Properties

Label 169.8.a.i.1.3
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.7260 q^{2} -13.7721 q^{3} +151.758 q^{4} +0.583029 q^{5} +230.352 q^{6} -274.333 q^{7} -397.369 q^{8} -1997.33 q^{9} -9.75172 q^{10} -1092.42 q^{11} -2090.03 q^{12} +4588.49 q^{14} -8.02956 q^{15} -12778.6 q^{16} +24367.8 q^{17} +33407.2 q^{18} +29441.5 q^{19} +88.4791 q^{20} +3778.16 q^{21} +18271.7 q^{22} -87568.7 q^{23} +5472.63 q^{24} -78124.7 q^{25} +57627.1 q^{27} -41632.2 q^{28} -98544.5 q^{29} +134.302 q^{30} +46345.4 q^{31} +264598. q^{32} +15044.9 q^{33} -407575. q^{34} -159.944 q^{35} -303110. q^{36} +217133. q^{37} -492438. q^{38} -231.678 q^{40} -623135. q^{41} -63193.3 q^{42} -751529. q^{43} -165783. q^{44} -1164.50 q^{45} +1.46467e6 q^{46} -1.15731e6 q^{47} +175988. q^{48} -748284. q^{49} +1.30671e6 q^{50} -335597. q^{51} +498300. q^{53} -963869. q^{54} -636.912 q^{55} +109012. q^{56} -405473. q^{57} +1.64825e6 q^{58} +1.11248e6 q^{59} -1218.55 q^{60} -624881. q^{61} -775171. q^{62} +547934. q^{63} -2.78999e6 q^{64} -251641. q^{66} -28848.2 q^{67} +3.69801e6 q^{68} +1.20601e6 q^{69} +2675.22 q^{70} +3.65711e6 q^{71} +793677. q^{72} +5.20600e6 q^{73} -3.63176e6 q^{74} +1.07594e6 q^{75} +4.46798e6 q^{76} +299687. q^{77} -2.37817e6 q^{79} -7450.29 q^{80} +3.57451e6 q^{81} +1.04225e7 q^{82} +1.77288e6 q^{83} +573364. q^{84} +14207.2 q^{85} +1.25700e7 q^{86} +1.35717e6 q^{87} +434094. q^{88} -2.72509e6 q^{89} +19477.4 q^{90} -1.32892e7 q^{92} -638275. q^{93} +1.93570e7 q^{94} +17165.3 q^{95} -3.64407e6 q^{96} -838595. q^{97} +1.25158e7 q^{98} +2.18192e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 31 q^{2} - 26 q^{3} + 1409 q^{4} + 680 q^{5} + 1470 q^{6} + 2929 q^{7} + 4716 q^{8} + 15465 q^{9} - 5167 q^{10} + 14824 q^{11} + 21795 q^{12} - 179 q^{14} + 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots + 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.7260 −1.47838 −0.739190 0.673497i \(-0.764791\pi\)
−0.739190 + 0.673497i \(0.764791\pi\)
\(3\) −13.7721 −0.294494 −0.147247 0.989100i \(-0.547041\pi\)
−0.147247 + 0.989100i \(0.547041\pi\)
\(4\) 151.758 1.18561
\(5\) 0.583029 0.00208591 0.00104295 0.999999i \(-0.499668\pi\)
0.00104295 + 0.999999i \(0.499668\pi\)
\(6\) 230.352 0.435374
\(7\) −274.333 −0.302298 −0.151149 0.988511i \(-0.548297\pi\)
−0.151149 + 0.988511i \(0.548297\pi\)
\(8\) −397.369 −0.274397
\(9\) −1997.33 −0.913273
\(10\) −9.75172 −0.00308377
\(11\) −1092.42 −0.247465 −0.123733 0.992316i \(-0.539487\pi\)
−0.123733 + 0.992316i \(0.539487\pi\)
\(12\) −2090.03 −0.349154
\(13\) 0 0
\(14\) 4588.49 0.446911
\(15\) −8.02956 −0.000614288 0
\(16\) −12778.6 −0.779944
\(17\) 24367.8 1.20295 0.601473 0.798893i \(-0.294581\pi\)
0.601473 + 0.798893i \(0.294581\pi\)
\(18\) 33407.2 1.35016
\(19\) 29441.5 0.984743 0.492372 0.870385i \(-0.336130\pi\)
0.492372 + 0.870385i \(0.336130\pi\)
\(20\) 88.4791 0.00247307
\(21\) 3778.16 0.0890251
\(22\) 18271.7 0.365848
\(23\) −87568.7 −1.50073 −0.750363 0.661026i \(-0.770121\pi\)
−0.750363 + 0.661026i \(0.770121\pi\)
\(24\) 5472.63 0.0808084
\(25\) −78124.7 −0.999996
\(26\) 0 0
\(27\) 57627.1 0.563448
\(28\) −41632.2 −0.358407
\(29\) −98544.5 −0.750308 −0.375154 0.926963i \(-0.622410\pi\)
−0.375154 + 0.926963i \(0.622410\pi\)
\(30\) 134.302 0.000908151 0
\(31\) 46345.4 0.279409 0.139705 0.990193i \(-0.455385\pi\)
0.139705 + 0.990193i \(0.455385\pi\)
\(32\) 264598. 1.42745
\(33\) 15044.9 0.0728771
\(34\) −407575. −1.77841
\(35\) −159.944 −0.000630566 0
\(36\) −303110. −1.08278
\(37\) 217133. 0.704727 0.352363 0.935863i \(-0.385378\pi\)
0.352363 + 0.935863i \(0.385378\pi\)
\(38\) −492438. −1.45582
\(39\) 0 0
\(40\) −231.678 −0.000572367 0
\(41\) −623135. −1.41201 −0.706006 0.708206i \(-0.749505\pi\)
−0.706006 + 0.708206i \(0.749505\pi\)
\(42\) −63193.3 −0.131613
\(43\) −751529. −1.44147 −0.720736 0.693210i \(-0.756196\pi\)
−0.720736 + 0.693210i \(0.756196\pi\)
\(44\) −165783. −0.293397
\(45\) −1164.50 −0.00190500
\(46\) 1.46467e6 2.21864
\(47\) −1.15731e6 −1.62594 −0.812972 0.582303i \(-0.802152\pi\)
−0.812972 + 0.582303i \(0.802152\pi\)
\(48\) 175988. 0.229689
\(49\) −748284. −0.908616
\(50\) 1.30671e6 1.47837
\(51\) −335597. −0.354260
\(52\) 0 0
\(53\) 498300. 0.459753 0.229877 0.973220i \(-0.426168\pi\)
0.229877 + 0.973220i \(0.426168\pi\)
\(54\) −963869. −0.832990
\(55\) −636.912 −0.000516190 0
\(56\) 109012. 0.0829497
\(57\) −405473. −0.290001
\(58\) 1.64825e6 1.10924
\(59\) 1.11248e6 0.705194 0.352597 0.935775i \(-0.385299\pi\)
0.352597 + 0.935775i \(0.385299\pi\)
\(60\) −1218.55 −0.000728304 0
\(61\) −624881. −0.352487 −0.176243 0.984347i \(-0.556395\pi\)
−0.176243 + 0.984347i \(0.556395\pi\)
\(62\) −775171. −0.413073
\(63\) 547934. 0.276081
\(64\) −2.78999e6 −1.33037
\(65\) 0 0
\(66\) −251641. −0.107740
\(67\) −28848.2 −0.0117181 −0.00585904 0.999983i \(-0.501865\pi\)
−0.00585904 + 0.999983i \(0.501865\pi\)
\(68\) 3.69801e6 1.42622
\(69\) 1.20601e6 0.441955
\(70\) 2675.22 0.000932217 0
