Properties

Label 1690.2.d.i.1351.6
Level $1690$
Weight $2$
Character 1690.1351
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1351,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-2,-6,0,0,0,0,-8,6,0,2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.6
Root \(1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1351
Dual form 1690.2.d.i.1351.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.24698 q^{3} -1.00000 q^{4} -1.00000i q^{5} +1.24698i q^{6} +2.49396i q^{7} -1.00000i q^{8} -1.44504 q^{9} +1.00000 q^{10} +5.80194i q^{11} -1.24698 q^{12} -2.49396 q^{14} -1.24698i q^{15} +1.00000 q^{16} -4.29590 q^{17} -1.44504i q^{18} -4.04892i q^{19} +1.00000i q^{20} +3.10992i q^{21} -5.80194 q^{22} +3.10992 q^{23} -1.24698i q^{24} -1.00000 q^{25} -5.54288 q^{27} -2.49396i q^{28} -5.60388 q^{29} +1.24698 q^{30} +7.70171i q^{31} +1.00000i q^{32} +7.23490i q^{33} -4.29590i q^{34} +2.49396 q^{35} +1.44504 q^{36} +2.67025i q^{37} +4.04892 q^{38} -1.00000 q^{40} -12.5429i q^{41} -3.10992 q^{42} -6.98254 q^{43} -5.80194i q^{44} +1.44504i q^{45} +3.10992i q^{46} -3.87800i q^{47} +1.24698 q^{48} +0.780167 q^{49} -1.00000i q^{50} -5.35690 q^{51} -4.93362 q^{53} -5.54288i q^{54} +5.80194 q^{55} +2.49396 q^{56} -5.04892i q^{57} -5.60388i q^{58} +10.0151i q^{59} +1.24698i q^{60} -4.93362 q^{61} -7.70171 q^{62} -3.60388i q^{63} -1.00000 q^{64} -7.23490 q^{66} +8.01507i q^{67} +4.29590 q^{68} +3.87800 q^{69} +2.49396i q^{70} +5.48188i q^{71} +1.44504i q^{72} +8.67456i q^{73} -2.67025 q^{74} -1.24698 q^{75} +4.04892i q^{76} -14.4698 q^{77} -1.82371 q^{79} -1.00000i q^{80} -2.57673 q^{81} +12.5429 q^{82} +14.6407i q^{83} -3.10992i q^{84} +4.29590i q^{85} -6.98254i q^{86} -6.98792 q^{87} +5.80194 q^{88} -0.454731i q^{89} -1.44504 q^{90} -3.10992 q^{92} +9.60388i q^{93} +3.87800 q^{94} -4.04892 q^{95} +1.24698i q^{96} -8.69202i q^{97} +0.780167i q^{98} -8.38404i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{4} - 8 q^{9} + 6 q^{10} + 2 q^{12} + 4 q^{14} + 6 q^{16} + 2 q^{17} - 26 q^{22} + 20 q^{23} - 6 q^{25} + 4 q^{27} - 16 q^{29} - 2 q^{30} - 4 q^{35} + 8 q^{36} + 6 q^{38} - 6 q^{40}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.24698 0.719944 0.359972 0.932963i \(-0.382786\pi\)
0.359972 + 0.932963i \(0.382786\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 1.00000i − 0.447214i
\(6\) 1.24698i 0.509077i
\(7\) 2.49396i 0.942628i 0.881965 + 0.471314i \(0.156220\pi\)
−0.881965 + 0.471314i \(0.843780\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.44504 −0.481681
\(10\) 1.00000 0.316228
\(11\) 5.80194i 1.74935i 0.484710 + 0.874675i \(0.338925\pi\)
−0.484710 + 0.874675i \(0.661075\pi\)
\(12\) −1.24698 −0.359972
\(13\) 0 0
\(14\) −2.49396 −0.666539
\(15\) − 1.24698i − 0.321969i
\(16\) 1.00000 0.250000
\(17\) −4.29590 −1.04191 −0.520954 0.853585i \(-0.674424\pi\)
−0.520954 + 0.853585i \(0.674424\pi\)
\(18\) − 1.44504i − 0.340600i
\(19\) − 4.04892i − 0.928885i −0.885603 0.464443i \(-0.846255\pi\)
0.885603 0.464443i \(-0.153745\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 3.10992i 0.678639i
\(22\) −5.80194 −1.23698
\(23\) 3.10992 0.648462 0.324231 0.945978i \(-0.394894\pi\)
0.324231 + 0.945978i \(0.394894\pi\)
\(24\) − 1.24698i − 0.254539i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.54288 −1.06673
\(28\) − 2.49396i − 0.471314i
\(29\) −5.60388 −1.04061 −0.520307 0.853979i \(-0.674182\pi\)
−0.520307 + 0.853979i \(0.674182\pi\)
\(30\) 1.24698 0.227666
\(31\) 7.70171i 1.38327i 0.722248 + 0.691634i \(0.243109\pi\)
−0.722248 + 0.691634i \(0.756891\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 7.23490i 1.25943i
\(34\) − 4.29590i − 0.736740i
\(35\) 2.49396 0.421556
\(36\) 1.44504 0.240840
\(37\) 2.67025i 0.438987i 0.975614 + 0.219493i \(0.0704404\pi\)
−0.975614 + 0.219493i \(0.929560\pi\)
\(38\) 4.04892 0.656821
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) − 12.5429i − 1.95887i −0.201764 0.979434i \(-0.564667\pi\)
0.201764 0.979434i \(-0.435333\pi\)
\(42\) −3.10992 −0.479870
\(43\) −6.98254 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(44\) − 5.80194i − 0.874675i
\(45\) 1.44504i 0.215414i
\(46\) 3.10992i 0.458532i
\(47\) − 3.87800i − 0.565665i −0.959169 0.282832i \(-0.908726\pi\)
0.959169 0.282832i \(-0.0912740\pi\)
\(48\) 1.24698 0.179986
\(49\) 0.780167 0.111452
\(50\) − 1.00000i − 0.141421i
\(51\) −5.35690 −0.750115
\(52\) 0 0
\(53\) −4.93362 −0.677685 −0.338843 0.940843i \(-0.610035\pi\)
−0.338843 + 0.940843i \(0.610035\pi\)
\(54\) − 5.54288i − 0.754290i
\(55\) 5.80194 0.782333
\(56\) 2.49396 0.333269
\(57\) − 5.04892i − 0.668745i
\(58\) − 5.60388i − 0.735825i
\(59\) 10.0151i 1.30385i 0.758283 + 0.651925i \(0.226038\pi\)
−0.758283 + 0.651925i \(0.773962\pi\)
\(60\) 1.24698i 0.160984i
\(61\) −4.93362 −0.631686 −0.315843 0.948811i \(-0.602287\pi\)
−0.315843 + 0.948811i \(0.602287\pi\)
\(62\) −7.70171 −0.978118
\(63\) − 3.60388i − 0.454046i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −7.23490 −0.890554
\(67\) 8.01507i 0.979196i 0.871948 + 0.489598i \(0.162856\pi\)
−0.871948 + 0.489598i \(0.837144\pi\)
\(68\) 4.29590 0.520954
\(69\) 3.87800 0.466857
\(70\) 2.49396i 0.298085i
\(71\) 5.48188i 0.650579i 0.945614 + 0.325290i \(0.105462\pi\)
−0.945614 + 0.325290i \(0.894538\pi\)
