Properties

Label 169.8.b.f.168.36
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(168,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.168"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.36
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.f.168.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.7260i q^{2} -13.7721 q^{3} -151.758 q^{4} -0.583029i q^{5} -230.352i q^{6} -274.333i q^{7} -397.369i q^{8} -1997.33 q^{9} +9.75172 q^{10} -1092.42i q^{11} +2090.03 q^{12} +4588.49 q^{14} +8.02956i q^{15} -12778.6 q^{16} -24367.8 q^{17} -33407.2i q^{18} -29441.5i q^{19} +88.4791i q^{20} +3778.16i q^{21} +18271.7 q^{22} +87568.7 q^{23} +5472.63i q^{24} +78124.7 q^{25} +57627.1 q^{27} +41632.2i q^{28} -98544.5 q^{29} -134.302 q^{30} -46345.4i q^{31} -264598. i q^{32} +15044.9i q^{33} -407575. i q^{34} -159.944 q^{35} +303110. q^{36} +217133. i q^{37} +492438. q^{38} -231.678 q^{40} +623135. i q^{41} -63193.3 q^{42} +751529. q^{43} +165783. i q^{44} +1164.50i q^{45} +1.46467e6i q^{46} -1.15731e6i q^{47} +175988. q^{48} +748284. q^{49} +1.30671e6i q^{50} +335597. q^{51} +498300. q^{53} +963869. i q^{54} -636.912 q^{55} -109012. q^{56} +405473. i q^{57} -1.64825e6i q^{58} +1.11248e6i q^{59} -1218.55i q^{60} -624881. q^{61} +775171. q^{62} +547934. i q^{63} +2.78999e6 q^{64} -251641. q^{66} +28848.2i q^{67} +3.69801e6 q^{68} -1.20601e6 q^{69} -2675.22i q^{70} -3.65711e6i q^{71} +793677. i q^{72} +5.20600e6i q^{73} -3.63176e6 q^{74} -1.07594e6 q^{75} +4.46798e6i q^{76} -299687. q^{77} -2.37817e6 q^{79} +7450.29i q^{80} +3.57451e6 q^{81} -1.04225e7 q^{82} -1.77288e6i q^{83} -573364. i q^{84} +14207.2i q^{85} +1.25700e7i q^{86} +1.35717e6 q^{87} -434094. q^{88} -2.72509e6i q^{89} -19477.4 q^{90} -1.32892e7 q^{92} +638275. i q^{93} +1.93570e7 q^{94} -17165.3 q^{95} +3.64407e6i q^{96} +838595. i q^{97} +1.25158e7i q^{98} +2.18192e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 52 q^{3} - 2818 q^{4} + 30930 q^{9} + 10334 q^{10} - 43590 q^{12} - 358 q^{14} + 226410 q^{16} - 90032 q^{17} - 548348 q^{22} + 256210 q^{23} - 733074 q^{25} - 213286 q^{27} - 124658 q^{29} - 19522 q^{30}+ \cdots - 35320062 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.7260i 1.47838i 0.673497 + 0.739190i \(0.264791\pi\)
−0.673497 + 0.739190i \(0.735209\pi\)
\(3\) −13.7721 −0.294494 −0.147247 0.989100i \(-0.547041\pi\)
−0.147247 + 0.989100i \(0.547041\pi\)
\(4\) −151.758 −1.18561
\(5\) − 0.583029i − 0.00208591i −0.999999 0.00104295i \(-0.999668\pi\)
0.999999 0.00104295i \(-0.000331983\pi\)
\(6\) − 230.352i − 0.435374i
\(7\) − 274.333i − 0.302298i −0.988511 0.151149i \(-0.951703\pi\)
0.988511 0.151149i \(-0.0482974\pi\)
\(8\) − 397.369i − 0.274397i
\(9\) −1997.33 −0.913273
\(10\) 9.75172 0.00308377
\(11\) − 1092.42i − 0.247465i −0.992316 0.123733i \(-0.960513\pi\)
0.992316 0.123733i \(-0.0394865\pi\)
\(12\) 2090.03 0.349154
\(13\) 0 0
\(14\) 4588.49 0.446911
\(15\) 8.02956i 0 0.000614288i
\(16\) −12778.6 −0.779944
\(17\) −24367.8 −1.20295 −0.601473 0.798893i \(-0.705419\pi\)
−0.601473 + 0.798893i \(0.705419\pi\)
\(18\) − 33407.2i − 1.35016i
\(19\) − 29441.5i − 0.984743i −0.870385 0.492372i \(-0.836130\pi\)
0.870385 0.492372i \(-0.163870\pi\)
\(20\) 88.4791i 0.00247307i
\(21\) 3778.16i 0.0890251i
\(22\) 18271.7 0.365848
\(23\) 87568.7 1.50073 0.750363 0.661026i \(-0.229879\pi\)
0.750363 + 0.661026i \(0.229879\pi\)
\(24\) 5472.63i 0.0808084i
\(25\) 78124.7 0.999996
\(26\) 0 0
\(27\) 57627.1 0.563448
\(28\) 41632.2i 0.358407i
\(29\) −98544.5 −0.750308 −0.375154 0.926963i \(-0.622410\pi\)
−0.375154 + 0.926963i \(0.622410\pi\)
\(30\) −134.302 −0.000908151 0
\(31\) − 46345.4i − 0.279409i −0.990193 0.139705i \(-0.955385\pi\)
0.990193 0.139705i \(-0.0446153\pi\)
\(32\) − 264598.i − 1.42745i
\(33\) 15044.9i 0.0728771i
\(34\) − 407575.i − 1.77841i
\(35\) −159.944 −0.000630566 0
\(36\) 303110. 1.08278
\(37\) 217133.i 0.704727i 0.935863 + 0.352363i \(0.114622\pi\)
−0.935863 + 0.352363i \(0.885378\pi\)
\(38\) 492438. 1.45582
\(39\) 0 0
\(40\) −231.678 −0.000572367 0
\(41\) 623135.i 1.41201i 0.708206 + 0.706006i \(0.249505\pi\)
−0.708206 + 0.706006i \(0.750495\pi\)
\(42\) −63193.3 −0.131613
\(43\) 751529. 1.44147 0.720736 0.693210i \(-0.243804\pi\)
0.720736 + 0.693210i \(0.243804\pi\)
\(44\) 165783.i 0.293397i
\(45\) 1164.50i 0.00190500i
\(46\) 1.46467e6i 2.21864i
\(47\) − 1.15731e6i − 1.62594i −0.582303 0.812972i \(-0.697848\pi\)
0.582303 0.812972i \(-0.302152\pi\)
\(48\) 175988. 0.229689
\(49\) 748284. 0.908616
\(50\) 1.30671e6i 1.47837i
\(51\) 335597. 0.354260
\(52\) 0 0
\(53\) 498300. 0.459753 0.229877 0.973220i \(-0.426168\pi\)
0.229877 + 0.973220i \(0.426168\pi\)
\(54\) 963869.i 0.832990i
\(55\) −636.912 −0.000516190 0
\(56\) −109012. −0.0829497
\(57\) 405473.i 0.290001i
\(58\) − 1.64825e6i − 1.10924i
\(59\) 1.11248e6i 0.705194i 0.935775 + 0.352597i \(0.114701\pi\)
−0.935775 + 0.352597i \(0.885299\pi\)
\(60\) − 1218.55i 0 0.000728304i
\(61\) −624881. −0.352487 −0.176243 0.984347i \(-0.556395\pi\)
−0.176243 + 0.984347i \(0.556395\pi\)
\(62\) 775171. 0.413073
\(63\) 547934.i 0.276081i
\(64\) 2.78999e6 1.33037
\(65\) 0 0
\(66\) −251641. −0.107740
\(67\) 28848.2i 0.0117181i 0.999983 + 0.00585904i \(0.00186500\pi\)
−0.999983 + 0.00585904i \(0.998135\pi\)
\(68\) 3.69801e6 1.42622
\(69\) −1.20601e6 −0.441955
\(70\) − 2675.22i 0 0.000932217i
\(71\) − 3.65711e6i − 1.21265i −0.795218 0.606323i \(-0.792644\pi\)
0.795218 0.606323i \(-0.207356\pi\)