\(71\) 3.65711e6 1.21265 0.606323 0.795218i \(-0.292644\pi\)
0.606323 + 0.795218i \(0.292644\pi\)
\(72\) 793677. 0.250600
\(73\) 5.20600e6 1.56630 0.783148 0.621835i \(-0.213613\pi\)
0.783148 + 0.621835i \(0.213613\pi\)
\(74\) −3.63176e6 −1.04185
\(75\) 1.07594e6 0.294493
\(76\) 4.46798e6 1.16752
\(77\) 299687. 0.0748083
\(78\) 0 0
\(79\) −2.37817e6 −0.542685 −0.271343 0.962483i \(-0.587468\pi\)
−0.271343 + 0.962483i \(0.587468\pi\)
\(80\) −7450.29 −0.00162689
\(81\) 3.57451e6 0.747341
\(82\) 1.04225e7 2.08749
\(83\) 1.77288e6 0.340335 0.170168 0.985415i \(-0.445569\pi\)
0.170168 + 0.985415i \(0.445569\pi\)
\(84\) 573364. 0.105549
\(85\) 14207.2 0.00250923
\(86\) 1.25700e7 2.13104
\(87\) 1.35717e6 0.220961
\(88\) 434094. 0.0679038
\(89\) −2.72509e6 −0.409746 −0.204873 0.978789i \(-0.565678\pi\)
−0.204873 + 0.978789i \(0.565678\pi\)
\(90\) 19477.4 0.00281632
\(91\) 0 0
\(92\) −1.32892e7 −1.77927
\(93\) −638275. −0.0822844
\(94\) 1.93570e7 2.40376
\(95\) 17165.3 0.00205408
\(96\) −3.64407e6 −0.420376
\(97\) −838595. −0.0932934 −0.0466467 0.998911i \(-0.514853\pi\)
−0.0466467 + 0.998911i \(0.514853\pi\)
\(98\) 1.25158e7 1.34328
\(99\) 2.18192e6 0.226003
\(100\) −1.18560e7 −1.18560
\(101\) 1.35004e7 1.30383 0.651916 0.758291i \(-0.273965\pi\)
0.651916 + 0.758291i \(0.273965\pi\)
\(102\) 5.61318e6 0.523731
\(103\) 1.30297e7 1.17491 0.587456 0.809256i \(-0.300130\pi\)
0.587456 + 0.809256i \(0.300130\pi\)
\(104\) 0 0
\(105\) 2202.78 0.000185698 0
\(106\) −8.33454e6 −0.679690
\(107\) 2.04841e7 1.61649 0.808246 0.588844i \(-0.200417\pi\)
0.808246 + 0.588844i \(0.200417\pi\)
\(108\) 8.74536e6 0.668028
\(109\) −1.74867e7 −1.29335 −0.646673 0.762768i \(-0.723840\pi\)
−0.646673 + 0.762768i \(0.723840\pi\)
\(110\) 10653.0 0.000763125 0
\(111\) −2.99039e6 −0.207538
\(112\) 3.50559e6 0.235775
\(113\) 6.72636e6 0.438536 0.219268 0.975665i \(-0.429633\pi\)
0.219268 + 0.975665i \(0.429633\pi\)
\(114\) 6.78192e6 0.428732
\(115\) −51055.1 −0.00313038
\(116\) −1.49549e7 −0.889570
\(117\) 0 0
\(118\) −1.86072e7 −1.04254
\(119\) −6.68491e6 −0.363648
\(120\) 3190.70 0.000168559 0
\(121\) −1.82938e7 −0.938761
\(122\) 1.04517e7 0.521109
\(123\) 8.58190e6 0.415830
\(124\) 7.03327e6 0.331269
\(125\) −91098.1 −0.00417181
\(126\) −9.16472e6 −0.408152
\(127\) −3.10681e7 −1.34587 −0.672934 0.739703i \(-0.734966\pi\)
−0.672934 + 0.739703i \(0.734966\pi\)
\(128\) 1.27967e7 0.539341
\(129\) 1.03502e7 0.424505
\(130\) 0 0
\(131\) 1.55397e7 0.603940 0.301970 0.953317i \(-0.402356\pi\)
0.301970 + 0.953317i \(0.402356\pi\)
\(132\) 2.28318e6 0.0864036
\(133\) −8.07680e6 −0.297686
\(134\) 482514. 0.0173238
\(135\) 33598.3 0.00117530
\(136\) −9.68304e6 −0.330085
\(137\) 1.75618e7 0.583508 0.291754 0.956493i \(-0.405761\pi\)
0.291754 + 0.956493i \(0.405761\pi\)
\(138\) −2.01716e7 −0.653378
\(139\) 2.32529e7 0.734386 0.367193 0.930145i \(-0.380319\pi\)
0.367193 + 0.930145i \(0.380319\pi\)
\(140\) −24272.8 −0.000747604 0
\(141\) 1.59386e7 0.478831
\(142\) −6.11687e7 −1.79275
\(143\) 0 0
\(144\) 2.55230e7 0.712301
\(145\) −57454.3 −0.00156507
\(146\) −8.70753e7 −2.31558
\(147\) 1.03055e7 0.267582
\(148\) 3.29517e7 0.835529
\(149\) 7.31136e7 1.81070 0.905350 0.424666i \(-0.139609\pi\)
0.905350 + 0.424666i \(0.139609\pi\)
\(150\) −1.79962e7 −0.435372
\(151\) −1.74324e7 −0.412039 −0.206019 0.978548i \(-0.566051\pi\)
−0.206019 + 0.978548i \(0.566051\pi\)
\(152\) −1.16992e7 −0.270211
\(153\) −4.86706e7 −1.09862
\(154\) −5.01255e6 −0.110595
\(155\) 27020.7 0.000582822 0
\(156\) 0 0
\(157\) 8.56670e7 1.76671 0.883354 0.468706i \(-0.155280\pi\)
0.883354 + 0.468706i \(0.155280\pi\)
\(158\) 3.97772e7 0.802295
\(159\) −6.86265e6 −0.135395
\(160\) 154268. 0.00297753
\(161\) 2.40230e7 0.453667
\(162\) −5.97871e7 −1.10485
\(163\) −4.30758e7 −0.779070 −0.389535 0.921012i \(-0.627364\pi\)
−0.389535 + 0.921012i \(0.627364\pi\)
\(164\) −9.45655e7 −1.67409
\(165\) 8771.63 0.000152015 0
\(166\) −2.96532e7 −0.503145
\(167\) −6.57708e7 −1.09276 −0.546381 0.837537i \(-0.683995\pi\)
−0.546381 + 0.837537i \(0.683995\pi\)
\(168\) −1.50132e6 −0.0244282
\(169\) 0 0
\(170\) −237628. −0.00370960
\(171\) −5.88044e7 −0.899340
\(172\) −1.14050e8 −1.70902
\(173\) −1.02460e8 −1.50451 −0.752255 0.658872i \(-0.771034\pi\)
−0.752255 + 0.658872i \(0.771034\pi\)
\(174\) −2.26999e7 −0.326665
\(175\) 2.14322e7 0.302297
\(176\) 1.39596e7 0.193009
\(177\) −1.53212e7 −0.207675
\(178\) 4.55797e7 0.605761
\(179\) 6.44115e7 0.839417 0.419708 0.907659i \(-0.362132\pi\)
0.419708 + 0.907659i \(0.362132\pi\)
\(180\) −176722. −0.00225859
\(181\) 9.36975e7 1.17450 0.587250 0.809406i \(-0.300211\pi\)
0.587250 + 0.809406i \(0.300211\pi\)
\(182\) 0 0
\(183\) 8.60594e6 0.103805
\(184\) 3.47971e7 0.411795
\(185\) 126595. 0.00147000
\(186\) 1.06758e7 0.121648
\(187\) −2.66199e7 −0.297687
\(188\) −1.75630e8 −1.92773
\(189\) −1.58090e7 −0.170329
\(190\) −287106. −0.00303672
\(191\) 1.03934e8 1.07929 0.539647 0.841891i \(-0.318558\pi\)
0.539647 + 0.841891i \(0.318558\pi\)
