Properties

Label 1690.2.a.r.1.3
Level $1690$
Weight $2$
Character 1690.1
Self dual yes
Analytic conductor $13.495$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-1,3,-3,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4947179416\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 1690.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.24698 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.24698 q^{6} -2.49396 q^{7} +1.00000 q^{8} -1.44504 q^{9} -1.00000 q^{10} -5.80194 q^{11} +1.24698 q^{12} -2.49396 q^{14} -1.24698 q^{15} +1.00000 q^{16} +4.29590 q^{17} -1.44504 q^{18} -4.04892 q^{19} -1.00000 q^{20} -3.10992 q^{21} -5.80194 q^{22} -3.10992 q^{23} +1.24698 q^{24} +1.00000 q^{25} -5.54288 q^{27} -2.49396 q^{28} -5.60388 q^{29} -1.24698 q^{30} +7.70171 q^{31} +1.00000 q^{32} -7.23490 q^{33} +4.29590 q^{34} +2.49396 q^{35} -1.44504 q^{36} -2.67025 q^{37} -4.04892 q^{38} -1.00000 q^{40} -12.5429 q^{41} -3.10992 q^{42} +6.98254 q^{43} -5.80194 q^{44} +1.44504 q^{45} -3.10992 q^{46} +3.87800 q^{47} +1.24698 q^{48} -0.780167 q^{49} +1.00000 q^{50} +5.35690 q^{51} -4.93362 q^{53} -5.54288 q^{54} +5.80194 q^{55} -2.49396 q^{56} -5.04892 q^{57} -5.60388 q^{58} -10.0151 q^{59} -1.24698 q^{60} -4.93362 q^{61} +7.70171 q^{62} +3.60388 q^{63} +1.00000 q^{64} -7.23490 q^{66} +8.01507 q^{67} +4.29590 q^{68} -3.87800 q^{69} +2.49396 q^{70} +5.48188 q^{71} -1.44504 q^{72} -8.67456 q^{73} -2.67025 q^{74} +1.24698 q^{75} -4.04892 q^{76} +14.4698 q^{77} -1.82371 q^{79} -1.00000 q^{80} -2.57673 q^{81} -12.5429 q^{82} +14.6407 q^{83} -3.10992 q^{84} -4.29590 q^{85} +6.98254 q^{86} -6.98792 q^{87} -5.80194 q^{88} +0.454731 q^{89} +1.44504 q^{90} -3.10992 q^{92} +9.60388 q^{93} +3.87800 q^{94} +4.04892 q^{95} +1.24698 q^{96} -8.69202 q^{97} -0.780167 q^{98} +8.38404 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - q^{3} + 3 q^{4} - 3 q^{5} - q^{6} + 2 q^{7} + 3 q^{8} - 4 q^{9} - 3 q^{10} - 13 q^{11} - q^{12} + 2 q^{14} + q^{15} + 3 q^{16} - q^{17} - 4 q^{18} - 3 q^{19} - 3 q^{20} - 10 q^{21}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.24698 0.719944 0.359972 0.932963i \(-0.382786\pi\)
0.359972 + 0.932963i \(0.382786\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.24698 0.509077
\(7\) −2.49396 −0.942628 −0.471314 0.881965i \(-0.656220\pi\)
−0.471314 + 0.881965i \(0.656220\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.44504 −0.481681
\(10\) −1.00000 −0.316228
\(11\) −5.80194 −1.74935 −0.874675 0.484710i \(-0.838925\pi\)
−0.874675 + 0.484710i \(0.838925\pi\)
\(12\) 1.24698 0.359972
\(13\) 0 0
\(14\) −2.49396 −0.666539
\(15\) −1.24698 −0.321969
\(16\) 1.00000 0.250000
\(17\) 4.29590 1.04191 0.520954 0.853585i \(-0.325576\pi\)
0.520954 + 0.853585i \(0.325576\pi\)
\(18\) −1.44504 −0.340600
\(19\) −4.04892 −0.928885 −0.464443 0.885603i \(-0.653745\pi\)
−0.464443 + 0.885603i \(0.653745\pi\)
\(20\) −1.00000 −0.223607
\(21\) −3.10992 −0.678639
\(22\) −5.80194 −1.23698
\(23\) −3.10992 −0.648462 −0.324231 0.945978i \(-0.605106\pi\)
−0.324231 + 0.945978i \(0.605106\pi\)
\(24\) 1.24698 0.254539
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.54288 −1.06673
\(28\) −2.49396 −0.471314
\(29\) −5.60388 −1.04061 −0.520307 0.853979i \(-0.674182\pi\)
−0.520307 + 0.853979i \(0.674182\pi\)
\(30\) −1.24698 −0.227666
\(31\) 7.70171 1.38327 0.691634 0.722248i \(-0.256891\pi\)
0.691634 + 0.722248i \(0.256891\pi\)
\(32\) 1.00000 0.176777
\(33\) −7.23490 −1.25943
\(34\) 4.29590 0.736740
\(35\) 2.49396 0.421556
\(36\) −1.44504 −0.240840
\(37\) −2.67025 −0.438987 −0.219493 0.975614i \(-0.570440\pi\)
−0.219493 + 0.975614i \(0.570440\pi\)
\(38\) −4.04892 −0.656821
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −12.5429 −1.95887 −0.979434 0.201764i \(-0.935333\pi\)
−0.979434 + 0.201764i \(0.935333\pi\)
\(42\) −3.10992 −0.479870
\(43\) 6.98254 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(44\) −5.80194 −0.874675
\(45\) 1.44504 0.215414
\(46\) −3.10992 −0.458532
\(47\) 3.87800 0.565665 0.282832 0.959169i \(-0.408726\pi\)
0.282832 + 0.959169i \(0.408726\pi\)
\(48\) 1.24698 0.179986
\(49\) −0.780167 −0.111452
\(50\) 1.00000 0.141421
\(51\) 5.35690 0.750115
\(52\) 0 0
\(53\) −4.93362 −0.677685 −0.338843 0.940843i \(-0.610035\pi\)
−0.338843 + 0.940843i \(0.610035\pi\)
\(54\) −5.54288 −0.754290
\(55\) 5.80194 0.782333
\(56\) −2.49396 −0.333269
\(57\) −5.04892 −0.668745
\(58\) −5.60388 −0.735825
\(59\) −10.0151 −1.30385 −0.651925 0.758283i \(-0.726038\pi\)
−0.651925 + 0.758283i \(0.726038\pi\)
\(60\) −1.24698 −0.160984
\(61\) −4.93362 −0.631686 −0.315843 0.948811i \(-0.602287\pi\)
−0.315843 + 0.948811i \(0.602287\pi\)
\(62\) 7.70171 0.978118
\(63\) 3.60388 0.454046
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −7.23490 −0.890554
\(67\) 8.01507 0.979196 0.489598 0.871948i \(-0.337144\pi\)
0.489598 + 0.871948i \(0.337144\pi\)
\(68\) 4.29590 0.520954
\(69\) −3.87800 −0.466857
\(70\) 2.49396 0.298085
\(71\) 5.48188 0.650579 0.325290 0.945614i \(-0.394538\pi\)
0.325290 + 0.945614i \(0.394538\pi\)
\(72\) −1.44504 −0.170300