\(72\) 793677.i 0.250600i
\(73\) 5.20600e6i 1.56630i 0.621835 + 0.783148i \(0.286387\pi\)
−0.621835 + 0.783148i \(0.713613\pi\)
\(74\) −3.63176e6 −1.04185
\(75\) −1.07594e6 −0.294493
\(76\) 4.46798e6i 1.16752i
\(77\) −299687. −0.0748083
\(78\) 0 0
\(79\) −2.37817e6 −0.542685 −0.271343 0.962483i \(-0.587468\pi\)
−0.271343 + 0.962483i \(0.587468\pi\)
\(80\) 7450.29i 0.00162689i
\(81\) 3.57451e6 0.747341
\(82\) −1.04225e7 −2.08749
\(83\) − 1.77288e6i − 0.340335i −0.985415 0.170168i \(-0.945569\pi\)
0.985415 0.170168i \(-0.0544309\pi\)
\(84\) − 573364.i − 0.105549i
\(85\) 14207.2i 0.00250923i
\(86\) 1.25700e7i 2.13104i
\(87\) 1.35717e6 0.220961
\(88\) −434094. −0.0679038
\(89\) − 2.72509e6i − 0.409746i −0.978789 0.204873i \(-0.934322\pi\)
0.978789 0.204873i \(-0.0656782\pi\)
\(90\) −19477.4 −0.00281632
\(91\) 0 0
\(92\) −1.32892e7 −1.77927
\(93\) 638275.i 0.0822844i
\(94\) 1.93570e7 2.40376
\(95\) −17165.3 −0.00205408
\(96\) 3.64407e6i 0.420376i
\(97\) 838595.i 0.0932934i 0.998911 + 0.0466467i \(0.0148535\pi\)
−0.998911 + 0.0466467i \(0.985147\pi\)
\(98\) 1.25158e7i 1.34328i
\(99\) 2.18192e6i 0.226003i
\(100\) −1.18560e7 −1.18560
\(101\) −1.35004e7 −1.30383 −0.651916 0.758291i \(-0.726035\pi\)
−0.651916 + 0.758291i \(0.726035\pi\)
\(102\) 5.61318e6i 0.523731i
\(103\) −1.30297e7 −1.17491 −0.587456 0.809256i \(-0.699870\pi\)
−0.587456 + 0.809256i \(0.699870\pi\)
\(104\) 0 0
\(105\) 2202.78 0.000185698 0
\(106\) 8.33454e6i 0.679690i
\(107\) 2.04841e7 1.61649 0.808246 0.588844i \(-0.200417\pi\)
0.808246 + 0.588844i \(0.200417\pi\)
\(108\) −8.74536e6 −0.668028
\(109\) 1.74867e7i 1.29335i 0.762768 + 0.646673i \(0.223840\pi\)
−0.762768 + 0.646673i \(0.776160\pi\)
\(110\) − 10653.0i 0 0.000763125i
\(111\) − 2.99039e6i − 0.207538i
\(112\) 3.50559e6i 0.235775i
\(113\) 6.72636e6 0.438536 0.219268 0.975665i \(-0.429633\pi\)
0.219268 + 0.975665i \(0.429633\pi\)
\(114\) −6.78192e6 −0.428732
\(115\) − 51055.1i − 0.00313038i
\(116\) 1.49549e7 0.889570
\(117\) 0 0
\(118\) −1.86072e7 −1.04254
\(119\) 6.68491e6i 0.363648i
\(120\) 3190.70 0.000168559 0
\(121\) 1.82938e7 0.938761
\(122\) − 1.04517e7i − 0.521109i
\(123\) − 8.58190e6i − 0.415830i
\(124\) 7.03327e6i 0.331269i
\(125\) − 91098.1i − 0.00417181i
\(126\) −9.16472e6 −0.408152
\(127\) 3.10681e7 1.34587 0.672934 0.739703i \(-0.265034\pi\)
0.672934 + 0.739703i \(0.265034\pi\)
\(128\) 1.27967e7i 0.539341i
\(129\) −1.03502e7 −0.424505
\(130\) 0 0
\(131\) 1.55397e7 0.603940 0.301970 0.953317i \(-0.402356\pi\)
0.301970 + 0.953317i \(0.402356\pi\)
\(132\) − 2.28318e6i − 0.0864036i
\(133\) −8.07680e6 −0.297686
\(134\) −482514. −0.0173238
\(135\) − 33598.3i − 0.00117530i
\(136\) 9.68304e6i 0.330085i
\(137\) 1.75618e7i 0.583508i 0.956493 + 0.291754i \(0.0942389\pi\)
−0.956493 + 0.291754i \(0.905761\pi\)
\(138\) − 2.01716e7i − 0.653378i
\(139\) 2.32529e7 0.734386 0.367193 0.930145i \(-0.380319\pi\)
0.367193 + 0.930145i \(0.380319\pi\)
\(140\) 24272.8 0.000747604 0
\(141\) 1.59386e7i 0.478831i
\(142\) 6.11687e7 1.79275
\(143\) 0 0
\(144\) 2.55230e7 0.712301
\(145\) 57454.3i 0.00156507i
\(146\) −8.70753e7 −2.31558
\(147\) −1.03055e7 −0.267582
\(148\) − 3.29517e7i − 0.835529i
\(149\) − 7.31136e7i − 1.81070i −0.424666 0.905350i \(-0.639609\pi\)
0.424666 0.905350i \(-0.360391\pi\)
\(150\) − 1.79962e7i − 0.435372i
\(151\) − 1.74324e7i − 0.412039i −0.978548 0.206019i \(-0.933949\pi\)
0.978548 0.206019i \(-0.0660510\pi\)
\(152\) −1.16992e7 −0.270211
\(153\) 4.86706e7 1.09862
\(154\) − 5.01255e6i − 0.110595i
\(155\) −27020.7 −0.000582822 0
\(156\) 0 0
\(157\) 8.56670e7 1.76671 0.883354 0.468706i \(-0.155280\pi\)
0.883354 + 0.468706i \(0.155280\pi\)
\(158\) − 3.97772e7i − 0.802295i
\(159\) −6.86265e6 −0.135395
\(160\) −154268. −0.00297753
\(161\) − 2.40230e7i − 0.453667i
\(162\) 5.97871e7i 1.10485i
\(163\) − 4.30758e7i − 0.779070i −0.921012 0.389535i \(-0.872636\pi\)
0.921012 0.389535i \(-0.127364\pi\)
\(164\) − 9.45655e7i − 1.67409i
\(165\) 8771.63 0.000152015 0
\(166\) 2.96532e7 0.503145
\(167\) − 6.57708e7i − 1.09276i −0.837537 0.546381i \(-0.816005\pi\)
0.837537 0.546381i \(-0.183995\pi\)
\(168\) 1.50132e6 0.0244282
\(169\) 0 0
\(170\) −237628. −0.00370960
\(171\) 5.88044e7i 0.899340i
\(172\) −1.14050e8 −1.70902
\(173\) 1.02460e8 1.50451 0.752255 0.658872i \(-0.228966\pi\)
0.752255 + 0.658872i \(0.228966\pi\)
\(174\) 2.26999e7i 0.326665i
\(175\) − 2.14322e7i − 0.302297i
\(176\) 1.39596e7i 0.193009i
\(177\) − 1.53212e7i − 0.207675i
\(178\) 4.55797e7 0.605761
\(179\) −6.44115e7 −0.839417 −0.419708 0.907659i \(-0.637868\pi\)
−0.419708 + 0.907659i \(0.637868\pi\)
\(180\) − 176722.i − 0.00225859i
\(181\) −9.36975e7 −1.17450 −0.587250 0.809406i \(-0.699789\pi\)
−0.587250 + 0.809406i \(0.699789\pi\)
\(182\) 0 0
\(183\) 8.60594e6 0.103805
\(184\) − 3.47971e7i − 0.411795i
\(185\) 126595. 0.00147000
\(186\) −1.06758e7 −0.121648
\(187\) 2.66199e7i 0.297687i
\(188\) 1.75630e8i 1.92773i
\(189\) − 1.58090e7i − 0.170329i
\(190\) − 287106.i − 0.00303672i
\(191\) 1.03934e8 1.07929 0.539647 0.841891i \(-0.318558\pi\)
0.539647 + 0.841891i \(0.318558\pi\)
\(192\) −3.84241e7 −0.391786
\(193\) − 4.66141e6i − 0.0466731i −0.999728 0.0233365i \(-0.992571\pi\)
0.999728 0.0233365i \(-0.00742892\pi\)
\(194\) −1.40263e7 −0.137923
\(195\) 0 0
\(196\) −1.13558e8 −1.07726
\(197\) − 1.01127e8i − 0.942402i −0.882026 0.471201i \(-0.843821\pi\)
0.882026 0.471201i \(-0.156179\pi\)
\(198\) −3.64947e7 −0.334119