\(192\) 3.84241e7 0.391786
\(193\) −4.66141e6 −0.0466731 −0.0233365 0.999728i \(-0.507429\pi\)
−0.0233365 + 0.999728i \(0.507429\pi\)
\(194\) 1.40263e7 0.137923
\(195\) 0 0
\(196\) −1.13558e8 −1.07726
\(197\) 1.01127e8 0.942402 0.471201 0.882026i \(-0.343821\pi\)
0.471201 + 0.882026i \(0.343821\pi\)
\(198\) −3.64947e7 −0.334119
\(199\) −1.29148e8 −1.16172 −0.580860 0.814003i \(-0.697284\pi\)
−0.580860 + 0.814003i \(0.697284\pi\)
\(200\) 3.10444e7 0.274396
\(201\) 397301. 0.00345091
\(202\) −2.25807e8 −1.92756
\(203\) 2.70340e7 0.226817
\(204\) −5.09294e7 −0.420013
\(205\) −363306. −0.00294533
\(206\) −2.17935e8 −1.73696
\(207\) 1.74903e8 1.37057
\(208\) 0 0
\(209\) −3.21625e7 −0.243690
\(210\) −36843.5 −0.000274532 0
\(211\) 1.43953e8 1.05495 0.527475 0.849571i \(-0.323139\pi\)
0.527475 + 0.849571i \(0.323139\pi\)
\(212\) 7.56208e7 0.545087
\(213\) −5.03663e7 −0.357118
\(214\) −3.42616e8 −2.38979
\(215\) −438163. −0.00300678
\(216\) −2.28993e7 −0.154608
\(217\) −1.27141e7 −0.0844649
\(218\) 2.92481e8 1.91206
\(219\) −7.16977e7 −0.461265
\(220\) −96656.2 −0.000611998 0
\(221\) 0 0
\(222\) 5.00171e7 0.306820
\(223\) 9.50963e7 0.574244 0.287122 0.957894i \(-0.407301\pi\)
0.287122 + 0.957894i \(0.407301\pi\)
\(224\) −7.25879e7 −0.431515
\(225\) 1.56041e8 0.913269
\(226\) −1.12505e8 −0.648323
\(227\) 2.36462e8 1.34175 0.670874 0.741571i \(-0.265919\pi\)
0.670874 + 0.741571i \(0.265919\pi\)
\(228\) −6.15336e7 −0.343827
\(229\) 2.40501e8 1.32340 0.661702 0.749767i \(-0.269834\pi\)
0.661702 + 0.749767i \(0.269834\pi\)
\(230\) 853946. 0.00462789
\(231\) −4.12732e6 −0.0220306
\(232\) 3.91586e7 0.205882
\(233\) 2.23639e8 1.15825 0.579123 0.815240i \(-0.303395\pi\)
0.579123 + 0.815240i \(0.303395\pi\)
\(234\) 0 0
\(235\) −674743. −0.00339157
\(236\) 1.68827e8 0.836082
\(237\) 3.27525e7 0.159818
\(238\) 1.11812e8 0.537610
\(239\) 2.60257e8 1.23313 0.616567 0.787302i \(-0.288523\pi\)
0.616567 + 0.787302i \(0.288523\pi\)
\(240\) 102606. 0.000479110 0
\(241\) −2.92081e8 −1.34414 −0.672069 0.740489i \(-0.734594\pi\)
−0.672069 + 0.740489i \(0.734594\pi\)
\(242\) 3.05981e8 1.38785
\(243\) −1.75259e8 −0.783535
\(244\) −9.48305e7 −0.417911
\(245\) −436272. −0.00189529
\(246\) −1.43540e8 −0.614754
\(247\) 0 0
\(248\) −1.84162e7 −0.0766691
\(249\) −2.44164e7 −0.100227
\(250\) 1.52370e6 0.00616752
\(251\) 1.00598e8 0.401542 0.200771 0.979638i \(-0.435655\pi\)
0.200771 + 0.979638i \(0.435655\pi\)
\(252\) 8.31532e7 0.327323
\(253\) 9.56616e7 0.371378
\(254\) 5.19644e8 1.98970
\(255\) −195663. −0.000738955 0
\(256\) 1.43081e8 0.533018
\(257\) −1.67536e7 −0.0615662 −0.0307831 0.999526i \(-0.509800\pi\)
−0.0307831 + 0.999526i \(0.509800\pi\)
\(258\) −1.73116e8 −0.627580
\(259\) −5.95669e7 −0.213038
\(260\) 0 0
\(261\) 1.96826e8 0.685236
\(262\) −2.59917e8 −0.892853
\(263\) −2.50229e7 −0.0848187 −0.0424094 0.999100i \(-0.513503\pi\)
−0.0424094 + 0.999100i \(0.513503\pi\)
\(264\) −5.97839e6 −0.0199973
\(265\) 290523. 0.000959004 0
\(266\) 1.35092e8 0.440093
\(267\) 3.75302e7 0.120668
\(268\) −4.37793e6 −0.0138930
\(269\) 2.47248e7 0.0774462 0.0387231 0.999250i \(-0.487671\pi\)
0.0387231 + 0.999250i \(0.487671\pi\)
\(270\) −561964. −0.00173754
\(271\) 5.81639e8 1.77526 0.887628 0.460561i \(-0.152352\pi\)
0.887628 + 0.460561i \(0.152352\pi\)
\(272\) −3.11387e8 −0.938229
\(273\) 0 0
\(274\) −2.93738e8 −0.862647
\(275\) 8.53448e7 0.247464
\(276\) 1.83021e8 0.523985
\(277\) −2.85853e8 −0.808097 −0.404048 0.914738i \(-0.632397\pi\)
−0.404048 + 0.914738i \(0.632397\pi\)
\(278\) −3.88926e8 −1.08570
\(279\) −9.25670e7 −0.255177
\(280\) 63557.0 0.000173026 0
\(281\) −5.88850e8 −1.58319 −0.791593 0.611048i \(-0.790748\pi\)
−0.791593 + 0.611048i \(0.790748\pi\)
\(282\) −2.66588e8 −0.707894
\(283\) −4.95887e8 −1.30056 −0.650279 0.759695i \(-0.725348\pi\)
−0.650279 + 0.759695i \(0.725348\pi\)
\(284\) 5.54995e8 1.43772
\(285\) −236403. −0.000604916 0
\(286\) 0 0
\(287\) 1.70947e8 0.426849
\(288\) −5.28488e8 −1.30365
\(289\) 1.83453e8 0.447077
\(290\) 960979. 0.00231377
\(291\) 1.15492e7 0.0274744
\(292\) 7.90050e8 1.85701
\(293\) 5.41027e8 1.25656 0.628279 0.777988i \(-0.283760\pi\)
0.628279 + 0.777988i \(0.283760\pi\)
\(294\) −1.72369e8 −0.395588
\(295\) 648606. 0.00147097
\(296\) −8.62822e7 −0.193375
\(297\) −6.29529e7 −0.139434
\(298\) −1.22290e9 −2.67690
\(299\) 0 0
\(300\) 1.63283e8 0.349153
\(301\) 2.06169e8 0.435754
\(302\) 2.91574e8 0.609149
\(303\) −1.85929e8 −0.383971
\(304\) −3.76222e8 −0.768044
\(305\) −364324. −0.000735255 0
\(306\) 8.14062e8 1.62417
\(307\) −4.24834e8 −0.837982 −0.418991 0.907990i \(-0.637616\pi\)
−0.418991 + 0.907990i \(0.637616\pi\)
\(308\) 4.54797e7 0.0886932
\(309\) −1.79447e8 −0.346005
\(310\) −451947. −0.000861632 0
\(311\) 2.89109e8 0.545005 0.272503 0.962155i \(-0.412149\pi\)
0.272503 + 0.962155i \(0.412149\pi\)
\(312\) 0 0
\(313\) −9.46652e8 −1.74496 −0.872479 0.488651i \(-0.837489\pi\)
−0.872479 + 0.488651i \(0.837489\pi\)
\(314\) −1.43286e9 −2.61187