\(72\) 1.44504i 0.170300i
\(73\) 8.67456i 1.01528i 0.861569 + 0.507640i \(0.169482\pi\)
−0.861569 + 0.507640i \(0.830518\pi\)
\(74\) −2.67025 −0.310410
\(75\) −1.24698 −0.143989
\(76\) 4.04892i 0.464443i
\(77\) −14.4698 −1.64899
\(78\) 0 0
\(79\) −1.82371 −0.205183 −0.102592 0.994724i \(-0.532713\pi\)
−0.102592 + 0.994724i \(0.532713\pi\)
\(80\) − 1.00000i − 0.111803i
\(81\) −2.57673 −0.286303
\(82\) 12.5429 1.38513
\(83\) 14.6407i 1.60703i 0.595287 + 0.803513i \(0.297039\pi\)
−0.595287 + 0.803513i \(0.702961\pi\)
\(84\) − 3.10992i − 0.339320i
\(85\) 4.29590i 0.465955i
\(86\) − 6.98254i − 0.752947i
\(87\) −6.98792 −0.749183
\(88\) 5.80194 0.618489
\(89\) − 0.454731i − 0.0482013i −0.999710 0.0241007i \(-0.992328\pi\)
0.999710 0.0241007i \(-0.00767222\pi\)
\(90\) −1.44504 −0.152321
\(91\) 0 0
\(92\) −3.10992 −0.324231
\(93\) 9.60388i 0.995875i
\(94\) 3.87800 0.399985
\(95\) −4.04892 −0.415410
\(96\) 1.24698i 0.127269i
\(97\) − 8.69202i − 0.882541i −0.897374 0.441271i \(-0.854528\pi\)
0.897374 0.441271i \(-0.145472\pi\)
\(98\) 0.780167i 0.0788088i
\(99\) − 8.38404i − 0.842628i
\(100\) 1.00000 0.100000
\(101\) −15.7453 −1.56671 −0.783355 0.621574i \(-0.786494\pi\)
−0.783355 + 0.621574i \(0.786494\pi\)
\(102\) − 5.35690i − 0.530412i
\(103\) 3.70171 0.364740 0.182370 0.983230i \(-0.441623\pi\)
0.182370 + 0.983230i \(0.441623\pi\)
\(104\) 0 0
\(105\) 3.10992 0.303497
\(106\) − 4.93362i − 0.479196i
\(107\) 15.0804 1.45788 0.728938 0.684580i \(-0.240014\pi\)
0.728938 + 0.684580i \(0.240014\pi\)
\(108\) 5.54288 0.533364
\(109\) 17.4819i 1.67446i 0.546851 + 0.837230i \(0.315827\pi\)
−0.546851 + 0.837230i \(0.684173\pi\)
\(110\) 5.80194i 0.553193i
\(111\) 3.32975i 0.316046i
\(112\) 2.49396i 0.235657i
\(113\) −8.23490 −0.774674 −0.387337 0.921938i \(-0.626605\pi\)
−0.387337 + 0.921938i \(0.626605\pi\)
\(114\) 5.04892 0.472874
\(115\) − 3.10992i − 0.290001i
\(116\) 5.60388 0.520307
\(117\) 0 0
\(118\) −10.0151 −0.921962
\(119\) − 10.7138i − 0.982132i
\(120\) −1.24698 −0.113833
\(121\) −22.6625 −2.06023
\(122\) − 4.93362i − 0.446669i
\(123\) − 15.6407i − 1.41028i
\(124\) − 7.70171i − 0.691634i
\(125\) 1.00000i 0.0894427i
\(126\) 3.60388 0.321059
\(127\) 13.0315 1.15635 0.578177 0.815911i \(-0.303764\pi\)
0.578177 + 0.815911i \(0.303764\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −8.70709 −0.766616
\(130\) 0 0
\(131\) 9.82908 0.858771 0.429386 0.903121i \(-0.358730\pi\)
0.429386 + 0.903121i \(0.358730\pi\)
\(132\) − 7.23490i − 0.629717i
\(133\) 10.0978 0.875593
\(134\) −8.01507 −0.692396
\(135\) 5.54288i 0.477055i
\(136\) 4.29590i 0.368370i
\(137\) 4.75302i 0.406078i 0.979171 + 0.203039i \(0.0650818\pi\)
−0.979171 + 0.203039i \(0.934918\pi\)
\(138\) 3.87800i 0.330117i
\(139\) −2.39373 −0.203034 −0.101517 0.994834i \(-0.532370\pi\)
−0.101517 + 0.994834i \(0.532370\pi\)
\(140\) −2.49396 −0.210778
\(141\) − 4.83579i − 0.407247i
\(142\) −5.48188 −0.460029
\(143\) 0 0
\(144\) −1.44504 −0.120420
\(145\) 5.60388i 0.465377i
\(146\) −8.67456 −0.717912
\(147\) 0.972853 0.0802396
\(148\) − 2.67025i − 0.219493i
\(149\) − 20.8116i − 1.70495i −0.522764 0.852477i \(-0.675099\pi\)
0.522764 0.852477i \(-0.324901\pi\)
\(150\) − 1.24698i − 0.101815i
\(151\) 5.95646i 0.484730i 0.970185 + 0.242365i \(0.0779231\pi\)
−0.970185 + 0.242365i \(0.922077\pi\)
\(152\) −4.04892 −0.328411
\(153\) 6.20775 0.501867
\(154\) − 14.4698i − 1.16601i
\(155\) 7.70171 0.618616
\(156\) 0 0
\(157\) 8.19567 0.654086 0.327043 0.945010i \(-0.393948\pi\)
0.327043 + 0.945010i \(0.393948\pi\)
\(158\) − 1.82371i − 0.145086i
\(159\) −6.15213 −0.487896
\(160\) 1.00000 0.0790569
\(161\) 7.75600i 0.611259i
\(162\) − 2.57673i − 0.202447i
\(163\) − 16.8877i − 1.32275i −0.750057 0.661373i \(-0.769974\pi\)
0.750057 0.661373i \(-0.230026\pi\)
\(164\) 12.5429i 0.979434i
\(165\) 7.23490 0.563236
\(166\) −14.6407 −1.13634
\(167\) 19.6582i 1.52119i 0.649224 + 0.760597i \(0.275094\pi\)
−0.649224 + 0.760597i \(0.724906\pi\)
\(168\) 3.10992 0.239935
\(169\) 0 0
\(170\) −4.29590 −0.329480
\(171\) 5.85086i 0.447426i
\(172\) 6.98254 0.532414
\(173\) 16.8659 1.28229 0.641146 0.767419i \(-0.278459\pi\)
0.641146 + 0.767419i \(0.278459\pi\)
\(174\) − 6.98792i − 0.529753i
\(175\) − 2.49396i − 0.188526i
\(176\) 5.80194i 0.437338i
\(177\) 12.4886i 0.938699i
\(178\) 0.454731 0.0340835
\(179\) 5.99761 0.448282 0.224141 0.974557i \(-0.428042\pi\)
0.224141 + 0.974557i \(0.428042\pi\)
\(180\) − 1.44504i − 0.107707i
\(181\) 16.5676 1.23146 0.615731 0.787956i \(-0.288861\pi\)
0.615731 + 0.787956i \(0.288861\pi\)
\(182\) 0 0
\(183\) −6.15213 −0.454778
\(184\) − 3.10992i − 0.229266i
\(185\) 2.67025 0.196321
\(186\) −9.60388 −0.704190
\(187\) − 24.9245i − 1.82266i
\(188\) 3.87800i 0.282832i
\(189\) − 13.8237i − 1.00553i
\(190\) − 4.04892i − 0.293739i
\(191\) 12.7922 0.925615 0.462807 0.886459i \(-0.346842\pi\)
0.462807 + 0.886459i \(0.346842\pi\)
\(192\) −1.24698 −0.0899930
\(193\) − 23.5851i − 1.69769i −0.528640 0.848846i \(-0.677298\pi\)
0.528640 0.848846i \(-0.322702\pi\)
\(194\) 8.69202 0.624051
\(195\) 0 0
\(196\) −0.780167 −0.0557262
\(197\) 1.97584i 0.140773i 0.997520 + 0.0703863i \(0.0224232\pi\)
−0.997520 + 0.0703863i \(0.977577\pi\)
\(198\) 8.38404 0.595828