\(199\) 1.29148e8 1.16172 0.580860 0.814003i \(-0.302716\pi\)
0.580860 + 0.814003i \(0.302716\pi\)
\(200\) − 3.10444e7i − 0.274396i
\(201\) − 397301.i − 0.00345091i
\(202\) − 2.25807e8i − 1.92756i
\(203\) 2.70340e7i 0.226817i
\(204\) −5.09294e7 −0.420013
\(205\) 363306. 0.00294533
\(206\) − 2.17935e8i − 1.73696i
\(207\) −1.74903e8 −1.37057
\(208\) 0 0
\(209\) −3.21625e7 −0.243690
\(210\) 36843.5i 0 0.000274532i
\(211\) 1.43953e8 1.05495 0.527475 0.849571i \(-0.323139\pi\)
0.527475 + 0.849571i \(0.323139\pi\)
\(212\) −7.56208e7 −0.545087
\(213\) 5.03663e7i 0.357118i
\(214\) 3.42616e8i 2.38979i
\(215\) − 438163.i − 0.00300678i
\(216\) − 2.28993e7i − 0.154608i
\(217\) −1.27141e7 −0.0844649
\(218\) −2.92481e8 −1.91206
\(219\) − 7.16977e7i − 0.461265i
\(220\) 96656.2 0.000611998 0
\(221\) 0 0
\(222\) 5.00171e7 0.306820
\(223\) − 9.50963e7i − 0.574244i −0.957894 0.287122i \(-0.907301\pi\)
0.957894 0.287122i \(-0.0926986\pi\)
\(224\) −7.25879e7 −0.431515
\(225\) −1.56041e8 −0.913269
\(226\) 1.12505e8i 0.648323i
\(227\) − 2.36462e8i − 1.34175i −0.741571 0.670874i \(-0.765919\pi\)
0.741571 0.670874i \(-0.234081\pi\)
\(228\) − 6.15336e7i − 0.343827i
\(229\) 2.40501e8i 1.32340i 0.749767 + 0.661702i \(0.230166\pi\)
−0.749767 + 0.661702i \(0.769834\pi\)
\(230\) 853946. 0.00462789
\(231\) 4.12732e6 0.0220306
\(232\) 3.91586e7i 0.205882i
\(233\) −2.23639e8 −1.15825 −0.579123 0.815240i \(-0.696605\pi\)
−0.579123 + 0.815240i \(0.696605\pi\)
\(234\) 0 0
\(235\) −674743. −0.00339157
\(236\) − 1.68827e8i − 0.836082i
\(237\) 3.27525e7 0.159818
\(238\) −1.11812e8 −0.537610
\(239\) − 2.60257e8i − 1.23313i −0.787302 0.616567i \(-0.788523\pi\)
0.787302 0.616567i \(-0.211477\pi\)
\(240\) − 102606.i 0 0.000479110i
\(241\) − 2.92081e8i − 1.34414i −0.740489 0.672069i \(-0.765406\pi\)
0.740489 0.672069i \(-0.234594\pi\)
\(242\) 3.05981e8i 1.38785i
\(243\) −1.75259e8 −0.783535
\(244\) 9.48305e7 0.417911
\(245\) − 436272.i − 0.00189529i
\(246\) 1.43540e8 0.614754
\(247\) 0 0
\(248\) −1.84162e7 −0.0766691
\(249\) 2.44164e7i 0.100227i
\(250\) 1.52370e6 0.00616752
\(251\) −1.00598e8 −0.401542 −0.200771 0.979638i \(-0.564345\pi\)
−0.200771 + 0.979638i \(0.564345\pi\)
\(252\) − 8.31532e7i − 0.327323i
\(253\) − 9.56616e7i − 0.371378i
\(254\) 5.19644e8i 1.98970i
\(255\) − 195663.i 0 0.000738955i
\(256\) 1.43081e8 0.533018
\(257\) 1.67536e7 0.0615662 0.0307831 0.999526i \(-0.490200\pi\)
0.0307831 + 0.999526i \(0.490200\pi\)
\(258\) − 1.73116e8i − 0.627580i
\(259\) 5.95669e7 0.213038
\(260\) 0 0
\(261\) 1.96826e8 0.685236
\(262\) 2.59917e8i 0.892853i
\(263\) −2.50229e7 −0.0848187 −0.0424094 0.999100i \(-0.513503\pi\)
−0.0424094 + 0.999100i \(0.513503\pi\)
\(264\) 5.97839e6 0.0199973
\(265\) − 290523.i 0 0.000959004i
\(266\) − 1.35092e8i − 0.440093i
\(267\) 3.75302e7i 0.120668i
\(268\) − 4.37793e6i − 0.0138930i
\(269\) 2.47248e7 0.0774462 0.0387231 0.999250i \(-0.487671\pi\)
0.0387231 + 0.999250i \(0.487671\pi\)
\(270\) 561964. 0.00173754
\(271\) 5.81639e8i 1.77526i 0.460561 + 0.887628i \(0.347648\pi\)
−0.460561 + 0.887628i \(0.652352\pi\)
\(272\) 3.11387e8 0.938229
\(273\) 0 0
\(274\) −2.93738e8 −0.862647
\(275\) − 8.53448e7i − 0.247464i
\(276\) 1.83021e8 0.523985
\(277\) 2.85853e8 0.808097 0.404048 0.914738i \(-0.367603\pi\)
0.404048 + 0.914738i \(0.367603\pi\)
\(278\) 3.88926e8i 1.08570i
\(279\) 9.25670e7i 0.255177i
\(280\) 63557.0i 0 0.000173026i
\(281\) − 5.88850e8i − 1.58319i −0.611048 0.791593i \(-0.709252\pi\)
0.611048 0.791593i \(-0.290748\pi\)
\(282\) −2.66588e8 −0.707894
\(283\) 4.95887e8 1.30056 0.650279 0.759695i \(-0.274652\pi\)
0.650279 + 0.759695i \(0.274652\pi\)
\(284\) 5.54995e8i 1.43772i
\(285\) 236403. 0.000604916 0
\(286\) 0 0
\(287\) 1.70947e8 0.426849
\(288\) 5.28488e8i 1.30365i
\(289\) 1.83453e8 0.447077
\(290\) −960979. −0.00231377
\(291\) − 1.15492e7i − 0.0274744i
\(292\) − 7.90050e8i − 1.85701i
\(293\) 5.41027e8i 1.25656i 0.777988 + 0.628279i \(0.216240\pi\)
−0.777988 + 0.628279i \(0.783760\pi\)
\(294\) − 1.72369e8i − 0.395588i
\(295\) 648606. 0.00147097
\(296\) 8.62822e7 0.193375
\(297\) − 6.29529e7i − 0.139434i
\(298\) 1.22290e9 2.67690
\(299\) 0 0
\(300\) 1.63283e8 0.349153
\(301\) − 2.06169e8i − 0.435754i
\(302\) 2.91574e8 0.609149
\(303\) 1.85929e8 0.383971
\(304\) 3.76222e8i 0.768044i
\(305\) 364324.i 0 0.000735255i
\(306\) 8.14062e8i 1.62417i
\(307\) − 4.24834e8i − 0.837982i −0.907990 0.418991i \(-0.862384\pi\)
0.907990 0.418991i \(-0.137616\pi\)
\(308\) 4.54797e7 0.0886932
\(309\) 1.79447e8 0.346005
\(310\) − 451947.i 0 0.000861632i
\(311\) −2.89109e8 −0.545005 −0.272503 0.962155i \(-0.587851\pi\)
−0.272503 + 0.962155i \(0.587851\pi\)
\(312\) 0 0
\(313\) −9.46652e8 −1.74496 −0.872479 0.488651i \(-0.837489\pi\)
−0.872479 + 0.488651i \(0.837489\pi\)
\(314\) 1.43286e9i 2.61187i
\(315\) 319461. 0.000575879 0
\(316\) 3.60906e8 0.643412
\(317\) − 4.18587e8i − 0.738038i −0.929422 0.369019i \(-0.879694\pi\)
0.929422 0.369019i \(-0.120306\pi\)
\(318\) − 1.14784e8i − 0.200165i
\(319\) 1.07652e8i 0.185675i
\(320\) − 1.62664e6i − 0.00277503i
\(321\) −2.82110e8 −0.476048
\(322\) 4.01808e8 0.670692
\(323\) 7.17427e8i 1.18459i
\(324\) −5.42459e8 −0.886052
\(325\) 0 0
\(326\) 7.20483e8 1.15176
\(327\) − 2.40829e8i − 0.380883i
\(328\) 2.47615e8 0.387452
\(329\) −3.17488e8 −0.491520
\(330\) 146714.i 0 0.000224736i
\(331\) − 4.12347e8i − 0.624978i −0.949921 0.312489i \(-0.898837\pi\)
0.949921 0.312489i \(-0.101163\pi\)