\(73\) −8.67456 −1.01528 −0.507640 0.861569i \(-0.669482\pi\)
−0.507640 + 0.861569i \(0.669482\pi\)
\(74\) −2.67025 −0.310410
\(75\) 1.24698 0.143989
\(76\) −4.04892 −0.464443
\(77\) 14.4698 1.64899
\(78\) 0 0
\(79\) −1.82371 −0.205183 −0.102592 0.994724i \(-0.532713\pi\)
−0.102592 + 0.994724i \(0.532713\pi\)
\(80\) −1.00000 −0.111803
\(81\) −2.57673 −0.286303
\(82\) −12.5429 −1.38513
\(83\) 14.6407 1.60703 0.803513 0.595287i \(-0.202961\pi\)
0.803513 + 0.595287i \(0.202961\pi\)
\(84\) −3.10992 −0.339320
\(85\) −4.29590 −0.465955
\(86\) 6.98254 0.752947
\(87\) −6.98792 −0.749183
\(88\) −5.80194 −0.618489
\(89\) 0.454731 0.0482013 0.0241007 0.999710i \(-0.492328\pi\)
0.0241007 + 0.999710i \(0.492328\pi\)
\(90\) 1.44504 0.152321
\(91\) 0 0
\(92\) −3.10992 −0.324231
\(93\) 9.60388 0.995875
\(94\) 3.87800 0.399985
\(95\) 4.04892 0.415410
\(96\) 1.24698 0.127269
\(97\) −8.69202 −0.882541 −0.441271 0.897374i \(-0.645472\pi\)
−0.441271 + 0.897374i \(0.645472\pi\)
\(98\) −0.780167 −0.0788088
\(99\) 8.38404 0.842628
\(100\) 1.00000 0.100000
\(101\) 15.7453 1.56671 0.783355 0.621574i \(-0.213506\pi\)
0.783355 + 0.621574i \(0.213506\pi\)
\(102\) 5.35690 0.530412
\(103\) −3.70171 −0.364740 −0.182370 0.983230i \(-0.558377\pi\)
−0.182370 + 0.983230i \(0.558377\pi\)
\(104\) 0 0
\(105\) 3.10992 0.303497
\(106\) −4.93362 −0.479196
\(107\) 15.0804 1.45788 0.728938 0.684580i \(-0.240014\pi\)
0.728938 + 0.684580i \(0.240014\pi\)
\(108\) −5.54288 −0.533364
\(109\) 17.4819 1.67446 0.837230 0.546851i \(-0.184173\pi\)
0.837230 + 0.546851i \(0.184173\pi\)
\(110\) 5.80194 0.553193
\(111\) −3.32975 −0.316046
\(112\) −2.49396 −0.235657
\(113\) −8.23490 −0.774674 −0.387337 0.921938i \(-0.626605\pi\)
−0.387337 + 0.921938i \(0.626605\pi\)
\(114\) −5.04892 −0.472874
\(115\) 3.10992 0.290001
\(116\) −5.60388 −0.520307
\(117\) 0 0
\(118\) −10.0151 −0.921962
\(119\) −10.7138 −0.982132
\(120\) −1.24698 −0.113833
\(121\) 22.6625 2.06023
\(122\) −4.93362 −0.446669
\(123\) −15.6407 −1.41028
\(124\) 7.70171 0.691634
\(125\) −1.00000 −0.0894427
\(126\) 3.60388 0.321059
\(127\) −13.0315 −1.15635 −0.578177 0.815911i \(-0.696236\pi\)
−0.578177 + 0.815911i \(0.696236\pi\)
\(128\) 1.00000 0.0883883
\(129\) 8.70709 0.766616
\(130\) 0 0
\(131\) 9.82908 0.858771 0.429386 0.903121i \(-0.358730\pi\)
0.429386 + 0.903121i \(0.358730\pi\)
\(132\) −7.23490 −0.629717
\(133\) 10.0978 0.875593
\(134\) 8.01507 0.692396
\(135\) 5.54288 0.477055
\(136\) 4.29590 0.368370
\(137\) −4.75302 −0.406078 −0.203039 0.979171i \(-0.565082\pi\)
−0.203039 + 0.979171i \(0.565082\pi\)
\(138\) −3.87800 −0.330117
\(139\) −2.39373 −0.203034 −0.101517 0.994834i \(-0.532370\pi\)
−0.101517 + 0.994834i \(0.532370\pi\)
\(140\) 2.49396 0.210778
\(141\) 4.83579 0.407247
\(142\) 5.48188 0.460029
\(143\) 0 0
\(144\) −1.44504 −0.120420
\(145\) 5.60388 0.465377
\(146\) −8.67456 −0.717912
\(147\) −0.972853 −0.0802396
\(148\) −2.67025 −0.219493
\(149\) −20.8116 −1.70495 −0.852477 0.522764i \(-0.824901\pi\)
−0.852477 + 0.522764i \(0.824901\pi\)
\(150\) 1.24698 0.101815
\(151\) −5.95646 −0.484730 −0.242365 0.970185i \(-0.577923\pi\)
−0.242365 + 0.970185i \(0.577923\pi\)
\(152\) −4.04892 −0.328411
\(153\) −6.20775 −0.501867
\(154\) 14.4698 1.16601
\(155\) −7.70171 −0.618616
\(156\) 0 0
\(157\) 8.19567 0.654086 0.327043 0.945010i \(-0.393948\pi\)
0.327043 + 0.945010i \(0.393948\pi\)
\(158\) −1.82371 −0.145086
\(159\) −6.15213 −0.487896
\(160\) −1.00000 −0.0790569
\(161\) 7.75600 0.611259
\(162\) −2.57673 −0.202447
\(163\) 16.8877 1.32275 0.661373 0.750057i \(-0.269974\pi\)
0.661373 + 0.750057i \(0.269974\pi\)
\(164\) −12.5429 −0.979434
\(165\) 7.23490 0.563236
\(166\) 14.6407 1.13634
\(167\) −19.6582 −1.52119 −0.760597 0.649224i \(-0.775094\pi\)
−0.760597 + 0.649224i \(0.775094\pi\)
\(168\) −3.10992 −0.239935
\(169\) 0 0
\(170\) −4.29590 −0.329480
\(171\) 5.85086 0.447426
\(172\) 6.98254 0.532414
\(173\) −16.8659 −1.28229 −0.641146 0.767419i \(-0.721541\pi\)
−0.641146 + 0.767419i \(0.721541\pi\)
\(174\) −6.98792 −0.529753
\(175\) −2.49396 −0.188526
\(176\) −5.80194 −0.437338
\(177\) −12.4886 −0.938699
\(178\) 0.454731 0.0340835
\(179\) −5.99761 −0.448282 −0.224141 0.974557i \(-0.571958\pi\)
−0.224141 + 0.974557i \(0.571958\pi\)
\(180\) 1.44504 0.107707
\(181\) −16.5676 −1.23146 −0.615731 0.787956i \(-0.711139\pi\)
−0.615731 + 0.787956i \(0.711139\pi\)
\(182\) 0 0
\(183\) −6.15213 −0.454778
\(184\) −3.10992 −0.229266
\(185\) 2.67025 0.196321
\(186\) 9.60388 0.704190
\(187\) −24.9245 −1.82266
\(188\) 3.87800 0.282832
\(189\) 13.8237 1.00553
\(190\) 4.04892 0.293739
\(191\) 12.7922 0.925615 0.462807 0.886459i \(-0.346842\pi\)
0.462807 + 0.886459i \(0.346842\pi\)
\(192\) 1.24698 0.0899930
\(193\) 23.5851 1.69769 0.848846 0.528640i \(-0.177298\pi\)
0.848846 + 0.528640i \(0.177298\pi\)
\(194\) −8.69202 −0.624051
\(195\) 0 0
\(196\) −0.780167 −0.0557262
\(197\) 1.97584 0.140773 0.0703863 0.997520i \(-0.477577\pi\)
0.0703863 + 0.997520i \(0.477577\pi\)
\(198\) 8.38404 0.595828
\(199\) 0.835790 0.0592476 0.0296238 0.999561i \(-0.490569\pi\)