\(199\) −0.835790 −0.0592476 −0.0296238 0.999561i \(-0.509431\pi\)
−0.0296238 + 0.999561i \(0.509431\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 9.99462i 0.704966i
\(202\) − 15.7453i − 1.10783i
\(203\) − 13.9758i − 0.980911i
\(204\) 5.35690 0.375058
\(205\) −12.5429 −0.876032
\(206\) 3.70171i 0.257910i
\(207\) −4.49396 −0.312352
\(208\) 0 0
\(209\) 23.4916 1.62495
\(210\) 3.10992i 0.214605i
\(211\) 9.36227 0.644525 0.322263 0.946650i \(-0.395557\pi\)
0.322263 + 0.946650i \(0.395557\pi\)
\(212\) 4.93362 0.338843
\(213\) 6.83579i 0.468381i
\(214\) 15.0804i 1.03087i
\(215\) 6.98254i 0.476205i
\(216\) 5.54288i 0.377145i
\(217\) −19.2078 −1.30391
\(218\) −17.4819 −1.18402
\(219\) 10.8170i 0.730945i
\(220\) −5.80194 −0.391167
\(221\) 0 0
\(222\) −3.32975 −0.223478
\(223\) − 6.31767i − 0.423062i −0.977371 0.211531i \(-0.932155\pi\)
0.977371 0.211531i \(-0.0678450\pi\)
\(224\) −2.49396 −0.166635
\(225\) 1.44504 0.0963361
\(226\) − 8.23490i − 0.547777i
\(227\) 4.89440i 0.324852i 0.986721 + 0.162426i \(0.0519320\pi\)
−0.986721 + 0.162426i \(0.948068\pi\)
\(228\) 5.04892i 0.334373i
\(229\) 0.689629i 0.0455719i 0.999740 + 0.0227860i \(0.00725363\pi\)
−0.999740 + 0.0227860i \(0.992746\pi\)
\(230\) 3.10992 0.205062
\(231\) −18.0435 −1.18718
\(232\) 5.60388i 0.367912i
\(233\) −14.1806 −0.929002 −0.464501 0.885573i \(-0.653766\pi\)
−0.464501 + 0.885573i \(0.653766\pi\)
\(234\) 0 0
\(235\) −3.87800 −0.252973
\(236\) − 10.0151i − 0.651925i
\(237\) −2.27413 −0.147720
\(238\) 10.7138 0.694472
\(239\) − 25.7754i − 1.66727i −0.552315 0.833635i \(-0.686255\pi\)
0.552315 0.833635i \(-0.313745\pi\)
\(240\) − 1.24698i − 0.0804922i
\(241\) 7.86725i 0.506774i 0.967365 + 0.253387i \(0.0815446\pi\)
−0.967365 + 0.253387i \(0.918455\pi\)
\(242\) − 22.6625i − 1.45680i
\(243\) 13.4155 0.860605
\(244\) 4.93362 0.315843
\(245\) − 0.780167i − 0.0498431i
\(246\) 15.6407 0.997215
\(247\) 0 0
\(248\) 7.70171 0.489059
\(249\) 18.2567i 1.15697i
\(250\) −1.00000 −0.0632456
\(251\) −19.9782 −1.26101 −0.630507 0.776183i \(-0.717153\pi\)
−0.630507 + 0.776183i \(0.717153\pi\)
\(252\) 3.60388i 0.227023i
\(253\) 18.0435i 1.13439i
\(254\) 13.0315i 0.817666i
\(255\) 5.35690i 0.335462i
\(256\) 1.00000 0.0625000
\(257\) 25.4523 1.58767 0.793837 0.608131i \(-0.208081\pi\)
0.793837 + 0.608131i \(0.208081\pi\)
\(258\) − 8.70709i − 0.542080i
\(259\) −6.65950 −0.413801
\(260\) 0 0
\(261\) 8.09783 0.501243
\(262\) 9.82908i 0.607243i
\(263\) −19.9758 −1.23176 −0.615881 0.787839i \(-0.711200\pi\)
−0.615881 + 0.787839i \(0.711200\pi\)
\(264\) 7.23490 0.445277
\(265\) 4.93362i 0.303070i
\(266\) 10.0978i 0.619138i
\(267\) − 0.567040i − 0.0347023i
\(268\) − 8.01507i − 0.489598i
\(269\) −16.1414 −0.984157 −0.492079 0.870551i \(-0.663763\pi\)
−0.492079 + 0.870551i \(0.663763\pi\)
\(270\) −5.54288 −0.337329
\(271\) 15.1051i 0.917571i 0.888547 + 0.458786i \(0.151715\pi\)
−0.888547 + 0.458786i \(0.848285\pi\)
\(272\) −4.29590 −0.260477
\(273\) 0 0
\(274\) −4.75302 −0.287140
\(275\) − 5.80194i − 0.349870i
\(276\) −3.87800 −0.233428
\(277\) 24.4940 1.47170 0.735850 0.677145i \(-0.236783\pi\)
0.735850 + 0.677145i \(0.236783\pi\)
\(278\) − 2.39373i − 0.143566i
\(279\) − 11.1293i − 0.666293i
\(280\) − 2.49396i − 0.149043i
\(281\) 23.3381i 1.39223i 0.717928 + 0.696117i \(0.245091\pi\)
−0.717928 + 0.696117i \(0.754909\pi\)
\(282\) 4.83579 0.287967
\(283\) 11.4222 0.678980 0.339490 0.940610i \(-0.389746\pi\)
0.339490 + 0.940610i \(0.389746\pi\)
\(284\) − 5.48188i − 0.325290i
\(285\) −5.04892 −0.299072
\(286\) 0 0
\(287\) 31.2814 1.84648
\(288\) − 1.44504i − 0.0851499i
\(289\) 1.45473 0.0855724
\(290\) −5.60388 −0.329071
\(291\) − 10.8388i − 0.635380i
\(292\) − 8.67456i − 0.507640i
\(293\) − 24.4155i − 1.42637i −0.700976 0.713184i \(-0.747252\pi\)
0.700976 0.713184i \(-0.252748\pi\)
\(294\) 0.972853i 0.0567379i
\(295\) 10.0151 0.583100
\(296\) 2.67025 0.155205
\(297\) − 32.1594i − 1.86608i
\(298\) 20.8116 1.20559
\(299\) 0 0
\(300\) 1.24698 0.0719944
\(301\) − 17.4142i − 1.00374i
\(302\) −5.95646 −0.342756
\(303\) −19.6340 −1.12794
\(304\) − 4.04892i − 0.232221i
\(305\) 4.93362i 0.282499i
\(306\) 6.20775i 0.354874i
\(307\) − 7.70410i − 0.439696i −0.975534 0.219848i \(-0.929444\pi\)
0.975534 0.219848i \(-0.0705562\pi\)
\(308\) 14.4698 0.824493
\(309\) 4.61596 0.262593
\(310\) 7.70171i 0.437428i
\(311\) −4.71379 −0.267295 −0.133647 0.991029i \(-0.542669\pi\)
−0.133647 + 0.991029i \(0.542669\pi\)
\(312\) 0 0
\(313\) 8.49157 0.479972 0.239986 0.970776i \(-0.422857\pi\)
0.239986 + 0.970776i \(0.422857\pi\)
\(314\) 8.19567i 0.462508i
\(315\) −3.60388 −0.203055
\(316\) 1.82371 0.102592
\(317\) − 27.0508i − 1.51933i −0.650317 0.759663i \(-0.725364\pi\)
0.650317 0.759663i \(-0.274636\pi\)
\(318\) − 6.15213i − 0.344994i
\(319\) − 32.5133i − 1.82040i
\(320\) 1.00000i 0.0559017i
\(321\) 18.8049 1.04959
\(322\) −7.75600 −0.432225
\(323\) 17.3937i 0.967813i
\(324\) 2.57673 0.143152
\(325\) 0 0
\(326\) 16.8877 0.935323
\(327\) 21.7995i 1.20552i
\(328\) −12.5429 −0.692564
\(329\) 9.67158 0.533211
\(330\) 7.23490i 0.398268i
\(331\) 28.7439i 1.57991i 0.613166 + 0.789954i \(0.289896\pi\)
−0.613166 + 0.789954i \(0.710104\pi\)
\(332\) − 14.6407i − 0.803513i
\(333\) − 3.85862i − 0.211451i
\(334\) −19.6582 −1.07565
\(335\) 8.01507 0.437910