\(332\) 2.69049e8i 0.403504i
\(333\) − 4.33687e8i − 0.643608i
\(334\) 1.10008e9 1.61552
\(335\) 16819.3 2.44429e−5 0
\(336\) − 4.82795e7i − 0.0694345i
\(337\) 5.74808e8 0.818123 0.409061 0.912507i \(-0.365856\pi\)
0.409061 + 0.912507i \(0.365856\pi\)
\(338\) 0 0
\(339\) −9.26363e7 −0.129146
\(340\) − 2.15605e6i − 0.00297496i
\(341\) −5.06285e7 −0.0691441
\(342\) −9.83561e8 −1.32957
\(343\) − 4.31205e8i − 0.576971i
\(344\) − 2.98635e8i − 0.395536i
\(345\) 703138.i 0 0.000921878i
\(346\) 1.71375e9i 2.22424i
\(347\) −1.46161e9 −1.87792 −0.938962 0.344020i \(-0.888211\pi\)
−0.938962 + 0.344020i \(0.888211\pi\)
\(348\) −2.05961e8 −0.261973
\(349\) 4.00590e8i 0.504441i 0.967670 + 0.252221i \(0.0811609\pi\)
−0.967670 + 0.252221i \(0.918839\pi\)
\(350\) 3.58474e8 0.446910
\(351\) 0 0
\(352\) −2.89051e8 −0.353244
\(353\) − 5.97796e8i − 0.723338i −0.932307 0.361669i \(-0.882207\pi\)
0.932307 0.361669i \(-0.117793\pi\)
\(354\) 2.56261e8 0.307023
\(355\) −2.13220e6 −0.00252947
\(356\) 4.13553e8i 0.485798i
\(357\) − 9.20655e7i − 0.107092i
\(358\) − 1.07734e9i − 1.24098i
\(359\) 6.48576e8i 0.739827i 0.929066 + 0.369913i \(0.120613\pi\)
−0.929066 + 0.369913i \(0.879387\pi\)
\(360\) 462737. 0.000522728 0
\(361\) 2.70670e7 0.0302806
\(362\) − 1.56718e9i − 1.73636i
\(363\) −2.51945e8 −0.276460
\(364\) 0 0
\(365\) 3.03525e6 0.00326715
\(366\) 1.43943e8i 0.153464i
\(367\) 6.24121e8 0.659080 0.329540 0.944142i \(-0.393106\pi\)
0.329540 + 0.944142i \(0.393106\pi\)
\(368\) −1.11901e9 −1.17048
\(369\) − 1.24461e9i − 1.28955i
\(370\) 2.11742e6i 0.00217321i
\(371\) − 1.36700e8i − 0.138983i
\(372\) − 9.68631e7i − 0.0975569i
\(373\) −1.14420e8 −0.114162 −0.0570810 0.998370i \(-0.518179\pi\)
−0.0570810 + 0.998370i \(0.518179\pi\)
\(374\) −4.45243e8 −0.440095
\(375\) 1.25462e6i 0.00122857i
\(376\) −4.59878e8 −0.446154
\(377\) 0 0
\(378\) 2.64421e8 0.251811
\(379\) − 1.79026e9i − 1.68919i −0.535407 0.844594i \(-0.679842\pi\)
0.535407 0.844594i \(-0.320158\pi\)
\(380\) 2.60496e6 0.00243534
\(381\) −4.27874e8 −0.396350
\(382\) 1.73839e9i 1.59561i
\(383\) 1.71291e9i 1.55789i 0.627090 + 0.778947i \(0.284246\pi\)
−0.627090 + 0.778947i \(0.715754\pi\)
\(384\) − 1.76238e8i − 0.158833i
\(385\) 174726.i 0 0.000156043i
\(386\) 7.79665e7 0.0690005
\(387\) −1.50105e9 −1.31646
\(388\) − 1.27263e8i − 0.110609i
\(389\) −1.68291e9 −1.44957 −0.724783 0.688978i \(-0.758060\pi\)
−0.724783 + 0.688978i \(0.758060\pi\)
\(390\) 0 0
\(391\) −2.13386e9 −1.80529
\(392\) − 2.97345e8i − 0.249322i
\(393\) −2.14015e8 −0.177857
\(394\) 1.69145e9 1.39323
\(395\) 1.38654e6i 0.00113199i
\(396\) − 3.31123e8i − 0.267951i
\(397\) − 2.12886e9i − 1.70758i −0.520619 0.853789i \(-0.674299\pi\)
0.520619 0.853789i \(-0.325701\pi\)
\(398\) 2.16012e9i 1.71746i
\(399\) 1.11235e8 0.0876668
\(400\) −9.98323e8 −0.779940
\(401\) 9.05120e8i 0.700972i 0.936568 + 0.350486i \(0.113984\pi\)
−0.936568 + 0.350486i \(0.886016\pi\)
\(402\) 6.64524e6 0.00510175
\(403\) 0 0
\(404\) 2.04879e9 1.54583
\(405\) − 2.08404e6i − 0.00155889i
\(406\) −4.52170e8 −0.335321
\(407\) 2.37200e8 0.174395
\(408\) − 1.33356e8i − 0.0972080i
\(409\) 1.60956e9i 1.16326i 0.813454 + 0.581629i \(0.197585\pi\)
−0.813454 + 0.581629i \(0.802415\pi\)
\(410\) 6.07664e6i 0.00435432i
\(411\) − 2.41863e8i − 0.171840i
\(412\) 1.97736e9 1.39298
\(413\) 3.05189e8 0.213179
\(414\) − 2.92543e9i − 2.02623i
\(415\) −1.03364e6 −0.000709908 0
\(416\) 0 0
\(417\) −3.20241e8 −0.216273
\(418\) − 5.37948e8i − 0.360266i
\(419\) −2.87655e8 −0.191039 −0.0955196 0.995428i \(-0.530451\pi\)
−0.0955196 + 0.995428i \(0.530451\pi\)
\(420\) −334288. −0.000220165 0
\(421\) − 1.52458e7i − 0.00995781i −0.999988 0.00497891i \(-0.998415\pi\)
0.999988 0.00497891i \(-0.00158484\pi\)
\(422\) 2.40775e9i 1.55962i
\(423\) 2.31152e9i 1.48493i
\(424\) − 1.98009e8i − 0.126155i
\(425\) −1.90373e9 −1.20294
\(426\) −8.42424e8 −0.527955
\(427\) 1.71426e8i 0.106556i
\(428\) −3.10862e9 −1.91652
\(429\) 0 0
\(430\) 7.32870e6 0.00444516
\(431\) 9.22436e8i 0.554965i 0.960731 + 0.277483i \(0.0895001\pi\)
−0.960731 + 0.277483i \(0.910500\pi\)
\(432\) −7.36394e8 −0.439458
\(433\) 1.88411e9 1.11532 0.557660 0.830069i \(-0.311699\pi\)
0.557660 + 0.830069i \(0.311699\pi\)
\(434\) − 2.12655e8i − 0.124871i
\(435\) − 791269.i 0 0.000460905i
\(436\) − 2.65374e9i − 1.53340i
\(437\) − 2.57816e9i − 1.47783i
\(438\) 1.19921e9 0.681925
\(439\) 8.65096e8 0.488021 0.244010 0.969773i \(-0.421537\pi\)
0.244010 + 0.969773i \(0.421537\pi\)
\(440\) 253089.i 0 0.000141641i
\(441\) −1.49457e9 −0.829814
\(442\) 0 0
\(443\) 9.40807e8 0.514147 0.257074 0.966392i \(-0.417242\pi\)
0.257074 + 0.966392i \(0.417242\pi\)
\(444\) 4.53815e8i 0.246058i
\(445\) −1.58880e6 −0.000854694 0
\(446\) 1.59058e9 0.848951
\(447\) 1.00693e9i 0.533241i
\(448\) − 7.65386e8i − 0.402168i
\(449\) − 8.79790e7i − 0.0458687i −0.999737 0.0229344i \(-0.992699\pi\)
0.999737 0.0229344i \(-0.00730087\pi\)
\(450\) − 2.60993e9i − 1.35016i
\(451\) 6.80724e8 0.349424
\(452\) −1.02078e9 −0.519931
\(453\) 2.40081e8i 0.121343i
\(454\) 3.95506e9 1.98361
\(455\) 0 0
\(456\) 1.61123e8 0.0795755
\(457\) − 1.95139e9i − 0.956396i −0.878252 0.478198i \(-0.841290\pi\)
0.878252 0.478198i \(-0.158710\pi\)
\(458\) −4.02261e9 −1.95649
\(459\) −1.40425e9 −0.677797
\(460\) 7.74801e6i 0.00371140i
\(461\) 1.15818e8i 0.0550585i 0.999621 + 0.0275293i \(0.00876394\pi\)
−0.999621 + 0.0275293i \(0.991236\pi\)
\(462\) 6.90335e7i 0.0325696i