0.0296238 + 0.999561i \(0.490569\pi\)
\(200\) 1.00000 0.0707107
\(201\) 9.99462 0.704966
\(202\) 15.7453 1.10783
\(203\) 13.9758 0.980911
\(204\) 5.35690 0.375058
\(205\) 12.5429 0.876032
\(206\) −3.70171 −0.257910
\(207\) 4.49396 0.312352
\(208\) 0 0
\(209\) 23.4916 1.62495
\(210\) 3.10992 0.214605
\(211\) 9.36227 0.644525 0.322263 0.946650i \(-0.395557\pi\)
0.322263 + 0.946650i \(0.395557\pi\)
\(212\) −4.93362 −0.338843
\(213\) 6.83579 0.468381
\(214\) 15.0804 1.03087
\(215\) −6.98254 −0.476205
\(216\) −5.54288 −0.377145
\(217\) −19.2078 −1.30391
\(218\) 17.4819 1.18402
\(219\) −10.8170 −0.730945
\(220\) 5.80194 0.391167
\(221\) 0 0
\(222\) −3.32975 −0.223478
\(223\) −6.31767 −0.423062 −0.211531 0.977371i \(-0.567845\pi\)
−0.211531 + 0.977371i \(0.567845\pi\)
\(224\) −2.49396 −0.166635
\(225\) −1.44504 −0.0963361
\(226\) −8.23490 −0.547777
\(227\) 4.89440 0.324852 0.162426 0.986721i \(-0.448068\pi\)
0.162426 + 0.986721i \(0.448068\pi\)
\(228\) −5.04892 −0.334373
\(229\) −0.689629 −0.0455719 −0.0227860 0.999740i \(-0.507254\pi\)
−0.0227860 + 0.999740i \(0.507254\pi\)
\(230\) 3.10992 0.205062
\(231\) 18.0435 1.18718
\(232\) −5.60388 −0.367912
\(233\) 14.1806 0.929002 0.464501 0.885573i \(-0.346234\pi\)
0.464501 + 0.885573i \(0.346234\pi\)
\(234\) 0 0
\(235\) −3.87800 −0.252973
\(236\) −10.0151 −0.651925
\(237\) −2.27413 −0.147720
\(238\) −10.7138 −0.694472
\(239\) −25.7754 −1.66727 −0.833635 0.552315i \(-0.813745\pi\)
−0.833635 + 0.552315i \(0.813745\pi\)
\(240\) −1.24698 −0.0804922
\(241\) −7.86725 −0.506774 −0.253387 0.967365i \(-0.581545\pi\)
−0.253387 + 0.967365i \(0.581545\pi\)
\(242\) 22.6625 1.45680
\(243\) 13.4155 0.860605
\(244\) −4.93362 −0.315843
\(245\) 0.780167 0.0498431
\(246\) −15.6407 −0.997215
\(247\) 0 0
\(248\) 7.70171 0.489059
\(249\) 18.2567 1.15697
\(250\) −1.00000 −0.0632456
\(251\) 19.9782 1.26101 0.630507 0.776183i \(-0.282847\pi\)
0.630507 + 0.776183i \(0.282847\pi\)
\(252\) 3.60388 0.227023
\(253\) 18.0435 1.13439
\(254\) −13.0315 −0.817666
\(255\) −5.35690 −0.335462
\(256\) 1.00000 0.0625000
\(257\) −25.4523 −1.58767 −0.793837 0.608131i \(-0.791919\pi\)
−0.793837 + 0.608131i \(0.791919\pi\)
\(258\) 8.70709 0.542080
\(259\) 6.65950 0.413801
\(260\) 0 0
\(261\) 8.09783 0.501243
\(262\) 9.82908 0.607243
\(263\) −19.9758 −1.23176 −0.615881 0.787839i \(-0.711200\pi\)
−0.615881 + 0.787839i \(0.711200\pi\)
\(264\) −7.23490 −0.445277
\(265\) 4.93362 0.303070
\(266\) 10.0978 0.619138
\(267\) 0.567040 0.0347023
\(268\) 8.01507 0.489598
\(269\) −16.1414 −0.984157 −0.492079 0.870551i \(-0.663763\pi\)
−0.492079 + 0.870551i \(0.663763\pi\)
\(270\) 5.54288 0.337329
\(271\) −15.1051 −0.917571 −0.458786 0.888547i \(-0.651715\pi\)
−0.458786 + 0.888547i \(0.651715\pi\)
\(272\) 4.29590 0.260477
\(273\) 0 0
\(274\) −4.75302 −0.287140
\(275\) −5.80194 −0.349870
\(276\) −3.87800 −0.233428
\(277\) −24.4940 −1.47170 −0.735850 0.677145i \(-0.763217\pi\)
−0.735850 + 0.677145i \(0.763217\pi\)
\(278\) −2.39373 −0.143566
\(279\) −11.1293 −0.666293
\(280\) 2.49396 0.149043
\(281\) −23.3381 −1.39223 −0.696117 0.717928i \(-0.745091\pi\)
−0.696117 + 0.717928i \(0.745091\pi\)
\(282\) 4.83579 0.287967
\(283\) −11.4222 −0.678980 −0.339490 0.940610i \(-0.610254\pi\)
−0.339490 + 0.940610i \(0.610254\pi\)
\(284\) 5.48188 0.325290
\(285\) 5.04892 0.299072
\(286\) 0 0
\(287\) 31.2814 1.84648
\(288\) −1.44504 −0.0851499
\(289\) 1.45473 0.0855724
\(290\) 5.60388 0.329071
\(291\) −10.8388 −0.635380
\(292\) −8.67456 −0.507640
\(293\) 24.4155 1.42637 0.713184 0.700976i \(-0.247252\pi\)
0.713184 + 0.700976i \(0.247252\pi\)
\(294\) −0.972853 −0.0567379
\(295\) 10.0151 0.583100
\(296\) −2.67025 −0.155205
\(297\) 32.1594 1.86608
\(298\) −20.8116 −1.20559
\(299\) 0 0
\(300\) 1.24698 0.0719944
\(301\) −17.4142 −1.00374
\(302\) −5.95646 −0.342756
\(303\) 19.6340 1.12794
\(304\) −4.04892 −0.232221
\(305\) 4.93362 0.282499
\(306\) −6.20775 −0.354874
\(307\) 7.70410 0.439696 0.219848 0.975534i \(-0.429444\pi\)
0.219848 + 0.975534i \(0.429444\pi\)
\(308\) 14.4698 0.824493
\(309\) −4.61596 −0.262593
\(310\) −7.70171 −0.437428
\(311\) 4.71379 0.267295 0.133647 0.991029i \(-0.457331\pi\)
0.133647 + 0.991029i \(0.457331\pi\)
\(312\) 0 0
\(313\) 8.49157 0.479972 0.239986 0.970776i \(-0.422857\pi\)
0.239986 + 0.970776i \(0.422857\pi\)
\(314\) 8.19567 0.462508
\(315\) −3.60388 −0.203055
\(316\) −1.82371 −0.102592
\(317\) −27.0508 −1.51933 −0.759663 0.650317i \(-0.774636\pi\)
−0.759663 + 0.650317i \(0.774636\pi\)
\(318\) −6.15213 −0.344994
\(319\) 32.5133 1.82040
\(320\) −1.00000 −0.0559017
\(321\) 18.8049 1.04959
\(322\) 7.75600 0.432225
\(323\) −17.3937 −0.967813
\(324\) −2.57673 −0.143152
\(325\) 0 0
\(326\) 16.8877 0.935323
\(327\) 21.7995 1.20552
\(328\) −12.5429 −0.692564
\(329\) −9.67158 −0.533211
\(330\) 7.23490 0.398268
\(331\) 28.7439 1.57991 0.789954 0.613166i \(-0.210104\pi\)
0.789954 + 0.613166i \(0.210104\pi\)
\(332\) 14.6407 0.803513
\(333\) 3.85862 0.211451
\(334\) −19.6582 −1.07565
\(335\) −8.01507 −0.437910