\(336\) 3.10992i 0.169660i
\(337\) 34.5972 1.88463 0.942314 0.334730i \(-0.108645\pi\)
0.942314 + 0.334730i \(0.108645\pi\)
\(338\) 0 0
\(339\) −10.2687 −0.557722
\(340\) − 4.29590i − 0.232978i
\(341\) −44.6848 −2.41982
\(342\) −5.85086 −0.316378
\(343\) 19.4034i 1.04769i
\(344\) 6.98254i 0.376473i
\(345\) − 3.87800i − 0.208785i
\(346\) 16.8659i 0.906718i
\(347\) −28.3043 −1.51945 −0.759726 0.650243i \(-0.774667\pi\)
−0.759726 + 0.650243i \(0.774667\pi\)
\(348\) 6.98792 0.374592
\(349\) 16.8310i 0.900943i 0.892791 + 0.450471i \(0.148744\pi\)
−0.892791 + 0.450471i \(0.851256\pi\)
\(350\) 2.49396 0.133308
\(351\) 0 0
\(352\) −5.80194 −0.309244
\(353\) 23.7429i 1.26370i 0.775089 + 0.631852i \(0.217705\pi\)
−0.775089 + 0.631852i \(0.782295\pi\)
\(354\) −12.4886 −0.663761
\(355\) 5.48188 0.290948
\(356\) 0.454731i 0.0241007i
\(357\) − 13.3599i − 0.707080i
\(358\) 5.99761i 0.316983i
\(359\) − 26.8310i − 1.41609i −0.706169 0.708043i \(-0.749578\pi\)
0.706169 0.708043i \(-0.250422\pi\)
\(360\) 1.44504 0.0761604
\(361\) 2.60627 0.137172
\(362\) 16.5676i 0.870775i
\(363\) −28.2597 −1.48325
\(364\) 0 0
\(365\) 8.67456 0.454047
\(366\) − 6.15213i − 0.321577i
\(367\) −18.0978 −0.944699 −0.472350 0.881411i \(-0.656594\pi\)
−0.472350 + 0.881411i \(0.656594\pi\)
\(368\) 3.10992 0.162116
\(369\) 18.1250i 0.943549i
\(370\) 2.67025i 0.138820i
\(371\) − 12.3043i − 0.638805i
\(372\) − 9.60388i − 0.497938i
\(373\) 14.3720 0.744152 0.372076 0.928202i \(-0.378646\pi\)
0.372076 + 0.928202i \(0.378646\pi\)
\(374\) 24.9245 1.28882
\(375\) 1.24698i 0.0643937i
\(376\) −3.87800 −0.199993
\(377\) 0 0
\(378\) 13.8237 0.711015
\(379\) 26.1806i 1.34481i 0.740185 + 0.672404i \(0.234738\pi\)
−0.740185 + 0.672404i \(0.765262\pi\)
\(380\) 4.04892 0.207705
\(381\) 16.2500 0.832511
\(382\) 12.7922i 0.654508i
\(383\) − 11.3491i − 0.579913i −0.957040 0.289957i \(-0.906359\pi\)
0.957040 0.289957i \(-0.0936409\pi\)
\(384\) − 1.24698i − 0.0636347i
\(385\) 14.4698i 0.737449i
\(386\) 23.5851 1.20045
\(387\) 10.0901 0.512907
\(388\) 8.69202i 0.441271i
\(389\) 12.8465 0.651346 0.325673 0.945483i \(-0.394409\pi\)
0.325673 + 0.945483i \(0.394409\pi\)
\(390\) 0 0
\(391\) −13.3599 −0.675638
\(392\) − 0.780167i − 0.0394044i
\(393\) 12.2567 0.618267
\(394\) −1.97584 −0.0995412
\(395\) 1.82371i 0.0917607i
\(396\) 8.38404i 0.421314i
\(397\) 18.7439i 0.940731i 0.882472 + 0.470365i \(0.155878\pi\)
−0.882472 + 0.470365i \(0.844122\pi\)
\(398\) − 0.835790i − 0.0418943i
\(399\) 12.5918 0.630378
\(400\) −1.00000 −0.0500000
\(401\) 19.8213i 0.989829i 0.868942 + 0.494915i \(0.164801\pi\)
−0.868942 + 0.494915i \(0.835199\pi\)
\(402\) −9.99462 −0.498486
\(403\) 0 0
\(404\) 15.7453 0.783355
\(405\) 2.57673i 0.128039i
\(406\) 13.9758 0.693609
\(407\) −15.4926 −0.767941
\(408\) 5.35690i 0.265206i
\(409\) 18.9487i 0.936952i 0.883476 + 0.468476i \(0.155197\pi\)
−0.883476 + 0.468476i \(0.844803\pi\)
\(410\) − 12.5429i − 0.619449i
\(411\) 5.92692i 0.292353i
\(412\) −3.70171 −0.182370
\(413\) −24.9772 −1.22905
\(414\) − 4.49396i − 0.220866i
\(415\) 14.6407 0.718684
\(416\) 0 0
\(417\) −2.98493 −0.146173
\(418\) 23.4916i 1.14901i
\(419\) 1.86725 0.0912211 0.0456105 0.998959i \(-0.485477\pi\)
0.0456105 + 0.998959i \(0.485477\pi\)
\(420\) −3.10992 −0.151748
\(421\) 27.3250i 1.33174i 0.746069 + 0.665869i \(0.231939\pi\)
−0.746069 + 0.665869i \(0.768061\pi\)
\(422\) 9.36227i 0.455748i
\(423\) 5.60388i 0.272470i
\(424\) 4.93362i 0.239598i
\(425\) 4.29590 0.208382
\(426\) −6.83579 −0.331195
\(427\) − 12.3043i − 0.595445i
\(428\) −15.0804 −0.728938
\(429\) 0 0
\(430\) −6.98254 −0.336728
\(431\) − 1.56033i − 0.0751587i −0.999294 0.0375793i \(-0.988035\pi\)
0.999294 0.0375793i \(-0.0119647\pi\)
\(432\) −5.54288 −0.266682
\(433\) 24.1564 1.16088 0.580442 0.814301i \(-0.302880\pi\)
0.580442 + 0.814301i \(0.302880\pi\)
\(434\) − 19.2078i − 0.922002i
\(435\) 6.98792i 0.335045i
\(436\) − 17.4819i − 0.837230i
\(437\) − 12.5918i − 0.602347i
\(438\) −10.8170 −0.516856
\(439\) −21.3599 −1.01945 −0.509726 0.860337i \(-0.670253\pi\)
−0.509726 + 0.860337i \(0.670253\pi\)
\(440\) − 5.80194i − 0.276597i
\(441\) −1.12737 −0.0536845
\(442\) 0 0
\(443\) −16.5351 −0.785607 −0.392803 0.919623i \(-0.628495\pi\)
−0.392803 + 0.919623i \(0.628495\pi\)
\(444\) − 3.32975i − 0.158023i
\(445\) −0.454731 −0.0215563
\(446\) 6.31767 0.299150
\(447\) − 25.9517i − 1.22747i
\(448\) − 2.49396i − 0.117828i
\(449\) 6.56704i 0.309918i 0.987921 + 0.154959i \(0.0495245\pi\)
−0.987921 + 0.154959i \(0.950475\pi\)
\(450\) 1.44504i 0.0681199i
\(451\) 72.7730 3.42675
\(452\) 8.23490 0.387337
\(453\) 7.42758i 0.348978i
\(454\) −4.89440 −0.229705
\(455\) 0 0
\(456\) −5.04892 −0.236437
\(457\) 24.1715i 1.13070i 0.824853 + 0.565348i \(0.191258\pi\)
−0.824853 + 0.565348i \(0.808742\pi\)
\(458\) −0.689629 −0.0322242
\(459\) 23.8116 1.11143
\(460\) 3.10992i 0.145001i
\(461\) 23.5797i 1.09822i 0.835751 + 0.549108i \(0.185033\pi\)
−0.835751 + 0.549108i \(0.814967\pi\)
\(462\) − 18.0435i − 0.839461i
\(463\) 1.68233i 0.0781846i 0.999236 + 0.0390923i \(0.0124466\pi\)
−0.999236 + 0.0390923i \(0.987553\pi\)
\(464\) −5.60388 −0.260153
\(465\) 9.60388 0.445369
\(466\) − 14.1806i − 0.656904i
\(467\) −0.376273 −0.0174118 −0.00870592 0.999962i \(-0.502771\pi\)