\(463\) − 1.46488e9i − 0.685914i −0.939351 0.342957i \(-0.888571\pi\)
0.939351 0.342957i \(-0.111429\pi\)
\(464\) 1.25926e9 0.585198
\(465\) 372133. 0.000171638 0
\(466\) − 3.74057e9i − 1.71233i
\(467\) 6.23541e8 0.283306 0.141653 0.989916i \(-0.454758\pi\)
0.141653 + 0.989916i \(0.454758\pi\)
\(468\) 0 0
\(469\) 7.91402e6 0.00354236
\(470\) − 1.12857e7i − 0.00501403i
\(471\) −1.17982e9 −0.520286
\(472\) 4.42064e8 0.193503
\(473\) − 8.20984e8i − 0.356714i
\(474\) 5.47817e8i 0.236271i
\(475\) − 2.30011e9i − 0.984739i
\(476\) − 1.01449e9i − 0.431144i
\(477\) −9.95268e8 −0.419880
\(478\) 4.35305e9 1.82304
\(479\) 2.10997e9i 0.877207i 0.898681 + 0.438604i \(0.144527\pi\)
−0.898681 + 0.438604i \(0.855473\pi\)
\(480\) 2.12460e6 0.000876865 0
\(481\) 0 0
\(482\) 4.88534e9 1.98715
\(483\) 3.30848e8i 0.133602i
\(484\) −2.77622e9 −1.11300
\(485\) 488925. 0.000194602 0
\(486\) − 2.93138e9i − 1.15836i
\(487\) − 3.08900e9i − 1.21190i −0.795503 0.605949i \(-0.792793\pi\)
0.795503 0.605949i \(-0.207207\pi\)
\(488\) 2.48309e8i 0.0967214i
\(489\) 5.93245e8i 0.229431i
\(490\) 7.29706e6 0.00280196
\(491\) 3.63222e9 1.38480 0.692399 0.721515i \(-0.256554\pi\)
0.692399 + 0.721515i \(0.256554\pi\)
\(492\) 1.30237e9i 0.493010i
\(493\) 2.40132e9 0.902579
\(494\) 0 0
\(495\) 1.27212e6 0.000471423 0
\(496\) 5.92229e8i 0.217923i
\(497\) −1.00327e9 −0.366581
\(498\) −4.08388e8 −0.148173
\(499\) − 4.71935e9i − 1.70032i −0.526525 0.850160i \(-0.676505\pi\)
0.526525 0.850160i \(-0.323495\pi\)
\(500\) 1.38248e7i 0.00494612i
\(501\) 9.05805e8i 0.321812i
\(502\) − 1.68260e9i − 0.593632i
\(503\) 7.89607e8 0.276645 0.138323 0.990387i \(-0.455829\pi\)
0.138323 + 0.990387i \(0.455829\pi\)
\(504\) 2.17732e8 0.0757558
\(505\) 7.87113e6i 0.00271968i
\(506\) 1.60003e9 0.549037
\(507\) 0 0
\(508\) −4.71483e9 −1.59567
\(509\) − 9.69489e7i − 0.0325860i −0.999867 0.0162930i \(-0.994814\pi\)
0.999867 0.0162930i \(-0.00518645\pi\)
\(510\) 3.27265e6 0.00109246
\(511\) 1.42818e9 0.473489
\(512\) 4.03115e9i 1.32734i
\(513\) − 1.69663e9i − 0.554852i
\(514\) 2.80220e8i 0.0910182i
\(515\) 7.59671e6i 0.00245076i
\(516\) 1.57072e9 0.503296
\(517\) −1.26426e9 −0.402365
\(518\) 9.96314e8i 0.314950i
\(519\) −1.41110e9 −0.443069
\(520\) 0 0
\(521\) 4.10985e9 1.27319 0.636596 0.771197i \(-0.280342\pi\)
0.636596 + 0.771197i \(0.280342\pi\)
\(522\) 3.29210e9i 1.01304i
\(523\) 2.38880e8 0.0730169 0.0365084 0.999333i \(-0.488376\pi\)
0.0365084 + 0.999333i \(0.488376\pi\)
\(524\) −2.35827e9 −0.716036
\(525\) 2.95167e8i 0.0890247i
\(526\) − 4.18531e8i − 0.125394i
\(527\) 1.12934e9i 0.336114i
\(528\) − 1.92253e8i − 0.0568400i
\(529\) 4.26345e9 1.25218
\(530\) 4.85928e6 0.00141777
\(531\) − 2.22198e9i − 0.644034i
\(532\) 1.22572e9 0.352939
\(533\) 0 0
\(534\) −6.27729e8 −0.178393
\(535\) − 1.19428e7i − 0.00337186i
\(536\) 1.14634e7 0.00321541
\(537\) 8.87083e8 0.247203
\(538\) 4.13546e8i 0.114495i
\(539\) − 8.17439e8i − 0.224851i
\(540\) 5.09880e6i 0.00139344i
\(541\) 5.59019e8i 0.151788i 0.997116 + 0.0758938i \(0.0241810\pi\)
−0.997116 + 0.0758938i \(0.975819\pi\)
\(542\) −9.72847e9 −2.62450
\(543\) 1.29041e9 0.345883
\(544\) 6.44767e9i 1.71714i
\(545\) 1.01952e7 0.00269780
\(546\) 0 0
\(547\) −7.01923e8 −0.183372 −0.0916861 0.995788i \(-0.529226\pi\)
−0.0916861 + 0.995788i \(0.529226\pi\)
\(548\) − 2.66514e9i − 0.691812i
\(549\) 1.24809e9 0.321917
\(550\) 1.42747e9 0.365846
\(551\) 2.90130e9i 0.738860i
\(552\) 4.79231e8i 0.121271i
\(553\) 6.52412e8i 0.164053i
\(554\) 4.78116e9i 1.19467i
\(555\) −1.74348e6 −0.000432905 0
\(556\) −3.52880e9 −0.870693
\(557\) − 3.51904e9i − 0.862840i −0.902151 0.431420i \(-0.858013\pi\)
0.902151 0.431420i \(-0.141987\pi\)
\(558\) −1.54827e9 −0.377248
\(559\) 0 0
\(560\) 2.04386e6 0.000491806 0
\(561\) − 3.66612e8i − 0.0876672i
\(562\) 9.84907e9 2.34055
\(563\) 3.27161e8 0.0772648 0.0386324 0.999253i \(-0.487700\pi\)
0.0386324 + 0.999253i \(0.487700\pi\)
\(564\) − 2.41880e9i − 0.567705i
\(565\) − 3.92166e6i 0 0.000914746i
\(566\) 8.29418e9i 1.92272i
\(567\) − 9.80607e8i − 0.225920i
\(568\) −1.45323e9 −0.332747
\(569\) −5.92681e9 −1.34874 −0.674369 0.738394i \(-0.735584\pi\)
−0.674369 + 0.738394i \(0.735584\pi\)
\(570\) 3.95406e6i 0 0.000894296i
\(571\) −3.50991e9 −0.788988 −0.394494 0.918899i \(-0.629080\pi\)
−0.394494 + 0.918899i \(0.629080\pi\)
\(572\) 0 0
\(573\) −1.43139e9 −0.317846
\(574\) 2.85925e9i 0.631045i
\(575\) 6.84128e9 1.50072
\(576\) −5.57252e9 −1.21499
\(577\) 9.14479e9i 1.98179i 0.134621 + 0.990897i \(0.457018\pi\)
−0.134621 + 0.990897i \(0.542982\pi\)
\(578\) 3.06843e9i 0.660950i
\(579\) 6.41975e7i 0.0137450i
\(580\) − 8.71913e6i − 0.00185556i
\(581\) −4.86361e8 −0.102883
\(582\) 1.93172e8 0.0406176
\(583\) − 5.44351e8i − 0.113773i
\(584\) 2.06871e9 0.429787
\(585\) 0 0
\(586\) −9.04920e9 −1.85767
\(587\) 1.65538e9i 0.337804i 0.985633 + 0.168902i \(0.0540221\pi\)
−0.985633 + 0.168902i \(0.945978\pi\)
\(588\) 1.56393e9 0.317247
\(589\) −1.36448e9 −0.275146
\(590\) 1.08486e7i 0.00217465i
\(591\) 1.39274e9i 0.277532i
\(592\) − 2.77466e9i − 0.549647i
\(593\) 7.99836e9i 1.57510i 0.616248 + 0.787552i \(0.288652\pi\)
−0.616248 + 0.787552i \(0.711348\pi\)
\(594\) 1.05295e9 0.206136
\(595\) 3.89750e6 0.000758537 0
\(596\) 1.10956e10i 2.14678i
\(597\) −1.77864e9 −0.342120
\(598\) 0 0
\(599\) −8.80866e8 −0.167462 −0.0837309 0.996488i \(-0.526684\pi\)
−0.0837309 + 0.996488i \(0.526684\pi\)
\(600\) 4.27547e8i 0.0808080i
\(601\) 2.97804e9 0.559589 0.279795 0.960060i \(-0.409734\pi\)