\(315\) 319461. 0.000575879 0
\(316\) −3.60906e8 −0.643412
\(317\) 4.18587e8 0.738038 0.369019 0.929422i \(-0.379694\pi\)
0.369019 + 0.929422i \(0.379694\pi\)
\(318\) 1.14784e8 0.200165
\(319\) 1.07652e8 0.185675
\(320\) −1.62664e6 −0.00277503
\(321\) −2.82110e8 −0.476048
\(322\) −4.01808e8 −0.670692
\(323\) 7.17427e8 1.18459
\(324\) 5.42459e8 0.886052
\(325\) 0 0
\(326\) 7.20483e8 1.15176
\(327\) 2.40829e8 0.380883
\(328\) 2.47615e8 0.387452
\(329\) 3.17488e8 0.491520
\(330\) −146714. −0.000224736 0
\(331\) 4.12347e8 0.624978 0.312489 0.949921i \(-0.398837\pi\)
0.312489 + 0.949921i \(0.398837\pi\)
\(332\) 2.69049e8 0.403504
\(333\) −4.33687e8 −0.643608
\(334\) 1.10008e9 1.61552
\(335\) −16819.3 −2.44429e−5 0
\(336\) −4.82795e7 −0.0694345
\(337\) −5.74808e8 −0.818123 −0.409061 0.912507i \(-0.634144\pi\)
−0.409061 + 0.912507i \(0.634144\pi\)
\(338\) 0 0
\(339\) −9.26363e7 −0.129146
\(340\) 2.15605e6 0.00297496
\(341\) −5.06285e7 −0.0691441
\(342\) 9.83561e8 1.32957
\(343\) 4.31205e8 0.576971
\(344\) 2.98635e8 0.395536
\(345\) 703138. 0.000921878 0
\(346\) 1.71375e9 2.22424
\(347\) −1.46161e9 −1.87792 −0.938962 0.344020i \(-0.888211\pi\)
−0.938962 + 0.344020i \(0.888211\pi\)
\(348\) 2.05961e8 0.261973
\(349\) 4.00590e8 0.504441 0.252221 0.967670i \(-0.418839\pi\)
0.252221 + 0.967670i \(0.418839\pi\)
\(350\) −3.58474e8 −0.446910
\(351\) 0 0
\(352\) −2.89051e8 −0.353244
\(353\) 5.97796e8 0.723338 0.361669 0.932307i \(-0.382207\pi\)
0.361669 + 0.932307i \(0.382207\pi\)
\(354\) 2.56261e8 0.307023
\(355\) 2.13220e6 0.00252947
\(356\) −4.13553e8 −0.485798
\(357\) 9.20655e7 0.107092
\(358\) −1.07734e9 −1.24098
\(359\) 6.48576e8 0.739827 0.369913 0.929066i \(-0.379387\pi\)
0.369913 + 0.929066i \(0.379387\pi\)
\(360\) 462737. 0.000522728 0
\(361\) −2.70670e7 −0.0302806
\(362\) −1.56718e9 −1.73636
\(363\) 2.51945e8 0.276460
\(364\) 0 0
\(365\) 3.03525e6 0.00326715
\(366\) −1.43943e8 −0.153464
\(367\) 6.24121e8 0.659080 0.329540 0.944142i \(-0.393106\pi\)
0.329540 + 0.944142i \(0.393106\pi\)
\(368\) 1.11901e9 1.17048
\(369\) 1.24461e9 1.28955
\(370\) −2.11742e6 −0.00217321
\(371\) −1.36700e8 −0.138983
\(372\) −9.68631e7 −0.0975569
\(373\) −1.14420e8 −0.114162 −0.0570810 0.998370i \(-0.518179\pi\)
−0.0570810 + 0.998370i \(0.518179\pi\)
\(374\) 4.45243e8 0.440095
\(375\) 1.25462e6 0.00122857
\(376\) 4.59878e8 0.446154
\(377\) 0 0
\(378\) 2.64421e8 0.251811
\(379\) 1.79026e9 1.68919 0.844594 0.535407i \(-0.179842\pi\)
0.844594 + 0.535407i \(0.179842\pi\)
\(380\) 2.60496e6 0.00243534
\(381\) 4.27874e8 0.396350
\(382\) −1.73839e9 −1.59561
\(383\) −1.71291e9 −1.55789 −0.778947 0.627090i \(-0.784246\pi\)
−0.778947 + 0.627090i \(0.784246\pi\)
\(384\) −1.76238e8 −0.158833
\(385\) 174726. 0.000156043 0
\(386\) 7.79665e7 0.0690005
\(387\) 1.50105e9 1.31646
\(388\) −1.27263e8 −0.110609
\(389\) 1.68291e9 1.44957 0.724783 0.688978i \(-0.241940\pi\)
0.724783 + 0.688978i \(0.241940\pi\)
\(390\) 0 0
\(391\) −2.13386e9 −1.80529
\(392\) 2.97345e8 0.249322
\(393\) −2.14015e8 −0.177857
\(394\) −1.69145e9 −1.39323
\(395\) −1.38654e6 −0.00113199
\(396\) 3.31123e8 0.267951
\(397\) −2.12886e9 −1.70758 −0.853789 0.520619i \(-0.825701\pi\)
−0.853789 + 0.520619i \(0.825701\pi\)
\(398\) 2.16012e9 1.71746
\(399\) 1.11235e8 0.0876668
\(400\) 9.98323e8 0.779940
\(401\) 9.05120e8 0.700972 0.350486 0.936568i \(-0.386016\pi\)
0.350486 + 0.936568i \(0.386016\pi\)
\(402\) −6.64524e6 −0.00510175
\(403\) 0 0
\(404\) 2.04879e9 1.54583
\(405\) 2.08404e6 0.00155889
\(406\) −4.52170e8 −0.335321
\(407\) −2.37200e8 −0.174395
\(408\) 1.33356e8 0.0972080
\(409\) −1.60956e9 −1.16326 −0.581629 0.813454i \(-0.697585\pi\)
−0.581629 + 0.813454i \(0.697585\pi\)
\(410\) 6.07664e6 0.00435432
\(411\) −2.41863e8 −0.171840
\(412\) 1.97736e9 1.39298
\(413\) −3.05189e8 −0.213179
\(414\) −2.92543e9 −2.02623
\(415\) 1.03364e6 0.000709908 0
\(416\) 0 0
\(417\) −3.20241e8 −0.216273
\(418\) 5.37948e8 0.360266
\(419\) −2.87655e8 −0.191039 −0.0955196 0.995428i \(-0.530451\pi\)
−0.0955196 + 0.995428i \(0.530451\pi\)
\(420\) 334288. 0.000220165 0
\(421\) 1.52458e7 0.00995781 0.00497891 0.999988i \(-0.498415\pi\)
0.00497891 + 0.999988i \(0.498415\pi\)
\(422\) −2.40775e9 −1.55962
\(423\) 2.31152e9 1.48493
\(424\) −1.98009e8 −0.126155
\(425\) −1.90373e9 −1.20294
\(426\) 8.42424e8 0.527955
\(427\) 1.71426e8 0.106556
\(428\) 3.10862e9 1.91652
\(429\) 0 0
\(430\) 7.32870e6 0.00444516
\(431\) −9.22436e8 −0.554965 −0.277483 0.960731i \(-0.589500\pi\)
−0.277483 + 0.960731i \(0.589500\pi\)
\(432\) −7.36394e8 −0.439458
\(433\) −1.88411e9 −1.11532 −0.557660 0.830069i \(-0.688301\pi\)
−0.557660 + 0.830069i \(0.688301\pi\)
\(434\) 2.12655e8 0.124871
\(435\) 791269. 0.000460905 0
\(436\) −2.65374e9 −1.53340
\(437\) −2.57816e9 −1.47783
\(438\) 1.19921e9 0.681925
\(439\) −8.65096e8 −0.488021 −0.244010 0.969773i \(-0.578463\pi\)
−0.244010 + 0.969773i \(0.578463\pi\)
\(440\) 253089. 0.000141641 0
\(441\) 1.49457e9 0.829814
\(442\) 0 0