−0.00870592 + 0.999962i \(0.502771\pi\)
\(468\) 0 0
\(469\) −19.9892 −0.923018
\(470\) − 3.87800i − 0.178879i
\(471\) 10.2198 0.470905
\(472\) 10.0151 0.460981
\(473\) − 40.5123i − 1.86276i
\(474\) − 2.27413i − 0.104454i
\(475\) 4.04892i 0.185777i
\(476\) 10.7138i 0.491066i
\(477\) 7.12929 0.326428
\(478\) 25.7754 1.17894
\(479\) 10.0301i 0.458288i 0.973392 + 0.229144i \(0.0735927\pi\)
−0.973392 + 0.229144i \(0.926407\pi\)
\(480\) 1.24698 0.0569166
\(481\) 0 0
\(482\) −7.86725 −0.358343
\(483\) 9.67158i 0.440072i
\(484\) 22.6625 1.03011
\(485\) −8.69202 −0.394684
\(486\) 13.4155i 0.608540i
\(487\) − 15.3297i − 0.694657i −0.937743 0.347329i \(-0.887089\pi\)
0.937743 0.347329i \(-0.112911\pi\)
\(488\) 4.93362i 0.223335i
\(489\) − 21.0586i − 0.952303i
\(490\) 0.780167 0.0352444
\(491\) −9.19269 −0.414860 −0.207430 0.978250i \(-0.566510\pi\)
−0.207430 + 0.978250i \(0.566510\pi\)
\(492\) 15.6407i 0.705138i
\(493\) 24.0737 1.08422
\(494\) 0 0
\(495\) −8.38404 −0.376835
\(496\) 7.70171i 0.345817i
\(497\) −13.6716 −0.613254
\(498\) −18.2567 −0.818101
\(499\) − 2.74632i − 0.122942i −0.998109 0.0614710i \(-0.980421\pi\)
0.998109 0.0614710i \(-0.0195792\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) 24.5133i 1.09518i
\(502\) − 19.9782i − 0.891672i
\(503\) −12.5676 −0.560363 −0.280181 0.959947i \(-0.590395\pi\)
−0.280181 + 0.959947i \(0.590395\pi\)
\(504\) −3.60388 −0.160529
\(505\) 15.7453i 0.700654i
\(506\) −18.0435 −0.802133
\(507\) 0 0
\(508\) −13.0315 −0.578177
\(509\) − 0.0677037i − 0.00300091i −0.999999 0.00150046i \(-0.999522\pi\)
0.999999 0.00150046i \(-0.000477610\pi\)
\(510\) −5.35690 −0.237207
\(511\) −21.6340 −0.957032
\(512\) 1.00000i 0.0441942i
\(513\) 22.4426i 0.990867i
\(514\) 25.4523i 1.12265i
\(515\) − 3.70171i − 0.163117i
\(516\) 8.70709 0.383308
\(517\) 22.4999 0.989546
\(518\) − 6.65950i − 0.292602i
\(519\) 21.0315 0.923179
\(520\) 0 0
\(521\) 8.18060 0.358399 0.179199 0.983813i \(-0.442649\pi\)
0.179199 + 0.983813i \(0.442649\pi\)
\(522\) 8.09783i 0.354433i
\(523\) 16.9312 0.740351 0.370176 0.928962i \(-0.379298\pi\)
0.370176 + 0.928962i \(0.379298\pi\)
\(524\) −9.82908 −0.429386
\(525\) − 3.10992i − 0.135728i
\(526\) − 19.9758i − 0.870988i
\(527\) − 33.0858i − 1.44124i
\(528\) 7.23490i 0.314859i
\(529\) −13.3284 −0.579497
\(530\) −4.93362 −0.214303
\(531\) − 14.4722i − 0.628040i
\(532\) −10.0978 −0.437797
\(533\) 0 0
\(534\) 0.567040 0.0245382
\(535\) − 15.0804i − 0.651982i
\(536\) 8.01507 0.346198
\(537\) 7.47889 0.322738
\(538\) − 16.1414i − 0.695904i
\(539\) 4.52648i 0.194969i
\(540\) − 5.54288i − 0.238527i
\(541\) − 16.5676i − 0.712298i −0.934429 0.356149i \(-0.884090\pi\)
0.934429 0.356149i \(-0.115910\pi\)
\(542\) −15.1051 −0.648821
\(543\) 20.6595 0.886584
\(544\) − 4.29590i − 0.184185i
\(545\) 17.4819 0.748841
\(546\) 0 0
\(547\) −3.57540 −0.152873 −0.0764365 0.997074i \(-0.524354\pi\)
−0.0764365 + 0.997074i \(0.524354\pi\)
\(548\) − 4.75302i − 0.203039i
\(549\) 7.12929 0.304271
\(550\) 5.80194 0.247395
\(551\) 22.6896i 0.966611i
\(552\) − 3.87800i − 0.165059i
\(553\) − 4.54825i − 0.193411i
\(554\) 24.4940i 1.04065i
\(555\) 3.32975 0.141340
\(556\) 2.39373 0.101517
\(557\) − 39.8926i − 1.69030i −0.534526 0.845152i \(-0.679510\pi\)
0.534526 0.845152i \(-0.320490\pi\)
\(558\) 11.1293 0.471141
\(559\) 0 0
\(560\) 2.49396 0.105389
\(561\) − 31.0804i − 1.31221i
\(562\) −23.3381 −0.984459
\(563\) 3.64742 0.153720 0.0768601 0.997042i \(-0.475511\pi\)
0.0768601 + 0.997042i \(0.475511\pi\)
\(564\) 4.83579i 0.203623i
\(565\) 8.23490i 0.346445i
\(566\) 11.4222i 0.480111i
\(567\) − 6.42626i − 0.269877i
\(568\) 5.48188 0.230014
\(569\) −18.3521 −0.769360 −0.384680 0.923050i \(-0.625688\pi\)
−0.384680 + 0.923050i \(0.625688\pi\)
\(570\) − 5.04892i − 0.211476i
\(571\) 19.1987 0.803439 0.401719 0.915763i \(-0.368413\pi\)
0.401719 + 0.915763i \(0.368413\pi\)
\(572\) 0 0
\(573\) 15.9517 0.666391
\(574\) 31.2814i 1.30566i
\(575\) −3.10992 −0.129692
\(576\) 1.44504 0.0602101
\(577\) 35.2218i 1.46630i 0.680067 + 0.733150i \(0.261951\pi\)
−0.680067 + 0.733150i \(0.738049\pi\)
\(578\) 1.45473i 0.0605088i
\(579\) − 29.4101i − 1.22224i
\(580\) − 5.60388i − 0.232688i
\(581\) −36.5133 −1.51483
\(582\) 10.8388 0.449282
\(583\) − 28.6246i − 1.18551i
\(584\) 8.67456 0.358956
\(585\) 0 0
\(586\) 24.4155 1.00860
\(587\) − 32.4596i − 1.33975i −0.742473 0.669876i \(-0.766347\pi\)
0.742473 0.669876i \(-0.233653\pi\)
\(588\) −0.972853 −0.0401198
\(589\) 31.1836 1.28490
\(590\) 10.0151i 0.412314i
\(591\) 2.46383i 0.101348i
\(592\) 2.67025i 0.109747i
\(593\) − 9.57135i − 0.393048i −0.980499 0.196524i \(-0.937035\pi\)
0.980499 0.196524i \(-0.0629654\pi\)
\(594\) 32.1594 1.31952
\(595\) −10.7138 −0.439223
\(596\) 20.8116i 0.852477i
\(597\) −1.04221 −0.0426549
\(598\) 0 0
\(599\) −29.0858 −1.18841 −0.594206 0.804313i \(-0.702534\pi\)
−0.594206 + 0.804313i \(0.702534\pi\)
\(600\) 1.24698i 0.0509077i
\(601\) −6.31229 −0.257484 −0.128742 0.991678i \(-0.541094\pi\)
−0.128742 + 0.991678i \(0.541094\pi\)
\(602\) 17.4142 0.709749
\(603\) − 11.5821i − 0.471660i
\(604\) − 5.95646i − 0.242365i
\(605\) 22.6625i 0.921361i
\(606\) − 19.6340i − 0.797577i
\(607\) 32.4650 1.31771 0.658857 0.752268i \(-0.271040\pi\)