0.279795 + 0.960060i \(0.409734\pi\)
\(602\) 3.44838e9 0.644210
\(603\) − 5.76193e7i − 0.0107018i
\(604\) 2.64550e9i 0.488516i
\(605\) − 1.06658e7i − 0.00195817i
\(606\) 3.10985e9i 0.567655i
\(607\) −3.31888e8 −0.0602325 −0.0301163 0.999546i \(-0.509588\pi\)
−0.0301163 + 0.999546i \(0.509588\pi\)
\(608\) −7.79016e9 −1.40567
\(609\) − 3.72316e8i − 0.0667962i
\(610\) −6.09367e6 −0.00108699
\(611\) 0 0
\(612\) −7.38613e9 −1.30253
\(613\) 3.93427e9i 0.689846i 0.938631 + 0.344923i \(0.112095\pi\)
−0.938631 + 0.344923i \(0.887905\pi\)
\(614\) 7.10575e9 1.23886
\(615\) −5.00350e6 −0.000867383 0
\(616\) 1.19086e8i 0.0205272i
\(617\) − 7.24044e9i − 1.24099i −0.784212 0.620493i \(-0.786933\pi\)
0.784212 0.620493i \(-0.213067\pi\)
\(618\) 3.00142e9i 0.511526i
\(619\) 1.16885e10i 1.98080i 0.138220 + 0.990401i \(0.455862\pi\)
−0.138220 + 0.990401i \(0.544138\pi\)
\(620\) 4.10060e6 0.000690998 0
\(621\) 5.04633e9 0.845581
\(622\) − 4.83563e9i − 0.805725i
\(623\) −7.47582e8 −0.123866
\(624\) 0 0
\(625\) 6.10344e9 0.999987
\(626\) − 1.58337e10i − 2.57971i
\(627\) 4.42946e8 0.0717652
\(628\) −1.30006e10 −2.09462
\(629\) − 5.29107e9i − 0.847747i
\(630\) 5.34330e6i 0 0.000851368i
\(631\) − 6.38796e8i − 0.101218i −0.998719 0.0506092i \(-0.983884\pi\)
0.998719 0.0506092i \(-0.0161163\pi\)
\(632\) 9.45013e8i 0.148911i
\(633\) −1.98254e9 −0.310677
\(634\) 7.00127e9 1.09110
\(635\) − 1.81136e7i − 0.00280736i
\(636\) 1.04146e9 0.160525
\(637\) 0 0
\(638\) −1.80058e9 −0.274498
\(639\) 7.30446e9i 1.10748i
\(640\) 7.46086e6 0.00112502
\(641\) −6.15856e8 −0.0923584 −0.0461792 0.998933i \(-0.514705\pi\)
−0.0461792 + 0.998933i \(0.514705\pi\)
\(642\) − 4.71856e9i − 0.703779i
\(643\) − 4.86092e9i − 0.721075i −0.932745 0.360537i \(-0.882593\pi\)
0.932745 0.360537i \(-0.117407\pi\)
\(644\) 3.64568e9i 0.537870i
\(645\) 6.03444e6i 0 0.000885479i
\(646\) −1.19997e10 −1.75128
\(647\) −7.67484e9 −1.11405 −0.557025 0.830496i \(-0.688057\pi\)
−0.557025 + 0.830496i \(0.688057\pi\)
\(648\) − 1.42040e9i − 0.205068i
\(649\) 1.21529e9 0.174511
\(650\) 0 0
\(651\) 1.75100e8 0.0248744
\(652\) 6.53707e9i 0.923670i
\(653\) −5.86264e9 −0.823942 −0.411971 0.911197i \(-0.635160\pi\)
−0.411971 + 0.911197i \(0.635160\pi\)
\(654\) 4.02809e9 0.563089
\(655\) − 9.06012e6i − 0.00125976i
\(656\) − 7.96279e9i − 1.10129i
\(657\) − 1.03981e10i − 1.43046i
\(658\) − 5.31028e9i − 0.726653i
\(659\) 1.17798e10 1.60338 0.801692 0.597737i \(-0.203933\pi\)
0.801692 + 0.597737i \(0.203933\pi\)
\(660\) −1.33116e6 −0.000180230 0
\(661\) − 3.65943e9i − 0.492843i −0.969163 0.246421i \(-0.920745\pi\)
0.969163 0.246421i \(-0.0792547\pi\)
\(662\) 6.89690e9 0.923955
\(663\) 0 0
\(664\) −7.04490e8 −0.0933870
\(665\) 4.70901e6i 0 0.000620946i
\(666\) 7.25383e9 0.951497
\(667\) −8.62942e9 −1.12601
\(668\) 9.98123e9i 1.29559i
\(669\) 1.30968e9i 0.169112i
\(670\) 281319.i 0 3.61358e-5i
\(671\) 6.82631e8i 0.0872283i
\(672\) 9.99691e8 0.127079
\(673\) 8.09730e9 1.02397 0.511985 0.858994i \(-0.328910\pi\)
0.511985 + 0.858994i \(0.328910\pi\)
\(674\) 9.61422e9i 1.20950i
\(675\) 4.50210e9 0.563445
\(676\) 0 0
\(677\) 6.04454e9 0.748691 0.374346 0.927289i \(-0.377867\pi\)
0.374346 + 0.927289i \(0.377867\pi\)
\(678\) − 1.54943e9i − 0.190927i
\(679\) 2.30055e8 0.0282024
\(680\) 5.64549e6 0.000688527 0
\(681\) 3.25659e9i 0.395137i
\(682\) − 8.46811e8i − 0.102221i
\(683\) 6.73839e9i 0.809252i 0.914482 + 0.404626i \(0.132598\pi\)
−0.914482 + 0.404626i \(0.867402\pi\)
\(684\) − 8.92402e9i − 1.06626i
\(685\) 1.02390e7 0.00121715
\(686\) 7.21231e9 0.852982
\(687\) − 3.31221e9i − 0.389735i
\(688\) −9.60348e9 −1.12427
\(689\) 0 0
\(690\) −1.17607e7 −0.00136289
\(691\) 3.86203e9i 0.445289i 0.974900 + 0.222645i \(0.0714690\pi\)
−0.974900 + 0.222645i \(0.928531\pi\)
\(692\) −1.55492e10 −1.78376
\(693\) 5.98573e8 0.0683204
\(694\) − 2.44468e10i − 2.77629i
\(695\) − 1.35571e7i − 0.00153186i
\(696\) − 5.39297e8i − 0.0606311i
\(697\) − 1.51845e10i − 1.69857i
\(698\) −6.70024e9 −0.745756
\(699\) 3.07998e9 0.341097
\(700\) 3.25250e9i 0.358405i
\(701\) 6.81601e9 0.747338 0.373669 0.927562i \(-0.378100\pi\)
0.373669 + 0.927562i \(0.378100\pi\)
\(702\) 0 0
\(703\) 6.39274e9 0.693975
\(704\) − 3.04783e9i − 0.329220i
\(705\) 9.29265e6 0.000998798 0
\(706\) 9.99871e9 1.06937
\(707\) 3.70361e9i 0.394146i
\(708\) 2.32510e9i 0.246221i
\(709\) 7.39468e9i 0.779215i 0.920981 + 0.389608i \(0.127389\pi\)
−0.920981 + 0.389608i \(0.872611\pi\)
\(710\) − 3.56632e7i − 0.00373952i
\(711\) 4.74999e9 0.495620
\(712\) −1.08287e9 −0.112433
\(713\) − 4.05841e9i − 0.419317i
\(714\) 1.53988e9 0.158323
\(715\) 0 0
\(716\) 9.77493e9 0.995218
\(717\) 3.58430e9i 0.363151i
\(718\) −1.08481e10 −1.09375
\(719\) 1.85081e10 1.85700 0.928500 0.371333i \(-0.121099\pi\)
0.928500 + 0.371333i \(0.121099\pi\)
\(720\) − 1.48807e7i − 0.00148580i
\(721\) 3.57449e9i 0.355173i
\(722\) 4.52721e8i 0.0447663i
\(723\) 4.02258e9i 0.395841i
\(724\) 1.42193e10 1.39249
\(725\) −7.69876e9 −0.750304
\(726\) − 4.21401e9i − 0.408712i
\(727\) 4.04178e9 0.390124 0.195062 0.980791i \(-0.437509\pi\)
0.195062 + 0.980791i \(0.437509\pi\)
\(728\) 0 0
\(729\) −5.40376e9 −0.516594
\(730\) 5.07675e7i 0.00483009i
\(731\) −1.83131e10 −1.73401
\(732\) −1.30602e9 −0.123072
\(733\) 1.54392e10i 1.44797i 0.689816 + 0.723985i \(0.257692\pi\)
−0.689816 + 0.723985i \(0.742308\pi\)
\(734\) 1.04390e10i 0.974370i
\(735\) 6.00839e6i 0 0.000558152i
\(736\) − 2.31705e10i − 2.14221i