\(336\) −3.10992 −0.169660
\(337\) −34.5972 −1.88463 −0.942314 0.334730i \(-0.891355\pi\)
−0.942314 + 0.334730i \(0.891355\pi\)
\(338\) 0 0
\(339\) −10.2687 −0.557722
\(340\) −4.29590 −0.232978
\(341\) −44.6848 −2.41982
\(342\) 5.85086 0.316378
\(343\) 19.4034 1.04769
\(344\) 6.98254 0.376473
\(345\) 3.87800 0.208785
\(346\) −16.8659 −0.906718
\(347\) −28.3043 −1.51945 −0.759726 0.650243i \(-0.774667\pi\)
−0.759726 + 0.650243i \(0.774667\pi\)
\(348\) −6.98792 −0.374592
\(349\) −16.8310 −0.900943 −0.450471 0.892791i \(-0.648744\pi\)
−0.450471 + 0.892791i \(0.648744\pi\)
\(350\) −2.49396 −0.133308
\(351\) 0 0
\(352\) −5.80194 −0.309244
\(353\) 23.7429 1.26370 0.631852 0.775089i \(-0.282295\pi\)
0.631852 + 0.775089i \(0.282295\pi\)
\(354\) −12.4886 −0.663761
\(355\) −5.48188 −0.290948
\(356\) 0.454731 0.0241007
\(357\) −13.3599 −0.707080
\(358\) −5.99761 −0.316983
\(359\) 26.8310 1.41609 0.708043 0.706169i \(-0.249578\pi\)
0.708043 + 0.706169i \(0.249578\pi\)
\(360\) 1.44504 0.0761604
\(361\) −2.60627 −0.137172
\(362\) −16.5676 −0.870775
\(363\) 28.2597 1.48325
\(364\) 0 0
\(365\) 8.67456 0.454047
\(366\) −6.15213 −0.321577
\(367\) −18.0978 −0.944699 −0.472350 0.881411i \(-0.656594\pi\)
−0.472350 + 0.881411i \(0.656594\pi\)
\(368\) −3.10992 −0.162116
\(369\) 18.1250 0.943549
\(370\) 2.67025 0.138820
\(371\) 12.3043 0.638805
\(372\) 9.60388 0.497938
\(373\) 14.3720 0.744152 0.372076 0.928202i \(-0.378646\pi\)
0.372076 + 0.928202i \(0.378646\pi\)
\(374\) −24.9245 −1.28882
\(375\) −1.24698 −0.0643937
\(376\) 3.87800 0.199993
\(377\) 0 0
\(378\) 13.8237 0.711015
\(379\) 26.1806 1.34481 0.672404 0.740185i \(-0.265262\pi\)
0.672404 + 0.740185i \(0.265262\pi\)
\(380\) 4.04892 0.207705
\(381\) −16.2500 −0.832511
\(382\) 12.7922 0.654508
\(383\) −11.3491 −0.579913 −0.289957 0.957040i \(-0.593641\pi\)
−0.289957 + 0.957040i \(0.593641\pi\)
\(384\) 1.24698 0.0636347
\(385\) −14.4698 −0.737449
\(386\) 23.5851 1.20045
\(387\) −10.0901 −0.512907
\(388\) −8.69202 −0.441271
\(389\) −12.8465 −0.651346 −0.325673 0.945483i \(-0.605591\pi\)
−0.325673 + 0.945483i \(0.605591\pi\)
\(390\) 0 0
\(391\) −13.3599 −0.675638
\(392\) −0.780167 −0.0394044
\(393\) 12.2567 0.618267
\(394\) 1.97584 0.0995412
\(395\) 1.82371 0.0917607
\(396\) 8.38404 0.421314
\(397\) −18.7439 −0.940731 −0.470365 0.882472i \(-0.655878\pi\)
−0.470365 + 0.882472i \(0.655878\pi\)
\(398\) 0.835790 0.0418943
\(399\) 12.5918 0.630378
\(400\) 1.00000 0.0500000
\(401\) −19.8213 −0.989829 −0.494915 0.868942i \(-0.664801\pi\)
−0.494915 + 0.868942i \(0.664801\pi\)
\(402\) 9.99462 0.498486
\(403\) 0 0
\(404\) 15.7453 0.783355
\(405\) 2.57673 0.128039
\(406\) 13.9758 0.693609
\(407\) 15.4926 0.767941
\(408\) 5.35690 0.265206
\(409\) 18.9487 0.936952 0.468476 0.883476i \(-0.344803\pi\)
0.468476 + 0.883476i \(0.344803\pi\)
\(410\) 12.5429 0.619449
\(411\) −5.92692 −0.292353
\(412\) −3.70171 −0.182370
\(413\) 24.9772 1.22905
\(414\) 4.49396 0.220866
\(415\) −14.6407 −0.718684
\(416\) 0 0
\(417\) −2.98493 −0.146173
\(418\) 23.4916 1.14901
\(419\) 1.86725 0.0912211 0.0456105 0.998959i \(-0.485477\pi\)
0.0456105 + 0.998959i \(0.485477\pi\)
\(420\) 3.10992 0.151748
\(421\) 27.3250 1.33174 0.665869 0.746069i \(-0.268061\pi\)
0.665869 + 0.746069i \(0.268061\pi\)
\(422\) 9.36227 0.455748
\(423\) −5.60388 −0.272470
\(424\) −4.93362 −0.239598
\(425\) 4.29590 0.208382
\(426\) 6.83579 0.331195
\(427\) 12.3043 0.595445
\(428\) 15.0804 0.728938
\(429\) 0 0
\(430\) −6.98254 −0.336728
\(431\) −1.56033 −0.0751587 −0.0375793 0.999294i \(-0.511965\pi\)
−0.0375793 + 0.999294i \(0.511965\pi\)
\(432\) −5.54288 −0.266682
\(433\) −24.1564 −1.16088 −0.580442 0.814301i \(-0.697120\pi\)
−0.580442 + 0.814301i \(0.697120\pi\)
\(434\) −19.2078 −0.922002
\(435\) 6.98792 0.335045
\(436\) 17.4819 0.837230
\(437\) 12.5918 0.602347
\(438\) −10.8170 −0.516856
\(439\) 21.3599 1.01945 0.509726 0.860337i \(-0.329747\pi\)
0.509726 + 0.860337i \(0.329747\pi\)
\(440\) 5.80194 0.276597
\(441\) 1.12737 0.0536845
\(442\) 0 0
\(443\) −16.5351 −0.785607 −0.392803 0.919623i \(-0.628495\pi\)
−0.392803 + 0.919623i \(0.628495\pi\)
\(444\) −3.32975 −0.158023
\(445\) −0.454731 −0.0215563
\(446\) −6.31767 −0.299150
\(447\) −25.9517 −1.22747
\(448\) −2.49396 −0.117828
\(449\) −6.56704 −0.309918 −0.154959 0.987921i \(-0.549525\pi\)
−0.154959 + 0.987921i \(0.549525\pi\)
\(450\) −1.44504 −0.0681199
\(451\) 72.7730 3.42675
\(452\) −8.23490 −0.387337
\(453\) −7.42758 −0.348978
\(454\) 4.89440 0.229705
\(455\) 0 0
\(456\) −5.04892 −0.236437
\(457\) 24.1715 1.13070 0.565348 0.824853i \(-0.308742\pi\)
0.565348 + 0.824853i \(0.308742\pi\)
\(458\) −0.689629 −0.0322242
\(459\) −23.8116 −1.11143
\(460\) 3.10992 0.145001
\(461\) 23.5797 1.09822 0.549108 0.835751i \(-0.314967\pi\)
0.549108 + 0.835751i \(0.314967\pi\)
\(462\) 18.0435 0.839461
\(463\) −1.68233 −0.0781846 −0.0390923 0.999236i \(-0.512447\pi\)
−0.0390923 + 0.999236i \(0.512447\pi\)
\(464\) −5.60388 −0.260153
\(465\) −9.60388 −0.445369
\(466\) 14.1806 0.656904