0.658857 + 0.752268i \(0.271040\pi\)
\(608\) 4.04892 0.164205
\(609\) − 17.4276i − 0.706201i
\(610\) −4.93362 −0.199757
\(611\) 0 0
\(612\) −6.20775 −0.250933
\(613\) − 29.7017i − 1.19964i −0.800135 0.599820i \(-0.795239\pi\)
0.800135 0.599820i \(-0.204761\pi\)
\(614\) 7.70410 0.310912
\(615\) −15.6407 −0.630694
\(616\) 14.4698i 0.583005i
\(617\) − 10.8556i − 0.437032i −0.975833 0.218516i \(-0.929878\pi\)
0.975833 0.218516i \(-0.0701215\pi\)
\(618\) 4.61596i 0.185681i
\(619\) 23.2948i 0.936298i 0.883649 + 0.468149i \(0.155079\pi\)
−0.883649 + 0.468149i \(0.844921\pi\)
\(620\) −7.70171 −0.309308
\(621\) −17.2379 −0.691732
\(622\) − 4.71379i − 0.189006i
\(623\) 1.13408 0.0454359
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.49157i 0.339391i
\(627\) 29.2935 1.16987
\(628\) −8.19567 −0.327043
\(629\) − 11.4711i − 0.457384i
\(630\) − 3.60388i − 0.143582i
\(631\) − 6.72455i − 0.267700i −0.991002 0.133850i \(-0.957266\pi\)
0.991002 0.133850i \(-0.0427340\pi\)
\(632\) 1.82371i 0.0725432i
\(633\) 11.6746 0.464022
\(634\) 27.0508 1.07433
\(635\) − 13.0315i − 0.517138i
\(636\) 6.15213 0.243948
\(637\) 0 0
\(638\) 32.5133 1.28722
\(639\) − 7.92154i − 0.313371i
\(640\) −1.00000 −0.0395285
\(641\) −9.32437 −0.368291 −0.184145 0.982899i \(-0.558952\pi\)
−0.184145 + 0.982899i \(0.558952\pi\)
\(642\) 18.8049i 0.742171i
\(643\) − 12.2145i − 0.481691i −0.970563 0.240846i \(-0.922575\pi\)
0.970563 0.240846i \(-0.0774247\pi\)
\(644\) − 7.75600i − 0.305629i
\(645\) 8.70709i 0.342841i
\(646\) −17.3937 −0.684347
\(647\) 36.8853 1.45011 0.725055 0.688691i \(-0.241814\pi\)
0.725055 + 0.688691i \(0.241814\pi\)
\(648\) 2.57673i 0.101223i
\(649\) −58.1068 −2.28089
\(650\) 0 0
\(651\) −23.9517 −0.938740
\(652\) 16.8877i 0.661373i
\(653\) −38.6655 −1.51310 −0.756548 0.653938i \(-0.773116\pi\)
−0.756548 + 0.653938i \(0.773116\pi\)
\(654\) −21.7995 −0.852430
\(655\) − 9.82908i − 0.384054i
\(656\) − 12.5429i − 0.489717i
\(657\) − 12.5351i − 0.489041i
\(658\) 9.67158i 0.377037i
\(659\) −1.19269 −0.0464604 −0.0232302 0.999730i \(-0.507395\pi\)
−0.0232302 + 0.999730i \(0.507395\pi\)
\(660\) −7.23490 −0.281618
\(661\) − 3.93230i − 0.152949i −0.997072 0.0764743i \(-0.975634\pi\)
0.997072 0.0764743i \(-0.0243663\pi\)
\(662\) −28.7439 −1.11716
\(663\) 0 0
\(664\) 14.6407 0.568170
\(665\) − 10.0978i − 0.391577i
\(666\) 3.85862 0.149519
\(667\) −17.4276 −0.674799
\(668\) − 19.6582i − 0.760597i
\(669\) − 7.87800i − 0.304581i
\(670\) 8.01507i 0.309649i
\(671\) − 28.6246i − 1.10504i
\(672\) −3.10992 −0.119968
\(673\) −4.87023 −0.187734 −0.0938668 0.995585i \(-0.529923\pi\)
−0.0938668 + 0.995585i \(0.529923\pi\)
\(674\) 34.5972i 1.33263i
\(675\) 5.54288 0.213345
\(676\) 0 0
\(677\) −14.6461 −0.562895 −0.281447 0.959577i \(-0.590815\pi\)
−0.281447 + 0.959577i \(0.590815\pi\)
\(678\) − 10.2687i − 0.394369i
\(679\) 21.6775 0.831908
\(680\) 4.29590 0.164740
\(681\) 6.10321i 0.233876i
\(682\) − 44.6848i − 1.71107i
\(683\) 35.1997i 1.34688i 0.739242 + 0.673440i \(0.235184\pi\)
−0.739242 + 0.673440i \(0.764816\pi\)
\(684\) − 5.85086i − 0.223713i
\(685\) 4.75302 0.181604
\(686\) −19.4034 −0.740826
\(687\) 0.859953i 0.0328092i
\(688\) −6.98254 −0.266207
\(689\) 0 0
\(690\) 3.87800 0.147633
\(691\) 41.5851i 1.58197i 0.611835 + 0.790986i \(0.290432\pi\)
−0.611835 + 0.790986i \(0.709568\pi\)
\(692\) −16.8659 −0.641146
\(693\) 20.9095 0.794285
\(694\) − 28.3043i − 1.07441i
\(695\) 2.39373i 0.0907994i
\(696\) 6.98792i 0.264876i
\(697\) 53.8829i 2.04096i
\(698\) −16.8310 −0.637063
\(699\) −17.6829 −0.668830
\(700\) 2.49396i 0.0942628i
\(701\) −5.61463 −0.212062 −0.106031 0.994363i \(-0.533814\pi\)
−0.106031 + 0.994363i \(0.533814\pi\)
\(702\) 0 0
\(703\) 10.8116 0.407768
\(704\) − 5.80194i − 0.218669i
\(705\) −4.83579 −0.182126
\(706\) −23.7429 −0.893574
\(707\) − 39.2680i − 1.47683i
\(708\) − 12.4886i − 0.469350i
\(709\) 34.8659i 1.30942i 0.755881 + 0.654709i \(0.227209\pi\)
−0.755881 + 0.654709i \(0.772791\pi\)
\(710\) 5.48188i 0.205731i
\(711\) 2.63533 0.0988328
\(712\) −0.454731 −0.0170417
\(713\) 23.9517i 0.896997i
\(714\) 13.3599 0.499981
\(715\) 0 0
\(716\) −5.99761 −0.224141
\(717\) − 32.1414i − 1.20034i
\(718\) 26.8310 1.00132
\(719\) 1.90217 0.0709388 0.0354694 0.999371i \(-0.488707\pi\)
0.0354694 + 0.999371i \(0.488707\pi\)
\(720\) 1.44504i 0.0538535i
\(721\) 9.23191i 0.343814i
\(722\) 2.60627i 0.0969953i
\(723\) 9.81030i 0.364849i
\(724\) −16.5676 −0.615731
\(725\) 5.60388 0.208123
\(726\) − 28.2597i − 1.04881i
\(727\) 23.7211 0.879766 0.439883 0.898055i \(-0.355020\pi\)
0.439883 + 0.898055i \(0.355020\pi\)
\(728\) 0 0
\(729\) 24.4590 0.905890
\(730\) 8.67456i 0.321060i
\(731\) 29.9963 1.10945
\(732\) 6.15213 0.227389
\(733\) 13.2862i 0.490737i 0.969430 + 0.245369i \(0.0789090\pi\)
−0.969430 + 0.245369i \(0.921091\pi\)
\(734\) − 18.0978i − 0.668003i
\(735\) − 0.972853i − 0.0358842i
\(736\) 3.10992i 0.114633i
\(737\) −46.5029 −1.71296
\(738\) −18.1250 −0.667190
\(739\) 6.34614i 0.233447i 0.993164 + 0.116723i \(0.0372391\pi\)
−0.993164 + 0.116723i \(0.962761\pi\)
\(740\) −2.67025 −0.0981604
\(741\) 0 0
\(742\) 12.3043 0.451704
\(743\) − 40.1801i − 1.47407i −0.675857 0.737033i \(-0.736226\pi\)
0.675857 0.737033i \(-0.263774\pi\)
\(744\) 9.60388 0.352095
\(745\) −20.8116 −0.762479