\(443\) 9.40807e8 0.514147 0.257074 0.966392i \(-0.417242\pi\)
0.257074 + 0.966392i \(0.417242\pi\)
\(444\) −4.53815e8 −0.246058
\(445\) −1.58880e6 −0.000854694 0
\(446\) −1.59058e9 −0.848951
\(447\) −1.00693e9 −0.533241
\(448\) 7.65386e8 0.402168
\(449\) −8.79790e7 −0.0458687 −0.0229344 0.999737i \(-0.507301\pi\)
−0.0229344 + 0.999737i \(0.507301\pi\)
\(450\) −2.60993e9 −1.35016
\(451\) 6.80724e8 0.349424
\(452\) 1.02078e9 0.519931
\(453\) 2.40081e8 0.121343
\(454\) −3.95506e9 −1.98361
\(455\) 0 0
\(456\) 1.61123e8 0.0795755
\(457\) 1.95139e9 0.956396 0.478198 0.878252i \(-0.341290\pi\)
0.478198 + 0.878252i \(0.341290\pi\)
\(458\) −4.02261e9 −1.95649
\(459\) 1.40425e9 0.677797
\(460\) −7.74801e6 −0.00371140
\(461\) −1.15818e8 −0.0550585 −0.0275293 0.999621i \(-0.508764\pi\)
−0.0275293 + 0.999621i \(0.508764\pi\)
\(462\) 6.90335e7 0.0325696
\(463\) −1.46488e9 −0.685914 −0.342957 0.939351i \(-0.611429\pi\)
−0.342957 + 0.939351i \(0.611429\pi\)
\(464\) 1.25926e9 0.585198
\(465\) −372133. −0.000171638 0
\(466\) −3.74057e9 −1.71233
\(467\) −6.23541e8 −0.283306 −0.141653 0.989916i \(-0.545242\pi\)
−0.141653 + 0.989916i \(0.545242\pi\)
\(468\) 0 0
\(469\) 7.91402e6 0.00354236
\(470\) 1.12857e7 0.00501403
\(471\) −1.17982e9 −0.520286
\(472\) −4.42064e8 −0.193503
\(473\) 8.20984e8 0.356714
\(474\) −5.47817e8 −0.236271
\(475\) −2.30011e9 −0.984739
\(476\) −1.01449e9 −0.431144
\(477\) −9.95268e8 −0.419880
\(478\) −4.35305e9 −1.82304
\(479\) 2.10997e9 0.877207 0.438604 0.898681i \(-0.355473\pi\)
0.438604 + 0.898681i \(0.355473\pi\)
\(480\) −2.12460e6 −0.000876865 0
\(481\) 0 0
\(482\) 4.88534e9 1.98715
\(483\) −3.30848e8 −0.133602
\(484\) −2.77622e9 −1.11300
\(485\) −488925. −0.000194602 0
\(486\) 2.93138e9 1.15836
\(487\) 3.08900e9 1.21190 0.605949 0.795503i \(-0.292793\pi\)
0.605949 + 0.795503i \(0.292793\pi\)
\(488\) 2.48309e8 0.0967214
\(489\) 5.93245e8 0.229431
\(490\) 7.29706e6 0.00280196
\(491\) −3.63222e9 −1.38480 −0.692399 0.721515i \(-0.743446\pi\)
−0.692399 + 0.721515i \(0.743446\pi\)
\(492\) 1.30237e9 0.493010
\(493\) −2.40132e9 −0.902579
\(494\) 0 0
\(495\) 1.27212e6 0.000471423 0
\(496\) −5.92229e8 −0.217923
\(497\) −1.00327e9 −0.366581
\(498\) 4.08388e8 0.148173
\(499\) 4.71935e9 1.70032 0.850160 0.526525i \(-0.176505\pi\)
0.850160 + 0.526525i \(0.176505\pi\)
\(500\) −1.38248e7 −0.00494612
\(501\) 9.05805e8 0.321812
\(502\) −1.68260e9 −0.593632
\(503\) 7.89607e8 0.276645 0.138323 0.990387i \(-0.455829\pi\)
0.138323 + 0.990387i \(0.455829\pi\)
\(504\) −2.17732e8 −0.0757558
\(505\) 7.87113e6 0.00271968
\(506\) −1.60003e9 −0.549037
\(507\) 0 0
\(508\) −4.71483e9 −1.59567
\(509\) 9.69489e7 0.0325860 0.0162930 0.999867i \(-0.494814\pi\)
0.0162930 + 0.999867i \(0.494814\pi\)
\(510\) 3.27265e6 0.00109246
\(511\) −1.42818e9 −0.473489
\(512\) −4.03115e9 −1.32734
\(513\) 1.69663e9 0.554852
\(514\) 2.80220e8 0.0910182
\(515\) 7.59671e6 0.00245076
\(516\) 1.57072e9 0.503296
\(517\) 1.26426e9 0.402365
\(518\) 9.96314e8 0.314950
\(519\) 1.41110e9 0.443069
\(520\) 0 0
\(521\) 4.10985e9 1.27319 0.636596 0.771197i \(-0.280342\pi\)
0.636596 + 0.771197i \(0.280342\pi\)
\(522\) −3.29210e9 −1.01304
\(523\) 2.38880e8 0.0730169 0.0365084 0.999333i \(-0.488376\pi\)
0.0365084 + 0.999333i \(0.488376\pi\)
\(524\) 2.35827e9 0.716036
\(525\) −2.95167e8 −0.0890247
\(526\) 4.18531e8 0.125394
\(527\) 1.12934e9 0.336114
\(528\) −1.92253e8 −0.0568400
\(529\) 4.26345e9 1.25218
\(530\) −4.85928e6 −0.00141777
\(531\) −2.22198e9 −0.644034
\(532\) −1.22572e9 −0.352939
\(533\) 0 0
\(534\) −6.27729e8 −0.178393
\(535\) 1.19428e7 0.00337186
\(536\) 1.14634e7 0.00321541
\(537\) −8.87083e8 −0.247203
\(538\) −4.13546e8 −0.114495
\(539\) 8.17439e8 0.224851
\(540\) 5.09880e6 0.00139344
\(541\) 5.59019e8 0.151788 0.0758938 0.997116i \(-0.475819\pi\)
0.0758938 + 0.997116i \(0.475819\pi\)
\(542\) −9.72847e9 −2.62450
\(543\) −1.29041e9 −0.345883
\(544\) 6.44767e9 1.71714
\(545\) −1.01952e7 −0.00269780
\(546\) 0 0
\(547\) −7.01923e8 −0.183372 −0.0916861 0.995788i \(-0.529226\pi\)
−0.0916861 + 0.995788i \(0.529226\pi\)
\(548\) 2.66514e9 0.691812
\(549\) 1.24809e9 0.321917
\(550\) −1.42747e9 −0.365846
\(551\) −2.90130e9 −0.738860
\(552\) −4.79231e8 −0.121271
\(553\) 6.52412e8 0.164053
\(554\) 4.78116e9 1.19467
\(555\) −1.74348e6 −0.000432905 0
\(556\) 3.52880e9 0.870693
\(557\) −3.51904e9 −0.862840 −0.431420 0.902151i \(-0.641987\pi\)
−0.431420 + 0.902151i \(0.641987\pi\)
\(558\) 1.54827e9 0.377248
\(559\) 0 0
\(560\) 2.04386e6 0.000491806 0
\(561\) 3.66612e8 0.0876672
\(562\) 9.84907e9 2.34055
\(563\) −3.27161e8 −0.0772648 −0.0386324 0.999253i \(-0.512300\pi\)
−0.0386324 + 0.999253i \(0.512300\pi\)
\(564\) 2.41880e9 0.567705
\(565\) 3.92166e6 0.000914746 0
\(566\) 8.29418e9 1.92272
\(567\) −9.80607e8 −0.225920
\(568\) −1.45323e9 −0.332747
\(569\) 5.92681e9 1.34874 0.674369 0.738394i \(-0.264416\pi\)
0.674369 + 0.738394i \(0.264416\pi\)
\(570\) 3.95406e6 0.000894296 0
\(571\) 3.50991e9 0.788988 0.394494 0.918899i \(-0.370920\pi\)