\(467\) 0.376273 0.0174118 0.00870592 0.999962i \(-0.497229\pi\)
0.00870592 + 0.999962i \(0.497229\pi\)
\(468\) 0 0
\(469\) −19.9892 −0.923018
\(470\) −3.87800 −0.178879
\(471\) 10.2198 0.470905
\(472\) −10.0151 −0.460981
\(473\) −40.5123 −1.86276
\(474\) −2.27413 −0.104454
\(475\) −4.04892 −0.185777
\(476\) −10.7138 −0.491066
\(477\) 7.12929 0.326428
\(478\) −25.7754 −1.17894
\(479\) −10.0301 −0.458288 −0.229144 0.973392i \(-0.573593\pi\)
−0.229144 + 0.973392i \(0.573593\pi\)
\(480\) −1.24698 −0.0569166
\(481\) 0 0
\(482\) −7.86725 −0.358343
\(483\) 9.67158 0.440072
\(484\) 22.6625 1.03011
\(485\) 8.69202 0.394684
\(486\) 13.4155 0.608540
\(487\) −15.3297 −0.694657 −0.347329 0.937743i \(-0.612911\pi\)
−0.347329 + 0.937743i \(0.612911\pi\)
\(488\) −4.93362 −0.223335
\(489\) 21.0586 0.952303
\(490\) 0.780167 0.0352444
\(491\) 9.19269 0.414860 0.207430 0.978250i \(-0.433490\pi\)
0.207430 + 0.978250i \(0.433490\pi\)
\(492\) −15.6407 −0.705138
\(493\) −24.0737 −1.08422
\(494\) 0 0
\(495\) −8.38404 −0.376835
\(496\) 7.70171 0.345817
\(497\) −13.6716 −0.613254
\(498\) 18.2567 0.818101
\(499\) −2.74632 −0.122942 −0.0614710 0.998109i \(-0.519579\pi\)
−0.0614710 + 0.998109i \(0.519579\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −24.5133 −1.09518
\(502\) 19.9782 0.891672
\(503\) −12.5676 −0.560363 −0.280181 0.959947i \(-0.590395\pi\)
−0.280181 + 0.959947i \(0.590395\pi\)
\(504\) 3.60388 0.160529
\(505\) −15.7453 −0.700654
\(506\) 18.0435 0.802133
\(507\) 0 0
\(508\) −13.0315 −0.578177
\(509\) −0.0677037 −0.00300091 −0.00150046 0.999999i \(-0.500478\pi\)
−0.00150046 + 0.999999i \(0.500478\pi\)
\(510\) −5.35690 −0.237207
\(511\) 21.6340 0.957032
\(512\) 1.00000 0.0441942
\(513\) 22.4426 0.990867
\(514\) −25.4523 −1.12265
\(515\) 3.70171 0.163117
\(516\) 8.70709 0.383308
\(517\) −22.4999 −0.989546
\(518\) 6.65950 0.292602
\(519\) −21.0315 −0.923179
\(520\) 0 0
\(521\) 8.18060 0.358399 0.179199 0.983813i \(-0.442649\pi\)
0.179199 + 0.983813i \(0.442649\pi\)
\(522\) 8.09783 0.354433
\(523\) 16.9312 0.740351 0.370176 0.928962i \(-0.379298\pi\)
0.370176 + 0.928962i \(0.379298\pi\)
\(524\) 9.82908 0.429386
\(525\) −3.10992 −0.135728
\(526\) −19.9758 −0.870988
\(527\) 33.0858 1.44124
\(528\) −7.23490 −0.314859
\(529\) −13.3284 −0.579497
\(530\) 4.93362 0.214303
\(531\) 14.4722 0.628040
\(532\) 10.0978 0.437797
\(533\) 0 0
\(534\) 0.567040 0.0245382
\(535\) −15.0804 −0.651982
\(536\) 8.01507 0.346198
\(537\) −7.47889 −0.322738
\(538\) −16.1414 −0.695904
\(539\) 4.52648 0.194969
\(540\) 5.54288 0.238527
\(541\) 16.5676 0.712298 0.356149 0.934429i \(-0.384090\pi\)
0.356149 + 0.934429i \(0.384090\pi\)
\(542\) −15.1051 −0.648821
\(543\) −20.6595 −0.886584
\(544\) 4.29590 0.184185
\(545\) −17.4819 −0.748841
\(546\) 0 0
\(547\) −3.57540 −0.152873 −0.0764365 0.997074i \(-0.524354\pi\)
−0.0764365 + 0.997074i \(0.524354\pi\)
\(548\) −4.75302 −0.203039
\(549\) 7.12929 0.304271
\(550\) −5.80194 −0.247395
\(551\) 22.6896 0.966611
\(552\) −3.87800 −0.165059
\(553\) 4.54825 0.193411
\(554\) −24.4940 −1.04065
\(555\) 3.32975 0.141340
\(556\) −2.39373 −0.101517
\(557\) 39.8926 1.69030 0.845152 0.534526i \(-0.179510\pi\)
0.845152 + 0.534526i \(0.179510\pi\)
\(558\) −11.1293 −0.471141
\(559\) 0 0
\(560\) 2.49396 0.105389
\(561\) −31.0804 −1.31221
\(562\) −23.3381 −0.984459
\(563\) −3.64742 −0.153720 −0.0768601 0.997042i \(-0.524489\pi\)
−0.0768601 + 0.997042i \(0.524489\pi\)
\(564\) 4.83579 0.203623
\(565\) 8.23490 0.346445
\(566\) −11.4222 −0.480111
\(567\) 6.42626 0.269877
\(568\) 5.48188 0.230014
\(569\) 18.3521 0.769360 0.384680 0.923050i \(-0.374312\pi\)
0.384680 + 0.923050i \(0.374312\pi\)
\(570\) 5.04892 0.211476
\(571\) −19.1987 −0.803439 −0.401719 0.915763i \(-0.631587\pi\)
−0.401719 + 0.915763i \(0.631587\pi\)
\(572\) 0 0
\(573\) 15.9517 0.666391
\(574\) 31.2814 1.30566
\(575\) −3.10992 −0.129692
\(576\) −1.44504 −0.0602101
\(577\) 35.2218 1.46630 0.733150 0.680067i \(-0.238049\pi\)
0.733150 + 0.680067i \(0.238049\pi\)
\(578\) 1.45473 0.0605088
\(579\) 29.4101 1.22224
\(580\) 5.60388 0.232688
\(581\) −36.5133 −1.51483
\(582\) −10.8388 −0.449282
\(583\) 28.6246 1.18551
\(584\) −8.67456 −0.358956
\(585\) 0 0
\(586\) 24.4155 1.00860
\(587\) −32.4596 −1.33975 −0.669876 0.742473i \(-0.733653\pi\)
−0.669876 + 0.742473i \(0.733653\pi\)
\(588\) −0.972853 −0.0401198
\(589\) −31.1836 −1.28490
\(590\) 10.0151 0.412314
\(591\) 2.46383 0.101348
\(592\) −2.67025 −0.109747
\(593\) 9.57135 0.393048 0.196524 0.980499i \(-0.437035\pi\)
0.196524 + 0.980499i \(0.437035\pi\)
\(594\) 32.1594 1.31952
\(595\) 10.7138 0.439223
\(596\) −20.8116 −0.852477
\(597\) 1.04221 0.0426549
\(598\) 0 0
\(599\) −29.0858 −1.18841 −0.594206 0.804313i \(-0.702534\pi\)
−0.594206 + 0.804313i \(0.702534\pi\)
\(600\) 1.24698 0.0509077
\(601\) −6.31229 −0.257484 −0.128742 0.991678i \(-0.541094\pi\)
−0.128742 + 0.991678i \(0.541094\pi\)
\(602\) −17.4142 −0.709749
\(603\) −11.5821 −0.471660
\(604\) −5.95646 −0.242365
\(605\) −22.6625 −0.921361
\(606\) 19.6340 0.797577
\(607\) 32.4650 1.31771 0.658857 0.752268i \(-0.271040\pi\)
