0.657513i
\(966\) −4.83579 8.37583i −0.155589 0.269488i
\(967\) −23.1884 −0.745688 −0.372844 0.927894i \(-0.621617\pi\)
−0.372844 + 0.927894i \(0.621617\pi\)
\(968\) −11.3312 19.6263i −0.364200 0.630813i
\(969\) 10.8448 + 18.7838i 0.348386 + 0.603422i
\(970\) 8.69202 0.279084
\(971\) 2.29321 + 3.97195i 0.0735926 + 0.127466i 0.900473 0.434911i \(-0.143220\pi\)
−0.826881 + 0.562377i \(0.809887\pi\)
\(972\) −6.70775 + 11.6182i −0.215151 + 0.372653i
\(973\) −2.98493 + 5.17006i −0.0956926 + 0.165744i
\(974\) −15.3297 −0.491197
\(975\) 0 0
\(976\) −4.93362 −0.157921
\(977\) −15.0788 + 26.1172i −0.482412 + 0.835562i −0.999796 0.0201911i \(-0.993573\pi\)
0.517384 + 0.855753i \(0.326906\pi\)
\(978\) −10.5293 + 18.2373i −0.336690 + 0.583164i
\(979\) 1.31916 + 2.28485i 0.0421605 + 0.0730241i
\(980\) 0.780167 0.0249215
\(981\) 12.6310 + 21.8776i 0.403278 + 0.698497i
\(982\) −4.59634 7.96110i −0.146675 0.254049i
\(983\) 0.787463 0.0251162 0.0125581 0.999921i \(-0.496003\pi\)
0.0125581 + 0.999921i \(0.496003\pi\)
\(984\) 7.82036 + 13.5453i 0.249304 + 0.431807i
\(985\) 0.987918 1.71112i 0.0314777 0.0545210i
\(986\) 12.0368 20.8484i 0.383331 0.663949i
\(987\) −12.0603 −0.383882
\(988\) 0 0
\(989\) −21.7151 −0.690501
\(990\) 4.19202 7.26079i 0.133231 0.230763i
\(991\) 6.04461 10.4696i 0.192013 0.332577i −0.753904 0.656984i \(-0.771832\pi\)
0.945917 + 0.324408i \(0.105165\pi\)
\(992\) −3.85086 6.66988i −0.122265 0.211769i
\(993\) 35.8431 1.13745
\(994\) 6.83579 + 11.8399i 0.216818 + 0.375540i
\(995\) 0.417895 + 0.723815i 0.0132482 + 0.0229465i
\(996\) 18.2567 0.578485
\(997\) −23.3303 40.4093i −0.738879 1.27978i −0.953000 0.302969i \(-0.902022\pi\)
0.214121 0.976807i \(-0.431311\pi\)
\(998\) 1.37316 2.37838i 0.0434666 0.0752863i
\(999\) −7.40044 + 12.8179i −0.234139 + 0.405541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.p.191.1 6
13.2 odd 12 1690.2.l.m.361.1 12
13.3 even 3 inner 1690.2.e.p.991.1 6
13.4 even 6 1690.2.a.p.1.3 3
13.5 odd 4 1690.2.l.m.1161.4 12
13.6 odd 12 1690.2.d.i.1351.3 6
13.7 odd 12 1690.2.d.i.1351.6 6
13.8 odd 4 1690.2.l.m.1161.1 12
13.9 even 3 1690.2.a.r.1.3 yes 3
13.10 even 6 1690.2.e.r.991.1 6
13.11 odd 12 1690.2.l.m.361.4 12
13.12 even 2 1690.2.e.r.191.1 6
65.4 even 6 8450.2.a.cg.1.1 3
65.9 even 6 8450.2.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.p.1.3 3 13.4 even 6
1690.2.a.r.1.3 yes 3 13.9 even 3
1690.2.d.i.1351.3 6 13.6 odd 12
1690.2.d.i.1351.6 6 13.7 odd 12
1690.2.e.p.191.1 6 1.1 even 1 trivial
1690.2.e.p.991.1 6 13.3 even 3 inner
1690.2.e.r.191.1 6 13.12 even 2
1690.2.e.r.991.1 6 13.10 even 6
1690.2.l.m.361.1 12 13.2 odd 12
1690.2.l.m.361.4 12 13.11 odd 12
1690.2.l.m.1161.1 12 13.8 odd 4
1690.2.l.m.1161.4 12 13.5 odd 4
8450.2.a.bv.1.1 3 65.9 even 6
8450.2.a.cg.1.1 3 65.4 even 6