0.394494 + 0.918899i \(0.370920\pi\)
\(572\) 0 0
\(573\) −1.43139e9 −0.317846
\(574\) −2.85925e9 −0.631045
\(575\) 6.84128e9 1.50072
\(576\) 5.57252e9 1.21499
\(577\) −9.14479e9 −1.98179 −0.990897 0.134621i \(-0.957018\pi\)
−0.990897 + 0.134621i \(0.957018\pi\)
\(578\) −3.06843e9 −0.660950
\(579\) 6.41975e7 0.0137450
\(580\) −8.71913e6 −0.00185556
\(581\) −4.86361e8 −0.102883
\(582\) −1.93172e8 −0.0406176
\(583\) −5.44351e8 −0.113773
\(584\) −2.06871e9 −0.429787
\(585\) 0 0
\(586\) −9.04920e9 −1.85767
\(587\) −1.65538e9 −0.337804 −0.168902 0.985633i \(-0.554022\pi\)
−0.168902 + 0.985633i \(0.554022\pi\)
\(588\) 1.56393e9 0.317247
\(589\) 1.36448e9 0.275146
\(590\) −1.08486e7 −0.00217465
\(591\) −1.39274e9 −0.277532
\(592\) −2.77466e9 −0.549647
\(593\) 7.99836e9 1.57510 0.787552 0.616248i \(-0.211348\pi\)
0.787552 + 0.616248i \(0.211348\pi\)
\(594\) 1.05295e9 0.206136
\(595\) −3.89750e6 −0.000758537 0
\(596\) 1.10956e10 2.14678
\(597\) 1.77864e9 0.342120
\(598\) 0 0
\(599\) −8.80866e8 −0.167462 −0.0837309 0.996488i \(-0.526684\pi\)
−0.0837309 + 0.996488i \(0.526684\pi\)
\(600\) −4.27547e8 −0.0808080
\(601\) 2.97804e9 0.559589 0.279795 0.960060i \(-0.409734\pi\)
0.279795 + 0.960060i \(0.409734\pi\)
\(602\) −3.44838e9 −0.644210
\(603\) 5.76193e7 0.0107018
\(604\) −2.64550e9 −0.488516
\(605\) −1.06658e7 −0.00195817
\(606\) 3.10985e9 0.567655
\(607\) −3.31888e8 −0.0602325 −0.0301163 0.999546i \(-0.509588\pi\)
−0.0301163 + 0.999546i \(0.509588\pi\)
\(608\) 7.79016e9 1.40567
\(609\) −3.72316e8 −0.0667962
\(610\) 6.09367e6 0.00108699
\(611\) 0 0
\(612\) −7.38613e9 −1.30253
\(613\) −3.93427e9 −0.689846 −0.344923 0.938631i \(-0.612095\pi\)
−0.344923 + 0.938631i \(0.612095\pi\)
\(614\) 7.10575e9 1.23886
\(615\) 5.00350e6 0.000867383 0
\(616\) −1.19086e8 −0.0205272
\(617\) 7.24044e9 1.24099 0.620493 0.784212i \(-0.286933\pi\)
0.620493 + 0.784212i \(0.286933\pi\)
\(618\) 3.00142e9 0.511526
\(619\) 1.16885e10 1.98080 0.990401 0.138220i \(-0.0441383\pi\)
0.990401 + 0.138220i \(0.0441383\pi\)
\(620\) 4.10060e6 0.000690998 0
\(621\) −5.04633e9 −0.845581
\(622\) −4.83563e9 −0.805725
\(623\) 7.47582e8 0.123866
\(624\) 0 0
\(625\) 6.10344e9 0.999987
\(626\) 1.58337e10 2.57971
\(627\) 4.42946e8 0.0717652
\(628\) 1.30006e10 2.09462
\(629\) 5.29107e9 0.847747
\(630\) −5.34330e6 −0.000851368 0
\(631\) −6.38796e8 −0.101218 −0.0506092 0.998719i \(-0.516116\pi\)
−0.0506092 + 0.998719i \(0.516116\pi\)
\(632\) 9.45013e8 0.148911
\(633\) −1.98254e9 −0.310677
\(634\) −7.00127e9 −1.09110
\(635\) −1.81136e7 −0.00280736
\(636\) −1.04146e9 −0.160525
\(637\) 0 0
\(638\) −1.80058e9 −0.274498
\(639\) −7.30446e9 −1.10748
\(640\) 7.46086e6 0.00112502
\(641\) 6.15856e8 0.0923584 0.0461792 0.998933i \(-0.485295\pi\)
0.0461792 + 0.998933i \(0.485295\pi\)
\(642\) 4.71856e9 0.703779
\(643\) 4.86092e9 0.721075 0.360537 0.932745i \(-0.382593\pi\)
0.360537 + 0.932745i \(0.382593\pi\)
\(644\) 3.64568e9 0.537870
\(645\) 6.03444e6 0.000885479 0
\(646\) −1.19997e10 −1.75128
\(647\) 7.67484e9 1.11405 0.557025 0.830496i \(-0.311943\pi\)
0.557025 + 0.830496i \(0.311943\pi\)
\(648\) −1.42040e9 −0.205068
\(649\) −1.21529e9 −0.174511
\(650\) 0 0
\(651\) 1.75100e8 0.0248744
\(652\) −6.53707e9 −0.923670
\(653\) −5.86264e9 −0.823942 −0.411971 0.911197i \(-0.635160\pi\)
−0.411971 + 0.911197i \(0.635160\pi\)
\(654\) −4.02809e9 −0.563089
\(655\) 9.06012e6 0.00125976
\(656\) 7.96279e9 1.10129
\(657\) −1.03981e10 −1.43046
\(658\) −5.31028e9 −0.726653
\(659\) 1.17798e10 1.60338 0.801692 0.597737i \(-0.203933\pi\)
0.801692 + 0.597737i \(0.203933\pi\)
\(660\) 1.33116e6 0.000180230 0
\(661\) −3.65943e9 −0.492843 −0.246421 0.969163i \(-0.579255\pi\)
−0.246421 + 0.969163i \(0.579255\pi\)
\(662\) −6.89690e9 −0.923955
\(663\) 0 0
\(664\) −7.04490e8 −0.0933870
\(665\) −4.70901e6 −0.000620946 0
\(666\) 7.25383e9 0.951497
\(667\) 8.62942e9 1.12601
\(668\) −9.98123e9 −1.29559
\(669\) −1.30968e9 −0.169112
\(670\) 281319. 3.61358e−5 0
\(671\) 6.82631e8 0.0872283
\(672\) 9.99691e8 0.127079
\(673\) −8.09730e9 −1.02397 −0.511985 0.858994i \(-0.671090\pi\)
−0.511985 + 0.858994i \(0.671090\pi\)
\(674\) 9.61422e9 1.20950
\(675\) −4.50210e9 −0.563445
\(676\) 0 0
\(677\) 6.04454e9 0.748691 0.374346 0.927289i \(-0.377867\pi\)
0.374346 + 0.927289i \(0.377867\pi\)
\(678\) 1.54943e9 0.190927
\(679\) 2.30055e8 0.0282024
\(680\) −5.64549e6 −0.000688527 0
\(681\) −3.25659e9 −0.395137
\(682\) 8.46811e8 0.102221
\(683\) 6.73839e9 0.809252 0.404626 0.914482i \(-0.367402\pi\)
0.404626 + 0.914482i \(0.367402\pi\)
\(684\) −8.92402e9 −1.06626
\(685\) 1.02390e7 0.00121715
\(686\) −7.21231e9 −0.852982
\(687\) −3.31221e9 −0.389735
\(688\) 9.60348e9 1.12427
\(689\) 0 0
\(690\) −1.17607e7 −0.00136289
\(691\) −3.86203e9 −0.445289 −0.222645 0.974900i \(-0.571469\pi\)
−0.222645 + 0.974900i \(0.571469\pi\)
\(692\) −1.55492e10 −1.78376
\(693\) −5.98573e8 −0.0683204
\(694\) 2.44468e10 2.77629
\(695\) 1.35571e7 0.00153186