0.658857 + 0.752268i \(0.271040\pi\)
\(608\) −4.04892 −0.164205
\(609\) 17.4276 0.706201
\(610\) 4.93362 0.199757
\(611\) 0 0
\(612\) −6.20775 −0.250933
\(613\) −29.7017 −1.19964 −0.599820 0.800135i \(-0.704761\pi\)
−0.599820 + 0.800135i \(0.704761\pi\)
\(614\) 7.70410 0.310912
\(615\) 15.6407 0.630694
\(616\) 14.4698 0.583005
\(617\) −10.8556 −0.437032 −0.218516 0.975833i \(-0.570122\pi\)
−0.218516 + 0.975833i \(0.570122\pi\)
\(618\) −4.61596 −0.185681
\(619\) −23.2948 −0.936298 −0.468149 0.883649i \(-0.655079\pi\)
−0.468149 + 0.883649i \(0.655079\pi\)
\(620\) −7.70171 −0.309308
\(621\) 17.2379 0.691732
\(622\) 4.71379 0.189006
\(623\) −1.13408 −0.0454359
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.49157 0.339391
\(627\) 29.2935 1.16987
\(628\) 8.19567 0.327043
\(629\) −11.4711 −0.457384
\(630\) −3.60388 −0.143582
\(631\) 6.72455 0.267700 0.133850 0.991002i \(-0.457266\pi\)
0.133850 + 0.991002i \(0.457266\pi\)
\(632\) −1.82371 −0.0725432
\(633\) 11.6746 0.464022
\(634\) −27.0508 −1.07433
\(635\) 13.0315 0.517138
\(636\) −6.15213 −0.243948
\(637\) 0 0
\(638\) 32.5133 1.28722
\(639\) −7.92154 −0.313371
\(640\) −1.00000 −0.0395285
\(641\) 9.32437 0.368291 0.184145 0.982899i \(-0.441048\pi\)
0.184145 + 0.982899i \(0.441048\pi\)
\(642\) 18.8049 0.742171
\(643\) −12.2145 −0.481691 −0.240846 0.970563i \(-0.577425\pi\)
−0.240846 + 0.970563i \(0.577425\pi\)
\(644\) 7.75600 0.305629
\(645\) −8.70709 −0.342841
\(646\) −17.3937 −0.684347
\(647\) −36.8853 −1.45011 −0.725055 0.688691i \(-0.758186\pi\)
−0.725055 + 0.688691i \(0.758186\pi\)
\(648\) −2.57673 −0.101223
\(649\) 58.1068 2.28089
\(650\) 0 0
\(651\) −23.9517 −0.938740
\(652\) 16.8877 0.661373
\(653\) −38.6655 −1.51310 −0.756548 0.653938i \(-0.773116\pi\)
−0.756548 + 0.653938i \(0.773116\pi\)
\(654\) 21.7995 0.852430
\(655\) −9.82908 −0.384054
\(656\) −12.5429 −0.489717
\(657\) 12.5351 0.489041
\(658\) −9.67158 −0.377037
\(659\) −1.19269 −0.0464604 −0.0232302 0.999730i \(-0.507395\pi\)
−0.0232302 + 0.999730i \(0.507395\pi\)
\(660\) 7.23490 0.281618
\(661\) 3.93230 0.152949 0.0764743 0.997072i \(-0.475634\pi\)
0.0764743 + 0.997072i \(0.475634\pi\)
\(662\) 28.7439 1.11716
\(663\) 0 0
\(664\) 14.6407 0.568170
\(665\) −10.0978 −0.391577
\(666\) 3.85862 0.149519
\(667\) 17.4276 0.674799
\(668\) −19.6582 −0.760597
\(669\) −7.87800 −0.304581
\(670\) −8.01507 −0.309649
\(671\) 28.6246 1.10504
\(672\) −3.10992 −0.119968
\(673\) 4.87023 0.187734 0.0938668 0.995585i \(-0.470077\pi\)
0.0938668 + 0.995585i \(0.470077\pi\)
\(674\) −34.5972 −1.33263
\(675\) −5.54288 −0.213345
\(676\) 0 0
\(677\) −14.6461 −0.562895 −0.281447 0.959577i \(-0.590815\pi\)
−0.281447 + 0.959577i \(0.590815\pi\)
\(678\) −10.2687 −0.394369
\(679\) 21.6775 0.831908
\(680\) −4.29590 −0.164740
\(681\) 6.10321 0.233876
\(682\) −44.6848 −1.71107
\(683\) −35.1997 −1.34688 −0.673440 0.739242i \(-0.735184\pi\)
−0.673440 + 0.739242i \(0.735184\pi\)
\(684\) 5.85086 0.223713
\(685\) 4.75302 0.181604
\(686\) 19.4034 0.740826
\(687\) −0.859953 −0.0328092
\(688\) 6.98254 0.266207
\(689\) 0 0
\(690\) 3.87800 0.147633
\(691\) 41.5851 1.58197 0.790986 0.611835i \(-0.209568\pi\)
0.790986 + 0.611835i \(0.209568\pi\)
\(692\) −16.8659 −0.641146
\(693\) −20.9095 −0.794285
\(694\) −28.3043 −1.07441
\(695\) 2.39373 0.0907994
\(696\) −6.98792 −0.264876
\(697\) −53.8829 −2.04096
\(698\) −16.8310 −0.637063
\(699\) 17.6829 0.668830
\(700\) −2.49396 −0.0942628
\(701\) 5.61463 0.212062 0.106031 0.994363i \(-0.466186\pi\)
0.106031 + 0.994363i \(0.466186\pi\)
\(702\) 0 0
\(703\) 10.8116 0.407768
\(704\) −5.80194 −0.218669
\(705\) −4.83579 −0.182126
\(706\) 23.7429 0.893574
\(707\) −39.2680 −1.47683
\(708\) −12.4886 −0.469350
\(709\) −34.8659 −1.30942 −0.654709 0.755881i \(-0.727209\pi\)
−0.654709 + 0.755881i \(0.727209\pi\)
\(710\) −5.48188 −0.205731
\(711\) 2.63533 0.0988328
\(712\) 0.454731 0.0170417
\(713\) −23.9517 −0.896997
\(714\) −13.3599 −0.499981
\(715\) 0 0
\(716\) −5.99761 −0.224141
\(717\) −32.1414 −1.20034
\(718\) 26.8310 1.00132
\(719\) −1.90217 −0.0709388 −0.0354694 0.999371i \(-0.511293\pi\)
−0.0354694 + 0.999371i \(0.511293\pi\)
\(720\) 1.44504 0.0538535
\(721\) 9.23191 0.343814
\(722\) −2.60627 −0.0969953
\(723\) −9.81030 −0.364849
\(724\) −16.5676 −0.615731
\(725\) −5.60388 −0.208123
\(726\) 28.2597 1.04881
\(727\) −23.7211 −0.879766 −0.439883 0.898055i \(-0.644980\pi\)
−0.439883 + 0.898055i \(0.644980\pi\)
\(728\) 0 0
\(729\) 24.4590 0.905890
\(730\) 8.67456 0.321060
\(731\) 29.9963 1.10945
\(732\) −6.15213 −0.227389
\(733\) 13.2862 0.490737 0.245369 0.969430i \(-0.421091\pi\)
0.245369 + 0.969430i \(0.421091\pi\)
\(734\) −18.0978 −0.668003
\(735\) 0.972853 0.0358842
\(736\) −3.10992 −0.114633
\(737\) −46.5029 −1.71296
\(738\) 18.1250 0.667190
\(739\) −6.34614 −0.233447 −0.116723 0.993164i \(-0.537239\pi\)
−0.116723 + 0.993164i \(0.537239\pi\)
\(740\) 2.67025 0.0981604
\(741\) 0 0
\(742\) 12.3043 0.451704
\(743\) −40.1801 −1.47407 −0.737033 0.675857i \(-0.763774\pi\)
−0.737033 + 0.675857i \(0.763774\pi\)