\(746\) 14.3720i 0.526195i
\(747\) − 21.1564i − 0.774074i
\(748\) 24.9245i 0.911331i
\(749\) 37.6098i 1.37423i
\(750\) −1.24698 −0.0455333
\(751\) −15.5362 −0.566923 −0.283461 0.958984i \(-0.591483\pi\)
−0.283461 + 0.958984i \(0.591483\pi\)
\(752\) − 3.87800i − 0.141416i
\(753\) −24.9124 −0.907860
\(754\) 0 0
\(755\) 5.95646 0.216778
\(756\) 13.8237i 0.502763i
\(757\) 32.2064 1.17056 0.585281 0.810830i \(-0.300984\pi\)
0.585281 + 0.810830i \(0.300984\pi\)
\(758\) −26.1806 −0.950922
\(759\) 22.4999i 0.816696i
\(760\) 4.04892i 0.146870i
\(761\) 19.6472i 0.712209i 0.934446 + 0.356104i \(0.115895\pi\)
−0.934446 + 0.356104i \(0.884105\pi\)
\(762\) 16.2500i 0.588674i
\(763\) −43.5991 −1.57839
\(764\) −12.7922 −0.462807
\(765\) − 6.20775i − 0.224442i
\(766\) 11.3491 0.410061
\(767\) 0 0
\(768\) 1.24698 0.0449965
\(769\) − 6.50232i − 0.234480i −0.993104 0.117240i \(-0.962595\pi\)
0.993104 0.117240i \(-0.0374046\pi\)
\(770\) −14.4698 −0.521455
\(771\) 31.7385 1.14304
\(772\) 23.5851i 0.848846i
\(773\) 32.2586i 1.16026i 0.814524 + 0.580130i \(0.196998\pi\)
−0.814524 + 0.580130i \(0.803002\pi\)
\(774\) 10.0901i 0.362680i
\(775\) − 7.70171i − 0.276654i
\(776\) −8.69202 −0.312025
\(777\) −8.30426 −0.297914
\(778\) 12.8465i 0.460571i
\(779\) −50.7851 −1.81956
\(780\) 0 0
\(781\) −31.8055 −1.13809
\(782\) − 13.3599i − 0.477748i
\(783\) 31.0616 1.11005
\(784\) 0.780167 0.0278631
\(785\) − 8.19567i − 0.292516i
\(786\) 12.2567i 0.437181i
\(787\) 13.6799i 0.487637i 0.969821 + 0.243819i \(0.0784002\pi\)
−0.969821 + 0.243819i \(0.921600\pi\)
\(788\) − 1.97584i − 0.0703863i
\(789\) −24.9095 −0.886800
\(790\) −1.82371 −0.0648846
\(791\) − 20.5375i − 0.730229i
\(792\) −8.38404 −0.297914
\(793\) 0 0
\(794\) −18.7439 −0.665197
\(795\) 6.15213i 0.218194i
\(796\) 0.835790 0.0296238
\(797\) 7.77538 0.275418 0.137709 0.990473i \(-0.456026\pi\)
0.137709 + 0.990473i \(0.456026\pi\)
\(798\) 12.5918i 0.445745i
\(799\) 16.6595i 0.589371i
\(800\) − 1.00000i − 0.0353553i
\(801\) 0.657105i 0.0232177i
\(802\) −19.8213 −0.699915
\(803\) −50.3293 −1.77608
\(804\) − 9.99462i − 0.352483i
\(805\) 7.75600 0.273363
\(806\) 0 0
\(807\) −20.1280 −0.708538
\(808\) 15.7453i 0.553916i
\(809\) −43.1540 −1.51722 −0.758608 0.651548i \(-0.774120\pi\)
−0.758608 + 0.651548i \(0.774120\pi\)
\(810\) −2.57673 −0.0905370
\(811\) 35.8165i 1.25769i 0.777531 + 0.628844i \(0.216472\pi\)
−0.777531 + 0.628844i \(0.783528\pi\)
\(812\) 13.9758i 0.490456i
\(813\) 18.8358i 0.660600i
\(814\) − 15.4926i − 0.543016i
\(815\) −16.8877 −0.591550
\(816\) −5.35690 −0.187529
\(817\) 28.2717i 0.989103i
\(818\) −18.9487 −0.662525
\(819\) 0 0
\(820\) 12.5429 0.438016
\(821\) − 6.70304i − 0.233938i −0.993136 0.116969i \(-0.962682\pi\)
0.993136 0.116969i \(-0.0373178\pi\)
\(822\) −5.92692 −0.206725
\(823\) −35.7103 −1.24478 −0.622392 0.782706i \(-0.713839\pi\)
−0.622392 + 0.782706i \(0.713839\pi\)
\(824\) − 3.70171i − 0.128955i
\(825\) − 7.23490i − 0.251887i
\(826\) − 24.9772i − 0.869067i
\(827\) − 1.79523i − 0.0624264i −0.999513 0.0312132i \(-0.990063\pi\)
0.999513 0.0312132i \(-0.00993708\pi\)
\(828\) 4.49396 0.156176
\(829\) −0.733169 −0.0254640 −0.0127320 0.999919i \(-0.504053\pi\)
−0.0127320 + 0.999919i \(0.504053\pi\)
\(830\) 14.6407i 0.508187i
\(831\) 30.5435 1.05954
\(832\) 0 0
\(833\) −3.35152 −0.116123
\(834\) − 2.98493i − 0.103360i
\(835\) 19.6582 0.680299
\(836\) −23.4916 −0.812473
\(837\) − 42.6896i − 1.47557i
\(838\) 1.86725i 0.0645030i
\(839\) − 26.6112i − 0.918720i −0.888250 0.459360i \(-0.848079\pi\)
0.888250 0.459360i \(-0.151921\pi\)
\(840\) − 3.10992i − 0.107302i
\(841\) 2.40342 0.0828766
\(842\) −27.3250 −0.941680
\(843\) 29.1021i 1.00233i
\(844\) −9.36227 −0.322263
\(845\) 0 0
\(846\) −5.60388 −0.192665
\(847\) − 56.5193i − 1.94203i
\(848\) −4.93362 −0.169421
\(849\) 14.2433 0.488827
\(850\) 4.29590i 0.147348i
\(851\) 8.30426i 0.284666i
\(852\) − 6.83579i − 0.234190i
\(853\) − 4.78746i − 0.163920i −0.996636 0.0819598i \(-0.973882\pi\)
0.996636 0.0819598i \(-0.0261179\pi\)
\(854\) 12.3043 0.421043
\(855\) 5.85086 0.200095
\(856\) − 15.0804i − 0.515437i
\(857\) 24.9748 0.853122 0.426561 0.904459i \(-0.359725\pi\)
0.426561 + 0.904459i \(0.359725\pi\)
\(858\) 0 0
\(859\) −16.2737 −0.555250 −0.277625 0.960690i \(-0.589547\pi\)
−0.277625 + 0.960690i \(0.589547\pi\)
\(860\) − 6.98254i − 0.238103i
\(861\) 39.0073 1.32937
\(862\) 1.56033 0.0531452
\(863\) − 44.3806i − 1.51073i −0.655303 0.755366i \(-0.727459\pi\)
0.655303 0.755366i \(-0.272541\pi\)
\(864\) − 5.54288i − 0.188572i
\(865\) − 16.8659i − 0.573459i
\(866\) 24.1564i 0.820869i
\(867\) 1.81402 0.0616073
\(868\) 19.2078 0.651954
\(869\) − 10.5810i − 0.358937i
\(870\) −6.98792 −0.236913
\(871\) 0 0
\(872\) 17.4819 0.592011
\(873\) 12.5603i 0.425103i
\(874\) 12.5918 0.425924
\(875\) −2.49396 −0.0843112
\(876\) − 10.8170i − 0.365473i
\(877\) − 37.3900i − 1.26257i −0.775551 0.631285i \(-0.782528\pi\)
0.775551 0.631285i \(-0.217472\pi\)
\(878\) − 21.3599i − 0.720861i
\(879\) − 30.4456i − 1.02691i
\(880\) 5.80194 0.195583
\(881\) −38.1885 −1.28660 −0.643301 0.765613i \(-0.722436\pi\)
−0.643301 + 0.765613i \(0.722436\pi\)
\(882\) − 1.12737i − 0.0379607i
\(883\) −4.45281 −0.149849 −0.0749245 0.997189i \(-0.523872\pi\)