\(696\) −5.39297e8 −0.0606311
\(697\) −1.51845e10 −1.69857
\(698\) −6.70024e9 −0.745756
\(699\) −3.07998e9 −0.341097
\(700\) 3.25250e9 0.358405
\(701\) −6.81601e9 −0.747338 −0.373669 0.927562i \(-0.621900\pi\)
−0.373669 + 0.927562i \(0.621900\pi\)
\(702\) 0 0
\(703\) 6.39274e9 0.693975
\(704\) 3.04783e9 0.329220
\(705\) 9.29265e6 0.000998798 0
\(706\) −9.99871e9 −1.06937
\(707\) −3.70361e9 −0.394146
\(708\) −2.32510e9 −0.246221
\(709\) 7.39468e9 0.779215 0.389608 0.920981i \(-0.372611\pi\)
0.389608 + 0.920981i \(0.372611\pi\)
\(710\) −3.56632e7 −0.00373952
\(711\) 4.74999e9 0.495620
\(712\) 1.08287e9 0.112433
\(713\) −4.05841e9 −0.419317
\(714\) −1.53988e9 −0.158323
\(715\) 0 0
\(716\) 9.77493e9 0.995218
\(717\) −3.58430e9 −0.363151
\(718\) −1.08481e10 −1.09375
\(719\) −1.85081e10 −1.85700 −0.928500 0.371333i \(-0.878901\pi\)
−0.928500 + 0.371333i \(0.878901\pi\)
\(720\) 1.48807e7 0.00148580
\(721\) −3.57449e9 −0.355173
\(722\) 4.52721e8 0.0447663
\(723\) 4.02258e9 0.395841
\(724\) 1.42193e10 1.39249
\(725\) 7.69876e9 0.750304
\(726\) −4.21401e9 −0.408712
\(727\) −4.04178e9 −0.390124 −0.195062 0.980791i \(-0.562491\pi\)
−0.195062 + 0.980791i \(0.562491\pi\)
\(728\) 0 0
\(729\) −5.40376e9 −0.516594
\(730\) −5.07675e7 −0.00483009
\(731\) −1.83131e10 −1.73401
\(732\) 1.30602e9 0.123072
\(733\) −1.54392e10 −1.44797 −0.723985 0.689816i \(-0.757692\pi\)
−0.723985 + 0.689816i \(0.757692\pi\)
\(734\) −1.04390e10 −0.974370
\(735\) 6.00839e6 0.000558152 0
\(736\) −2.31705e10 −2.14221
\(737\) 3.15143e7 0.00289982
\(738\) −2.08172e10 −1.90645
\(739\) 6.64104e8 0.0605313 0.0302657 0.999542i \(-0.490365\pi\)
0.0302657 + 0.999542i \(0.490365\pi\)
\(740\) 1.92118e7 0.00174284
\(741\) 0 0
\(742\) 2.28644e9 0.205469
\(743\) 1.54094e9 0.137824 0.0689118 0.997623i \(-0.478047\pi\)
0.0689118 + 0.997623i \(0.478047\pi\)
\(744\) 2.53631e8 0.0225786
\(745\) 4.26274e7 0.00377695
\(746\) 1.91379e9 0.168775
\(747\) −3.54103e9 −0.310819
\(748\) −4.03977e9 −0.352940
\(749\) −5.61947e9 −0.488663
\(750\) −2.09846e7 −0.00181630
\(751\) 3.60098e9 0.310228 0.155114 0.987897i \(-0.450426\pi\)
0.155114 + 0.987897i \(0.450426\pi\)
\(752\) 1.47887e10 1.26814
\(753\) −1.38545e9 −0.118252
\(754\) 0 0
\(755\) −1.01636e7 −0.000859475 0
\(756\) −2.39914e9 −0.201944
\(757\) 3.39784e8 0.0284686 0.0142343 0.999899i \(-0.495469\pi\)
0.0142343 + 0.999899i \(0.495469\pi\)
\(758\) −2.99438e10 −2.49726
\(759\) −1.31746e9 −0.109369
\(760\) −6.82096e6 −0.000563635 0
\(761\) −1.96039e9 −0.161249 −0.0806243 0.996745i \(-0.525691\pi\)
−0.0806243 + 0.996745i \(0.525691\pi\)
\(762\) −7.15661e9 −0.585956
\(763\) 4.79718e9 0.390976
\(764\) 1.57727e10 1.27962
\(765\) −2.83764e7 −0.00229162
\(766\) 2.86500e10 2.30316
\(767\) 0 0
\(768\) −1.97053e9 −0.156971
\(769\) −1.11615e10 −0.885077 −0.442538 0.896750i \(-0.645922\pi\)
−0.442538 + 0.896750i \(0.645922\pi\)
\(770\) −2.92246e6 −0.000230691 0
\(771\) 2.30733e8 0.0181309
\(772\) −7.07404e8 −0.0553359
\(773\) 2.85420e9 0.222258 0.111129 0.993806i \(-0.464553\pi\)
0.111129 + 0.993806i \(0.464553\pi\)
\(774\) −2.51065e10 −1.94622
\(775\) −3.62072e9 −0.279408
\(776\) 3.33232e8 0.0255994
\(777\) 8.20364e8 0.0627383
\(778\) −2.81483e10 −2.14301
\(779\) −1.83461e10 −1.39047
\(780\) 0 0
\(781\) −3.99510e9 −0.300088
\(782\) 3.56909e10 2.66891
\(783\) −5.67884e9 −0.422759
\(784\) 9.56202e9 0.708669
\(785\) 4.99464e7 0.00368519
\(786\) 3.57961e9 0.262940
\(787\) 1.33429e10 0.975749 0.487874 0.872914i \(-0.337772\pi\)
0.487874 + 0.872914i \(0.337772\pi\)
\(788\) 1.53468e10 1.11732
\(789\) 3.44618e8 0.0249786
\(790\) 2.31913e7 0.00167351
\(791\) −1.84526e9 −0.132569
\(792\) −8.67027e8 −0.0620147
\(793\) 0 0
\(794\) 3.56073e10 2.52445
\(795\) −4.00112e6 −0.000282421 0
\(796\) −1.95992e10 −1.37734
\(797\) 8.42860e9 0.589727 0.294864 0.955539i \(-0.404726\pi\)
0.294864 + 0.955539i \(0.404726\pi\)
\(798\) −1.86051e9 −0.129605
\(799\) −2.82010e10 −1.95592
\(800\) −2.06716e10 −1.42744
\(801\) 5.44289e9 0.374210
\(802\) −1.51390e10 −1.03630
\(803\) −5.68713e9 −0.387604
\(804\) 6.02935e7 0.00409142
\(805\) 1.40061e7 0.000946308 0
\(806\) 0 0
\(807\) −3.40513e8 −0.0228075
\(808\) −5.36465e9 −0.357768
\(809\) 9.44279e9 0.627019 0.313509 0.949585i \(-0.398495\pi\)
0.313509 + 0.949585i \(0.398495\pi\)
\(810\) −3.48576e7 −0.00230462
\(811\) 1.75509e10 1.15539 0.577693 0.816254i \(-0.303953\pi\)
0.577693 + 0.816254i \(0.303953\pi\)
\(812\) 4.10262e9 0.268915
\(813\) −8.01041e9 −0.522803
\(814\) 3.96740e9 0.257823
\(815\) −2.51144e7 −0.00162507
\(816\) 4.28846e9 0.276303
\(817\) −2.21262e10 −1.41948
\(818\) 2.69215e10 1.71974
\(819\) 0 0
\(820\) −5.51344e7 −0.00349200
\(821\) 1.65515e10 1.04384 0.521922 0.852993i \(-0.325215\pi\)
0.521922 + 0.852993i \(0.325215\pi\)
\(822\) 4.04540e9 0.254045
\(823\) 2.59526e10 1.62286 0.811430 0.584449i \(-0.198689\pi\)
0.811430 + 0.584449i \(0.198689\pi\)
\(824\) −5.17762e9 −0.322392
\(825\) −1.17538e9 −0.0728768
\(826\) 5.10458e9 0.315159