\(744\) 9.60388 0.352095
\(745\) 20.8116 0.762479
\(746\) 14.3720 0.526195
\(747\) −21.1564 −0.774074
\(748\) −24.9245 −0.911331
\(749\) −37.6098 −1.37423
\(750\) −1.24698 −0.0455333
\(751\) 15.5362 0.566923 0.283461 0.958984i \(-0.408517\pi\)
0.283461 + 0.958984i \(0.408517\pi\)
\(752\) 3.87800 0.141416
\(753\) 24.9124 0.907860
\(754\) 0 0
\(755\) 5.95646 0.216778
\(756\) 13.8237 0.502763
\(757\) 32.2064 1.17056 0.585281 0.810830i \(-0.300984\pi\)
0.585281 + 0.810830i \(0.300984\pi\)
\(758\) 26.1806 0.950922
\(759\) 22.4999 0.816696
\(760\) 4.04892 0.146870
\(761\) −19.6472 −0.712209 −0.356104 0.934446i \(-0.615895\pi\)
−0.356104 + 0.934446i \(0.615895\pi\)
\(762\) −16.2500 −0.588674
\(763\) −43.5991 −1.57839
\(764\) 12.7922 0.462807
\(765\) 6.20775 0.224442
\(766\) −11.3491 −0.410061
\(767\) 0 0
\(768\) 1.24698 0.0449965
\(769\) −6.50232 −0.234480 −0.117240 0.993104i \(-0.537405\pi\)
−0.117240 + 0.993104i \(0.537405\pi\)
\(770\) −14.4698 −0.521455
\(771\) −31.7385 −1.14304
\(772\) 23.5851 0.848846
\(773\) 32.2586 1.16026 0.580130 0.814524i \(-0.303002\pi\)
0.580130 + 0.814524i \(0.303002\pi\)
\(774\) −10.0901 −0.362680
\(775\) 7.70171 0.276654
\(776\) −8.69202 −0.312025
\(777\) 8.30426 0.297914
\(778\) −12.8465 −0.460571
\(779\) 50.7851 1.81956
\(780\) 0 0
\(781\) −31.8055 −1.13809
\(782\) −13.3599 −0.477748
\(783\) 31.0616 1.11005
\(784\) −0.780167 −0.0278631
\(785\) −8.19567 −0.292516
\(786\) 12.2567 0.437181
\(787\) −13.6799 −0.487637 −0.243819 0.969821i \(-0.578400\pi\)
−0.243819 + 0.969821i \(0.578400\pi\)
\(788\) 1.97584 0.0703863
\(789\) −24.9095 −0.886800
\(790\) 1.82371 0.0648846
\(791\) 20.5375 0.730229
\(792\) 8.38404 0.297914
\(793\) 0 0
\(794\) −18.7439 −0.665197
\(795\) 6.15213 0.218194
\(796\) 0.835790 0.0296238
\(797\) −7.77538 −0.275418 −0.137709 0.990473i \(-0.543974\pi\)
−0.137709 + 0.990473i \(0.543974\pi\)
\(798\) 12.5918 0.445745
\(799\) 16.6595 0.589371
\(800\) 1.00000 0.0353553
\(801\) −0.657105 −0.0232177
\(802\) −19.8213 −0.699915
\(803\) 50.3293 1.77608
\(804\) 9.99462 0.352483
\(805\) −7.75600 −0.273363
\(806\) 0 0
\(807\) −20.1280 −0.708538
\(808\) 15.7453 0.553916
\(809\) −43.1540 −1.51722 −0.758608 0.651548i \(-0.774120\pi\)
−0.758608 + 0.651548i \(0.774120\pi\)
\(810\) 2.57673 0.0905370
\(811\) 35.8165 1.25769 0.628844 0.777531i \(-0.283528\pi\)
0.628844 + 0.777531i \(0.283528\pi\)
\(812\) 13.9758 0.490456
\(813\) −18.8358 −0.660600
\(814\) 15.4926 0.543016
\(815\) −16.8877 −0.591550
\(816\) 5.35690 0.187529
\(817\) −28.2717 −0.989103
\(818\) 18.9487 0.662525
\(819\) 0 0
\(820\) 12.5429 0.438016
\(821\) −6.70304 −0.233938 −0.116969 0.993136i \(-0.537318\pi\)
−0.116969 + 0.993136i \(0.537318\pi\)
\(822\) −5.92692 −0.206725
\(823\) 35.7103 1.24478 0.622392 0.782706i \(-0.286161\pi\)
0.622392 + 0.782706i \(0.286161\pi\)
\(824\) −3.70171 −0.128955
\(825\) −7.23490 −0.251887
\(826\) 24.9772 0.869067
\(827\) 1.79523 0.0624264 0.0312132 0.999513i \(-0.490063\pi\)
0.0312132 + 0.999513i \(0.490063\pi\)
\(828\) 4.49396 0.156176
\(829\) 0.733169 0.0254640 0.0127320 0.999919i \(-0.495947\pi\)
0.0127320 + 0.999919i \(0.495947\pi\)
\(830\) −14.6407 −0.508187
\(831\) −30.5435 −1.05954
\(832\) 0 0
\(833\) −3.35152 −0.116123
\(834\) −2.98493 −0.103360
\(835\) 19.6582 0.680299
\(836\) 23.4916 0.812473
\(837\) −42.6896 −1.47557
\(838\) 1.86725 0.0645030
\(839\) 26.6112 0.918720 0.459360 0.888250i \(-0.348079\pi\)
0.459360 + 0.888250i \(0.348079\pi\)
\(840\) 3.10992 0.107302
\(841\) 2.40342 0.0828766
\(842\) 27.3250 0.941680
\(843\) −29.1021 −1.00233
\(844\) 9.36227 0.322263
\(845\) 0 0
\(846\) −5.60388 −0.192665
\(847\) −56.5193 −1.94203
\(848\) −4.93362 −0.169421
\(849\) −14.2433 −0.488827
\(850\) 4.29590 0.147348
\(851\) 8.30426 0.284666
\(852\) 6.83579 0.234190
\(853\) 4.78746 0.163920 0.0819598 0.996636i \(-0.473882\pi\)
0.0819598 + 0.996636i \(0.473882\pi\)
\(854\) 12.3043 0.421043
\(855\) −5.85086 −0.200095
\(856\) 15.0804 0.515437
\(857\) −24.9748 −0.853122 −0.426561 0.904459i \(-0.640275\pi\)
−0.426561 + 0.904459i \(0.640275\pi\)
\(858\) 0 0
\(859\) −16.2737 −0.555250 −0.277625 0.960690i \(-0.589547\pi\)
−0.277625 + 0.960690i \(0.589547\pi\)
\(860\) −6.98254 −0.238103
\(861\) 39.0073 1.32937
\(862\) −1.56033 −0.0531452
\(863\) −44.3806 −1.51073 −0.755366 0.655303i \(-0.772541\pi\)
−0.755366 + 0.655303i \(0.772541\pi\)
\(864\) −5.54288 −0.188572
\(865\) 16.8659 0.573459
\(866\) −24.1564 −0.820869
\(867\) 1.81402 0.0616073
\(868\) −19.2078 −0.651954
\(869\) 10.5810 0.358937
\(870\) 6.98792 0.236913
\(871\) 0 0
\(872\) 17.4819 0.592011
\(873\) 12.5603 0.425103
\(874\) 12.5918 0.425924
\(875\) 2.49396 0.0843112
\(876\) −10.8170 −0.365473
\(877\) −37.3900 −1.26257 −0.631285 0.775551i \(-0.717472\pi\)
−0.631285 + 0.775551i \(0.717472\pi\)
\(878\) 21.3599 0.720861
\(879\) 30.4456 1.02691
\(880\) 5.80194 0.195583
\(881\) 38.1885 1.28660 0.643301 0.765613i \(-0.277564\pi\)
0.643301 + 0.765613i \(0.277564\pi\)
\(882\) 1.12737 0.0379607
\(883\) 4.45281 0.149849 0.0749245 0.997189i \(-0.476128\pi\)