\(737\) 3.15143e7 0.00289982
\(738\) 2.08172e10 1.90645
\(739\) 6.64104e8i 0.0605313i 0.999542 + 0.0302657i \(0.00963533\pi\)
−0.999542 + 0.0302657i \(0.990365\pi\)
\(740\) −1.92118e7 −0.00174284
\(741\) 0 0
\(742\) 2.28644e9 0.205469
\(743\) − 1.54094e9i − 0.137824i −0.997623 0.0689118i \(-0.978047\pi\)
0.997623 0.0689118i \(-0.0219527\pi\)
\(744\) 2.53631e8 0.0225786
\(745\) −4.26274e7 −0.00377695
\(746\) − 1.91379e9i − 0.168775i
\(747\) 3.54103e9i 0.310819i
\(748\) − 4.03977e9i − 0.352940i
\(749\) − 5.61947e9i − 0.488663i
\(750\) −2.09846e7 −0.00181630
\(751\) −3.60098e9 −0.310228 −0.155114 0.987897i \(-0.549574\pi\)
−0.155114 + 0.987897i \(0.549574\pi\)
\(752\) 1.47887e10i 1.26814i
\(753\) 1.38545e9 0.118252
\(754\) 0 0
\(755\) −1.01636e7 −0.000859475 0
\(756\) 2.39914e9i 0.201944i
\(757\) 3.39784e8 0.0284686 0.0142343 0.999899i \(-0.495469\pi\)
0.0142343 + 0.999899i \(0.495469\pi\)
\(758\) 2.99438e10 2.49726
\(759\) 1.31746e9i 0.109369i
\(760\) 6.82096e6i 0 0.000563635i
\(761\) − 1.96039e9i − 0.161249i −0.996745 0.0806243i \(-0.974309\pi\)
0.996745 0.0806243i \(-0.0256914\pi\)
\(762\) − 7.15661e9i − 0.585956i
\(763\) 4.79718e9 0.390976
\(764\) −1.57727e10 −1.27962
\(765\) − 2.83764e7i − 0.00229162i
\(766\) −2.86500e10 −2.30316
\(767\) 0 0
\(768\) −1.97053e9 −0.156971
\(769\) 1.11615e10i 0.885077i 0.896750 + 0.442538i \(0.145922\pi\)
−0.896750 + 0.442538i \(0.854078\pi\)
\(770\) −2.92246e6 −0.000230691 0
\(771\) −2.30733e8 −0.0181309
\(772\) 7.07404e8i 0.0553359i
\(773\) − 2.85420e9i − 0.222258i −0.993806 0.111129i \(-0.964553\pi\)
0.993806 0.111129i \(-0.0354466\pi\)
\(774\) − 2.51065e10i − 1.94622i
\(775\) − 3.62072e9i − 0.279408i
\(776\) 3.33232e8 0.0255994
\(777\) −8.20364e8 −0.0627383
\(778\) − 2.81483e10i − 2.14301i
\(779\) 1.83461e10 1.39047
\(780\) 0 0
\(781\) −3.99510e9 −0.300088
\(782\) − 3.56909e10i − 2.66891i
\(783\) −5.67884e9 −0.422759
\(784\) −9.56202e9 −0.708669
\(785\) − 4.99464e7i − 0.00368519i
\(786\) − 3.57961e9i − 0.262940i
\(787\) 1.33429e10i 0.975749i 0.872914 + 0.487874i \(0.162228\pi\)
−0.872914 + 0.487874i \(0.837772\pi\)
\(788\) 1.53468e10i 1.11732i
\(789\) 3.44618e8 0.0249786
\(790\) −2.31913e7 −0.00167351
\(791\) − 1.84526e9i − 0.132569i
\(792\) 8.67027e8 0.0620147
\(793\) 0 0
\(794\) 3.56073e10 2.52445
\(795\) 4.00112e6i 0 0.000282421i
\(796\) −1.95992e10 −1.37734
\(797\) −8.42860e9 −0.589727 −0.294864 0.955539i \(-0.595274\pi\)
−0.294864 + 0.955539i \(0.595274\pi\)
\(798\) 1.86051e9i 0.129605i
\(799\) 2.82010e10i 1.95592i
\(800\) − 2.06716e10i − 1.42744i
\(801\) 5.44289e9i 0.374210i
\(802\) −1.51390e10 −1.03630
\(803\) 5.68713e9 0.387604
\(804\) 6.02935e7i 0.00409142i
\(805\) −1.40061e7 −0.000946308 0
\(806\) 0 0
\(807\) −3.40513e8 −0.0228075
\(808\) 5.36465e9i 0.357768i
\(809\) 9.44279e9 0.627019 0.313509 0.949585i \(-0.398495\pi\)
0.313509 + 0.949585i \(0.398495\pi\)
\(810\) 3.48576e7 0.00230462
\(811\) − 1.75509e10i − 1.15539i −0.816254 0.577693i \(-0.803953\pi\)
0.816254 0.577693i \(-0.196047\pi\)
\(812\) − 4.10262e9i − 0.268915i
\(813\) − 8.01041e9i − 0.522803i
\(814\) 3.96740e9i 0.257823i
\(815\) −2.51144e7 −0.00162507
\(816\) −4.28846e9 −0.276303
\(817\) − 2.21262e10i − 1.41948i
\(818\) −2.69215e10 −1.71974
\(819\) 0 0
\(820\) −5.51344e7 −0.00349200
\(821\) − 1.65515e10i − 1.04384i −0.852993 0.521922i \(-0.825215\pi\)
0.852993 0.521922i \(-0.174785\pi\)
\(822\) 4.04540e9 0.254045
\(823\) −2.59526e10 −1.62286 −0.811430 0.584449i \(-0.801311\pi\)
−0.811430 + 0.584449i \(0.801311\pi\)
\(824\) 5.17762e9i 0.322392i
\(825\) 1.17538e9i 0.0728768i
\(826\) 5.10458e9i 0.315159i
\(827\) 2.53210e10i 1.55672i 0.627816 + 0.778362i \(0.283949\pi\)
−0.627816 + 0.778362i \(0.716051\pi\)
\(828\) 2.65429e10 1.62496
\(829\) −2.70822e10 −1.65099 −0.825494 0.564411i \(-0.809103\pi\)
−0.825494 + 0.564411i \(0.809103\pi\)
\(830\) − 1.72887e7i − 0.00104951i
\(831\) −3.93680e9 −0.237980
\(832\) 0 0
\(833\) −1.82341e10 −1.09301
\(834\) − 5.35634e9i − 0.319733i
\(835\) −3.83463e7 −0.00227940
\(836\) 4.88090e9 0.288920
\(837\) − 2.67075e9i − 0.157432i
\(838\) − 4.81130e9i − 0.282428i
\(839\) − 1.26152e10i − 0.737442i −0.929540 0.368721i \(-0.879796\pi\)
0.929540 0.368721i \(-0.120204\pi\)
\(840\) − 875316.i 0 5.09550e-5i
\(841\) −7.53886e9 −0.437038
\(842\) 2.55001e8 0.0147214
\(843\) 8.10971e9i 0.466239i
\(844\) −2.18460e10 −1.25076
\(845\) 0 0
\(846\) −3.86624e10 −2.19529
\(847\) − 5.01860e9i − 0.283786i
\(848\) −6.36757e9 −0.358582
\(849\) −6.82942e9 −0.383007
\(850\) − 3.18417e10i − 1.77840i
\(851\) 1.90141e10i 1.05760i
\(852\) − 7.64347e9i − 0.423401i
\(853\) − 1.11666e9i − 0.0616027i −0.999526 0.0308013i \(-0.990194\pi\)
0.999526 0.0308013i \(-0.00980592\pi\)
\(854\) −2.86726e9 −0.157530
\(855\) 3.42847e7 0.00187594
\(856\) − 8.13976e9i − 0.443561i
\(857\) 1.48481e10 0.805821 0.402911 0.915239i \(-0.367999\pi\)
0.402911 + 0.915239i \(0.367999\pi\)
\(858\) 0 0
\(859\) 1.26319e10 0.679974 0.339987 0.940430i \(-0.389577\pi\)
0.339987 + 0.940430i \(0.389577\pi\)
\(860\) 6.64946e7i 0.00356486i
\(861\) −2.35430e9 −0.125705
\(862\) −1.54286e10 −0.820449
\(863\) 2.29823e10i 1.21718i 0.793484 + 0.608591i \(0.208265\pi\)
−0.793484 + 0.608591i \(0.791735\pi\)
\(864\) − 1.52480e10i − 0.804294i
\(865\) − 5.97374e7i − 0.00313827i
\(866\) 3.15136e10i 1.64887i
\(867\) −2.52654e9 −0.131662
\(868\) 1.92946e9 0.100142
\(869\) 2.59796e9i 0.134296i
\(870\) 1.32347e7 0.000681393 0
\(871\) 0 0