−0.0749245 + 0.997189i \(0.523872\pi\)
\(884\) 0 0
\(885\) 12.4886 0.419799
\(886\) − 16.5351i − 0.555508i
\(887\) 6.06292 0.203573 0.101786 0.994806i \(-0.467544\pi\)
0.101786 + 0.994806i \(0.467544\pi\)
\(888\) 3.32975 0.111739
\(889\) 32.4999i 1.09001i
\(890\) − 0.454731i − 0.0152426i
\(891\) − 14.9500i − 0.500844i
\(892\) 6.31767i 0.211531i
\(893\) −15.7017 −0.525438
\(894\) 25.9517 0.867954
\(895\) − 5.99761i − 0.200478i
\(896\) 2.49396 0.0833173
\(897\) 0 0
\(898\) −6.56704 −0.219145
\(899\) − 43.1594i − 1.43945i
\(900\) −1.44504 −0.0481681
\(901\) 21.1943 0.706086
\(902\) 72.7730i 2.42308i
\(903\) − 21.7151i − 0.722634i
\(904\) 8.23490i 0.273889i
\(905\) − 16.5676i − 0.550727i
\(906\) −7.42758 −0.246765
\(907\) −25.1116 −0.833816 −0.416908 0.908949i \(-0.636886\pi\)
−0.416908 + 0.908949i \(0.636886\pi\)
\(908\) − 4.89440i − 0.162426i
\(909\) 22.7525 0.754654
\(910\) 0 0
\(911\) 4.11721 0.136409 0.0682047 0.997671i \(-0.478273\pi\)
0.0682047 + 0.997671i \(0.478273\pi\)
\(912\) − 5.04892i − 0.167186i
\(913\) −84.9445 −2.81125
\(914\) −24.1715 −0.799522
\(915\) 6.15213i 0.203383i
\(916\) − 0.689629i − 0.0227860i
\(917\) 24.5133i 0.809502i
\(918\) 23.8116i 0.785901i
\(919\) −34.7633 −1.14674 −0.573368 0.819298i \(-0.694363\pi\)
−0.573368 + 0.819298i \(0.694363\pi\)
\(920\) −3.10992 −0.102531
\(921\) − 9.60686i − 0.316557i
\(922\) −23.5797 −0.776556
\(923\) 0 0
\(924\) 18.0435 0.593589
\(925\) − 2.67025i − 0.0877973i
\(926\) −1.68233 −0.0552849
\(927\) −5.34913 −0.175688
\(928\) − 5.60388i − 0.183956i
\(929\) − 38.8015i − 1.27303i −0.771262 0.636517i \(-0.780374\pi\)
0.771262 0.636517i \(-0.219626\pi\)
\(930\) 9.60388i 0.314923i
\(931\) − 3.15883i − 0.103527i
\(932\) 14.1806 0.464501
\(933\) −5.87800 −0.192437
\(934\) − 0.376273i − 0.0123120i
\(935\) −24.9245 −0.815119
\(936\) 0 0
\(937\) −31.7808 −1.03823 −0.519116 0.854704i \(-0.673739\pi\)
−0.519116 + 0.854704i \(0.673739\pi\)
\(938\) − 19.9892i − 0.652672i
\(939\) 10.5888 0.345553
\(940\) 3.87800 0.126486
\(941\) − 30.2258i − 0.985333i −0.870218 0.492666i \(-0.836022\pi\)
0.870218 0.492666i \(-0.163978\pi\)
\(942\) 10.2198i 0.332980i
\(943\) − 39.0073i − 1.27025i
\(944\) 10.0151i 0.325963i
\(945\) −13.8237 −0.449685
\(946\) 40.5123 1.31717
\(947\) 2.54288i 0.0826324i 0.999146 + 0.0413162i \(0.0131551\pi\)
−0.999146 + 0.0413162i \(0.986845\pi\)
\(948\) 2.27413 0.0738602
\(949\) 0 0
\(950\) −4.04892 −0.131364
\(951\) − 33.7318i − 1.09383i
\(952\) −10.7138 −0.347236
\(953\) 6.58642 0.213355 0.106677 0.994294i \(-0.465979\pi\)
0.106677 + 0.994294i \(0.465979\pi\)
\(954\) 7.12929i 0.230819i
\(955\) − 12.7922i − 0.413947i
\(956\) 25.7754i 0.833635i
\(957\) − 40.5435i − 1.31058i
\(958\) −10.0301 −0.324059
\(959\) −11.8538 −0.382780
\(960\) 1.24698i 0.0402461i
\(961\) −28.3163 −0.913430
\(962\) 0 0
\(963\) −21.7918 −0.702230
\(964\) − 7.86725i − 0.253387i
\(965\) −23.5851 −0.759231
\(966\) −9.67158 −0.311178
\(967\) − 23.1884i − 0.745688i −0.927894 0.372844i \(-0.878383\pi\)
0.927894 0.372844i \(-0.121617\pi\)
\(968\) 22.6625i 0.728400i
\(969\) 21.6896i 0.696771i
\(970\) − 8.69202i − 0.279084i
\(971\) −4.58642 −0.147185 −0.0735926 0.997288i \(-0.523446\pi\)
−0.0735926 + 0.997288i \(0.523446\pi\)
\(972\) −13.4155 −0.430302
\(973\) − 5.96987i − 0.191385i
\(974\) 15.3297 0.491197
\(975\) 0 0
\(976\) −4.93362 −0.157921
\(977\) 30.1575i 0.964824i 0.875944 + 0.482412i \(0.160239\pi\)
−0.875944 + 0.482412i \(0.839761\pi\)
\(978\) 21.0586 0.673380
\(979\) 2.63832 0.0843210
\(980\) 0.780167i 0.0249215i
\(981\) − 25.2620i − 0.806555i
\(982\) − 9.19269i − 0.293350i
\(983\) − 0.787463i − 0.0251162i −0.999921 0.0125581i \(-0.996003\pi\)
0.999921 0.0125581i \(-0.00399747\pi\)
\(984\) −15.6407 −0.498608
\(985\) 1.97584 0.0629554
\(986\) 24.0737i 0.766662i
\(987\) 12.0603 0.383882
\(988\) 0 0
\(989\) −21.7151 −0.690501
\(990\) − 8.38404i − 0.266462i
\(991\) −12.0892 −0.384026 −0.192013 0.981392i \(-0.561502\pi\)
−0.192013 + 0.981392i \(0.561502\pi\)
\(992\) −7.70171 −0.244530
\(993\) 35.8431i 1.13745i
\(994\) − 13.6716i − 0.433636i
\(995\) 0.835790i 0.0264963i
\(996\) − 18.2567i − 0.578485i
\(997\) 46.6607 1.47776 0.738879 0.673838i \(-0.235355\pi\)
0.738879 + 0.673838i \(0.235355\pi\)
\(998\) 2.74632 0.0869331
\(999\) − 14.8009i − 0.468279i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.d.i.1351.6 6
13.2 odd 12 1690.2.e.p.191.1 6
13.3 even 3 1690.2.l.m.1161.1 12
13.4 even 6 1690.2.l.m.361.1 12
13.5 odd 4 1690.2.a.r.1.3 yes 3
13.6 odd 12 1690.2.e.p.991.1 6
13.7 odd 12 1690.2.e.r.991.1 6
13.8 odd 4 1690.2.a.p.1.3 3
13.9 even 3 1690.2.l.m.361.4 12
13.10 even 6 1690.2.l.m.1161.4 12
13.11 odd 12 1690.2.e.r.191.1 6
13.12 even 2 inner 1690.2.d.i.1351.3 6
65.34 odd 4 8450.2.a.cg.1.1 3
65.44 odd 4 8450.2.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.p.1.3 3 13.8 odd 4
1690.2.a.r.1.3 yes 3 13.5 odd 4
1690.2.d.i.1351.3 6 13.12 even 2 inner
1690.2.d.i.1351.6 6 1.1 even 1 trivial
1690.2.e.p.191.1 6 13.2 odd 12
1690.2.e.p.991.1 6 13.6 odd 12
1690.2.e.r.191.1 6 13.11 odd 12
1690.2.e.r.991.1 6 13.7 odd 12
1690.2.l.m.361.1 12 13.4 even 6
1690.2.l.m.361.4 12 13.9 even 3
1690.2.l.m.1161.1 12 13.3 even 3
1690.2.l.m.1161.4 12 13.10 even 6
8450.2.a.bv.1.1 3 65.44 odd 4
8450.2.a.cg.1.1 3 65.34 odd 4