0.0749245 + 0.997189i \(0.476128\pi\)
\(884\) 0 0
\(885\) 12.4886 0.419799
\(886\) −16.5351 −0.555508
\(887\) 6.06292 0.203573 0.101786 0.994806i \(-0.467544\pi\)
0.101786 + 0.994806i \(0.467544\pi\)
\(888\) −3.32975 −0.111739
\(889\) 32.4999 1.09001
\(890\) −0.454731 −0.0152426
\(891\) 14.9500 0.500844
\(892\) −6.31767 −0.211531
\(893\) −15.7017 −0.525438
\(894\) −25.9517 −0.867954
\(895\) 5.99761 0.200478
\(896\) −2.49396 −0.0833173
\(897\) 0 0
\(898\) −6.56704 −0.219145
\(899\) −43.1594 −1.43945
\(900\) −1.44504 −0.0481681
\(901\) −21.1943 −0.706086
\(902\) 72.7730 2.42308
\(903\) −21.7151 −0.722634
\(904\) −8.23490 −0.273889
\(905\) 16.5676 0.550727
\(906\) −7.42758 −0.246765
\(907\) 25.1116 0.833816 0.416908 0.908949i \(-0.363114\pi\)
0.416908 + 0.908949i \(0.363114\pi\)
\(908\) 4.89440 0.162426
\(909\) −22.7525 −0.754654
\(910\) 0 0
\(911\) 4.11721 0.136409 0.0682047 0.997671i \(-0.478273\pi\)
0.0682047 + 0.997671i \(0.478273\pi\)
\(912\) −5.04892 −0.167186
\(913\) −84.9445 −2.81125
\(914\) 24.1715 0.799522
\(915\) 6.15213 0.203383
\(916\) −0.689629 −0.0227860
\(917\) −24.5133 −0.809502
\(918\) −23.8116 −0.785901
\(919\) −34.7633 −1.14674 −0.573368 0.819298i \(-0.694363\pi\)
−0.573368 + 0.819298i \(0.694363\pi\)
\(920\) 3.10992 0.102531
\(921\) 9.60686 0.316557
\(922\) 23.5797 0.776556
\(923\) 0 0
\(924\) 18.0435 0.593589
\(925\) −2.67025 −0.0877973
\(926\) −1.68233 −0.0552849
\(927\) 5.34913 0.175688
\(928\) −5.60388 −0.183956
\(929\) −38.8015 −1.27303 −0.636517 0.771262i \(-0.719626\pi\)
−0.636517 + 0.771262i \(0.719626\pi\)
\(930\) −9.60388 −0.314923
\(931\) 3.15883 0.103527
\(932\) 14.1806 0.464501
\(933\) 5.87800 0.192437
\(934\) 0.376273 0.0123120
\(935\) 24.9245 0.815119
\(936\) 0 0
\(937\) −31.7808 −1.03823 −0.519116 0.854704i \(-0.673739\pi\)
−0.519116 + 0.854704i \(0.673739\pi\)
\(938\) −19.9892 −0.652672
\(939\) 10.5888 0.345553
\(940\) −3.87800 −0.126486
\(941\) −30.2258 −0.985333 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(942\) 10.2198 0.332980
\(943\) 39.0073 1.27025
\(944\) −10.0151 −0.325963
\(945\) −13.8237 −0.449685
\(946\) −40.5123 −1.31717
\(947\) −2.54288 −0.0826324 −0.0413162 0.999146i \(-0.513155\pi\)
−0.0413162 + 0.999146i \(0.513155\pi\)
\(948\) −2.27413 −0.0738602
\(949\) 0 0
\(950\) −4.04892 −0.131364
\(951\) −33.7318 −1.09383
\(952\) −10.7138 −0.347236
\(953\) −6.58642 −0.213355 −0.106677 0.994294i \(-0.534021\pi\)
−0.106677 + 0.994294i \(0.534021\pi\)
\(954\) 7.12929 0.230819
\(955\) −12.7922 −0.413947
\(956\) −25.7754 −0.833635
\(957\) 40.5435 1.31058
\(958\) −10.0301 −0.324059
\(959\) 11.8538 0.382780
\(960\) −1.24698 −0.0402461
\(961\) 28.3163 0.913430
\(962\) 0 0
\(963\) −21.7918 −0.702230
\(964\) −7.86725 −0.253387
\(965\) −23.5851 −0.759231
\(966\) 9.67158 0.311178
\(967\) −23.1884 −0.745688 −0.372844 0.927894i \(-0.621617\pi\)
−0.372844 + 0.927894i \(0.621617\pi\)
\(968\) 22.6625 0.728400
\(969\) −21.6896 −0.696771
\(970\) 8.69202 0.279084
\(971\) −4.58642 −0.147185 −0.0735926 0.997288i \(-0.523446\pi\)
−0.0735926 + 0.997288i \(0.523446\pi\)
\(972\) 13.4155 0.430302
\(973\) 5.96987 0.191385
\(974\) −15.3297 −0.491197
\(975\) 0 0
\(976\) −4.93362 −0.157921
\(977\) 30.1575 0.964824 0.482412 0.875944i \(-0.339761\pi\)
0.482412 + 0.875944i \(0.339761\pi\)
\(978\) 21.0586 0.673380
\(979\) −2.63832 −0.0843210
\(980\) 0.780167 0.0249215
\(981\) −25.2620 −0.806555
\(982\) 9.19269 0.293350
\(983\) 0.787463 0.0251162 0.0125581 0.999921i \(-0.496003\pi\)
0.0125581 + 0.999921i \(0.496003\pi\)
\(984\) −15.6407 −0.498608
\(985\) −1.97584 −0.0629554
\(986\) −24.0737 −0.766662
\(987\) −12.0603 −0.383882
\(988\) 0 0
\(989\) −21.7151 −0.690501
\(990\) −8.38404 −0.266462
\(991\) −12.0892 −0.384026 −0.192013 0.981392i \(-0.561502\pi\)
−0.192013 + 0.981392i \(0.561502\pi\)
\(992\) 7.70171 0.244530
\(993\) 35.8431 1.13745
\(994\) −13.6716 −0.433636
\(995\) −0.835790 −0.0264963
\(996\) 18.2567 0.578485
\(997\) 46.6607 1.47776 0.738879 0.673838i \(-0.235355\pi\)
0.738879 + 0.673838i \(0.235355\pi\)
\(998\) −2.74632 −0.0869331
\(999\) 14.8009 0.468279
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.a.r.1.3 yes 3
5.4 even 2 8450.2.a.bv.1.1 3
13.2 odd 12 1690.2.l.m.1161.4 12
13.3 even 3 1690.2.e.p.191.1 6
13.4 even 6 1690.2.e.r.991.1 6
13.5 odd 4 1690.2.d.i.1351.3 6
13.6 odd 12 1690.2.l.m.361.1 12
13.7 odd 12 1690.2.l.m.361.4 12
13.8 odd 4 1690.2.d.i.1351.6 6
13.9 even 3 1690.2.e.p.991.1 6
13.10 even 6 1690.2.e.r.191.1 6
13.11 odd 12 1690.2.l.m.1161.1 12
13.12 even 2 1690.2.a.p.1.3 3
65.64 even 2 8450.2.a.cg.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.p.1.3 3 13.12 even 2
1690.2.a.r.1.3 yes 3 1.1 even 1 trivial
1690.2.d.i.1351.3 6 13.5 odd 4
1690.2.d.i.1351.6 6 13.8 odd 4
1690.2.e.p.191.1 6 13.3 even 3
1690.2.e.p.991.1 6 13.9 even 3
1690.2.e.r.191.1 6 13.10 even 6
1690.2.e.r.991.1 6 13.4 even 6
1690.2.l.m.361.1 12 13.6 odd 12
1690.2.l.m.361.4 12 13.7 odd 12
1690.2.l.m.1161.1 12 13.11 odd 12
1690.2.l.m.1161.4 12 13.2 odd 12
8450.2.a.bv.1.1 3 5.4 even 2
8450.2.a.cg.1.1 3 65.64 even 2