\(872\) 6.94867e9 0.354890
\(873\) − 1.67495e9i − 0.0852024i
\(874\) 4.31222e10 2.18479
\(875\) −2.49913e7 −0.00126113
\(876\) 1.08807e10i 0.546879i
\(877\) 1.63120e10i 0.816599i 0.912848 + 0.408299i \(0.133878\pi\)
−0.912848 + 0.408299i \(0.866122\pi\)
\(878\) 1.44696e10i 0.721480i
\(879\) − 7.45110e9i − 0.370049i
\(880\) 8.13883e6 0.000402599 0
\(881\) −2.07580e9 −0.102275 −0.0511374 0.998692i \(-0.516285\pi\)
−0.0511374 + 0.998692i \(0.516285\pi\)
\(882\) − 2.49981e10i − 1.22678i
\(883\) −1.70041e10 −0.831175 −0.415587 0.909553i \(-0.636424\pi\)
−0.415587 + 0.909553i \(0.636424\pi\)
\(884\) 0 0
\(885\) −8.93268e6 −0.000433192 0
\(886\) 1.57359e10i 0.760105i
\(887\) −1.27005e10 −0.611066 −0.305533 0.952182i \(-0.598835\pi\)
−0.305533 + 0.952182i \(0.598835\pi\)
\(888\) −1.18829e9 −0.0569478
\(889\) − 8.52303e9i − 0.406853i
\(890\) − 2.65743e7i − 0.00126356i
\(891\) − 3.90486e9i − 0.184941i
\(892\) 1.44316e10i 0.680828i
\(893\) −3.40729e10 −1.60114
\(894\) −1.68419e10 −0.788332
\(895\) 3.75538e7i 0.00175095i
\(896\) 3.51057e9 0.163042
\(897\) 0 0
\(898\) 1.47153e9 0.0678114
\(899\) 4.56708e9i 0.209643i
\(900\) 2.36804e10 1.08278
\(901\) −1.21425e10 −0.553058
\(902\) 1.13858e10i 0.516582i
\(903\) 2.83939e9i 0.128327i
\(904\) − 2.67285e9i − 0.120333i
\(905\) 5.46284e7i 0.00244990i
\(906\) −4.01559e9 −0.179391
\(907\) 5.79320e9 0.257806 0.128903 0.991657i \(-0.458854\pi\)
0.128903 + 0.991657i \(0.458854\pi\)
\(908\) 3.58849e10i 1.59079i
\(909\) 2.69647e10 1.19076
\(910\) 0 0
\(911\) −2.92730e10 −1.28278 −0.641390 0.767215i \(-0.721642\pi\)
−0.641390 + 0.767215i \(0.721642\pi\)
\(912\) − 5.18137e9i − 0.226185i
\(913\) −1.93673e9 −0.0842212
\(914\) 3.26389e10 1.41392
\(915\) − 5.01752e6i 0 0.000216528i
\(916\) − 3.64978e10i − 1.56904i
\(917\) − 4.26307e9i − 0.182570i
\(918\) − 2.34874e10i − 1.00204i
\(919\) 1.74294e10 0.740759 0.370380 0.928880i \(-0.379228\pi\)
0.370380 + 0.928880i \(0.379228\pi\)
\(920\) −2.02877e7 −0.000858967 0
\(921\) 5.85087e9i 0.246781i
\(922\) −1.93717e9 −0.0813974
\(923\) 0 0
\(924\) −6.26353e8 −0.0261196
\(925\) 1.69635e10i 0.704723i
\(926\) 2.45016e10 1.01404
\(927\) 2.60246e10 1.07301
\(928\) 2.60746e10i 1.07103i
\(929\) 1.64663e10i 0.673814i 0.941538 + 0.336907i \(0.109381\pi\)
−0.941538 + 0.336907i \(0.890619\pi\)
\(930\) 6.22428e6i 0 0.000253746i
\(931\) − 2.20306e10i − 0.894753i
\(932\) 3.39389e10 1.37322
\(933\) 3.98165e9 0.160501
\(934\) 1.04293e10i 0.418834i
\(935\) 1.55202e7 0.000620948 0
\(936\) 0 0
\(937\) −1.22607e10 −0.486885 −0.243442 0.969915i \(-0.578277\pi\)
−0.243442 + 0.969915i \(0.578277\pi\)
\(938\) 1.32370e8i 0.00523695i
\(939\) 1.30374e10 0.513880
\(940\) 1.02397e8 0.00402107
\(941\) 3.58066e10i 1.40088i 0.713713 + 0.700438i \(0.247012\pi\)
−0.713713 + 0.700438i \(0.752988\pi\)
\(942\) − 1.97336e10i − 0.769180i
\(943\) 5.45671e10i 2.11904i
\(944\) − 1.42159e10i − 0.550011i
\(945\) −9.21713e6 −0.000355291 0
\(946\) 1.37317e10 0.527359
\(947\) 3.11279e10i 1.19104i 0.803342 + 0.595518i \(0.203053\pi\)
−0.803342 + 0.595518i \(0.796947\pi\)
\(948\) −4.97044e9 −0.189481
\(949\) 0 0
\(950\) 3.84716e10 1.45582
\(951\) 5.76484e9i 0.217348i
\(952\) 2.65638e9 0.0997840
\(953\) −6.95907e9 −0.260451 −0.130225 0.991484i \(-0.541570\pi\)
−0.130225 + 0.991484i \(0.541570\pi\)
\(954\) − 1.66468e10i − 0.620743i
\(955\) − 6.05964e7i − 0.00225131i
\(956\) 3.94961e10i 1.46201i
\(957\) − 1.48259e9i − 0.0546803i
\(958\) −3.52913e10 −1.29685
\(959\) 4.81779e9 0.176394
\(960\) 2.24024e7i 0 0.000817230i
\(961\) 2.53647e10 0.921931
\(962\) 0 0
\(963\) −4.09135e10 −1.47630
\(964\) 4.43255e10i 1.59362i
\(965\) −2.71774e6 −9.73558e−5 0
\(966\) −5.53375e9 −0.197515
\(967\) − 3.75275e10i − 1.33462i −0.744780 0.667310i \(-0.767446\pi\)
0.744780 0.667310i \(-0.232554\pi\)
\(968\) − 7.26940e9i − 0.257593i
\(969\) − 9.88050e9i − 0.348856i
\(970\) 8.17774e6i 0 0.000287695i
\(971\) 1.78987e9 0.0627414 0.0313707 0.999508i \(-0.490013\pi\)
0.0313707 + 0.999508i \(0.490013\pi\)
\(972\) 2.65969e10 0.928965
\(973\) − 6.37904e9i − 0.222004i
\(974\) 5.16665e10 1.79165
\(975\) 0 0
\(976\) 7.98510e9 0.274920
\(977\) 1.98276e10i 0.680203i 0.940389 + 0.340101i \(0.110461\pi\)
−0.940389 + 0.340101i \(0.889539\pi\)
\(978\) −9.92259e9 −0.339187
\(979\) −2.97693e9 −0.101398
\(980\) 6.62075e7i 0.00224707i
\(981\) − 3.49266e10i − 1.18118i
\(982\) 6.07523e10i 2.04726i
\(983\) 3.24213e10i 1.08866i 0.838870 + 0.544332i \(0.183217\pi\)
−0.838870 + 0.544332i \(0.816783\pi\)
\(984\) −3.41018e9 −0.114102
\(985\) −5.89601e7 −0.00196576
\(986\) 4.01643e10i 1.33435i
\(987\) 4.37248e9 0.144750
\(988\) 0 0
\(989\) 6.58104e10 2.16326
\(990\) 2.12775e7i 0 0.000696942i
\(991\) −2.45428e10 −0.801063 −0.400532 0.916283i \(-0.631175\pi\)
−0.400532 + 0.916283i \(0.631175\pi\)
\(992\) −1.22629e10 −0.398843
\(993\) 5.67890e9i 0.184052i
\(994\) − 1.67806e10i − 0.541946i
\(995\) − 7.52970e7i − 0.00242324i
\(996\) − 3.70537e9i − 0.118830i
\(997\) −1.08000e10 −0.345137 −0.172568 0.984998i \(-0.555207\pi\)
−0.172568 + 0.984998i \(0.555207\pi\)
\(998\) 7.89357e10 2.51372
\(999\) 1.25128e10i 0.397077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.f.168.36 42
13.5 odd 4 169.8.a.h.1.19 21
13.8 odd 4 169.8.a.i.1.3 yes 21
13.12 even 2 inner 169.8.b.f.168.7 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.19 21 13.5 odd 4
169.8.a.i.1.3 yes 21 13.8 odd 4
169.8.b.f.168.7 42 13.12 even 2 inner
169.8.b.f.168.36 42 1.1 even 1 trivial