\(827\) 2.53210e10 1.55672 0.778362 0.627816i \(-0.216051\pi\)
0.778362 + 0.627816i \(0.216051\pi\)
\(828\) 2.65429e10 1.62496
\(829\) 2.70822e10 1.65099 0.825494 0.564411i \(-0.190897\pi\)
0.825494 + 0.564411i \(0.190897\pi\)
\(830\) −1.72887e7 −0.00104951
\(831\) 3.93680e9 0.237980
\(832\) 0 0
\(833\) −1.82341e10 −1.09301
\(834\) 5.35634e9 0.319733
\(835\) −3.83463e7 −0.00227940
\(836\) −4.88090e9 −0.288920
\(837\) 2.67075e9 0.157432
\(838\) 4.81130e9 0.282428
\(839\) −1.26152e10 −0.737442 −0.368721 0.929540i \(-0.620204\pi\)
−0.368721 + 0.929540i \(0.620204\pi\)
\(840\) −875316. −5.09550e−5 0
\(841\) −7.53886e9 −0.437038
\(842\) −2.55001e8 −0.0147214
\(843\) 8.10971e9 0.466239
\(844\) 2.18460e10 1.25076
\(845\) 0 0
\(846\) −3.86624e10 −2.19529
\(847\) 5.01860e9 0.283786
\(848\) −6.36757e9 −0.358582
\(849\) 6.82942e9 0.383007
\(850\) 3.18417e10 1.77840
\(851\) −1.90141e10 −1.05760
\(852\) −7.64347e9 −0.423401
\(853\) −1.11666e9 −0.0616027 −0.0308013 0.999526i \(-0.509806\pi\)
−0.0308013 + 0.999526i \(0.509806\pi\)
\(854\) −2.86726e9 −0.157530
\(855\) −3.42847e7 −0.00187594
\(856\) −8.13976e9 −0.443561
\(857\) −1.48481e10 −0.805821 −0.402911 0.915239i \(-0.632001\pi\)
−0.402911 + 0.915239i \(0.632001\pi\)
\(858\) 0 0
\(859\) 1.26319e10 0.679974 0.339987 0.940430i \(-0.389577\pi\)
0.339987 + 0.940430i \(0.389577\pi\)
\(860\) −6.64946e7 −0.00356486
\(861\) −2.35430e9 −0.125705
\(862\) 1.54286e10 0.820449
\(863\) −2.29823e10 −1.21718 −0.608591 0.793484i \(-0.708265\pi\)
−0.608591 + 0.793484i \(0.708265\pi\)
\(864\) 1.52480e10 0.804294
\(865\) −5.97374e7 −0.00313827
\(866\) 3.15136e10 1.64887
\(867\) −2.52654e9 −0.131662
\(868\) −1.92946e9 −0.100142
\(869\) 2.59796e9 0.134296
\(870\) −1.32347e7 −0.000681393 0
\(871\) 0 0
\(872\) 6.94867e9 0.354890
\(873\) 1.67495e9 0.0852024
\(874\) 4.31222e10 2.18479
\(875\) 2.49913e7 0.00126113
\(876\) −1.08807e10 −0.546879
\(877\) −1.63120e10 −0.816599 −0.408299 0.912848i \(-0.633878\pi\)
−0.408299 + 0.912848i \(0.633878\pi\)
\(878\) 1.44696e10 0.721480
\(879\) −7.45110e9 −0.370049
\(880\) 8.13883e6 0.000402599 0
\(881\) 2.07580e9 0.102275 0.0511374 0.998692i \(-0.483715\pi\)
0.0511374 + 0.998692i \(0.483715\pi\)
\(882\) −2.49981e10 −1.22678
\(883\) 1.70041e10 0.831175 0.415587 0.909553i \(-0.363576\pi\)
0.415587 + 0.909553i \(0.363576\pi\)
\(884\) 0 0
\(885\) −8.93268e6 −0.000433192 0
\(886\) −1.57359e10 −0.760105
\(887\) −1.27005e10 −0.611066 −0.305533 0.952182i \(-0.598835\pi\)
−0.305533 + 0.952182i \(0.598835\pi\)
\(888\) 1.18829e9 0.0569478
\(889\) 8.52303e9 0.406853
\(890\) 2.65743e7 0.00126356
\(891\) −3.90486e9 −0.184941
\(892\) 1.44316e10 0.680828
\(893\) −3.40729e10 −1.60114
\(894\) 1.68419e10 0.788332
\(895\) 3.75538e7 0.00175095
\(896\) −3.51057e9 −0.163042
\(897\) 0 0
\(898\) 1.47153e9 0.0678114
\(899\) −4.56708e9 −0.209643
\(900\) 2.36804e10 1.08278
\(901\) 1.21425e10 0.553058
\(902\) −1.13858e10 −0.516582
\(903\) −2.83939e9 −0.128327
\(904\) −2.67285e9 −0.120333
\(905\) 5.46284e7 0.00244990
\(906\) −4.01559e9 −0.179391
\(907\) −5.79320e9 −0.257806 −0.128903 0.991657i \(-0.541146\pi\)
−0.128903 + 0.991657i \(0.541146\pi\)
\(908\) 3.58849e10 1.59079
\(909\) −2.69647e10 −1.19076
\(910\) 0 0
\(911\) −2.92730e10 −1.28278 −0.641390 0.767215i \(-0.721642\pi\)
−0.641390 + 0.767215i \(0.721642\pi\)
\(912\) 5.18137e9 0.226185
\(913\) −1.93673e9 −0.0842212
\(914\) −3.26389e10 −1.41392
\(915\) 5.01752e6 0.000216528 0
\(916\) 3.64978e10 1.56904
\(917\) −4.26307e9 −0.182570
\(918\) −2.34874e10 −1.00204
\(919\) 1.74294e10 0.740759 0.370380 0.928880i \(-0.379228\pi\)
0.370380 + 0.928880i \(0.379228\pi\)
\(920\) 2.02877e7 0.000858967 0
\(921\) 5.85087e9 0.246781
\(922\) 1.93717e9 0.0813974
\(923\) 0 0
\(924\) −6.26353e8 −0.0261196
\(925\) −1.69635e10 −0.704723
\(926\) 2.45016e10 1.01404
\(927\) −2.60246e10 −1.07301
\(928\) −2.60746e10 −1.07103
\(929\) −1.64663e10 −0.673814 −0.336907 0.941538i \(-0.609381\pi\)
−0.336907 + 0.941538i \(0.609381\pi\)
\(930\) 6.22428e6 0.000253746 0
\(931\) −2.20306e10 −0.894753
\(932\) 3.39389e10 1.37322
\(933\) −3.98165e9 −0.160501
\(934\) 1.04293e10 0.418834
\(935\) −1.55202e7 −0.000620948 0
\(936\) 0 0
\(937\) −1.22607e10 −0.486885 −0.243442 0.969915i \(-0.578277\pi\)
−0.243442 + 0.969915i \(0.578277\pi\)
\(938\) −1.32370e8 −0.00523695
\(939\) 1.30374e10 0.513880
\(940\) −1.02397e8 −0.00402107
\(941\) −3.58066e10 −1.40088 −0.700438 0.713713i \(-0.747012\pi\)
−0.700438 + 0.713713i \(0.747012\pi\)
\(942\) 1.97336e10 0.769180
\(943\) 5.45671e10 2.11904
\(944\) −1.42159e10 −0.550011
\(945\) −9.21713e6 −0.000355291 0
\(946\) −1.37317e10 −0.527359
\(947\) 3.11279e10 1.19104 0.595518 0.803342i \(-0.296947\pi\)
0.595518 + 0.803342i \(0.296947\pi\)
\(948\) 4.97044e9 0.189481
\(949\) 0 0
\(950\) 3.84716e10 1.45582
\(951\) −5.76484e9 −0.217348
\(952\) 2.65638e9 0.0997840
\(953\) 6.95907e9 0.260451 0.130225 0.991484i \(-0.458430\pi\)
0.130225 + 0.991484i \(0.458430\pi\)
\(954\) 1.66468e10 0.620743
\(955\) 6.05964e7 0.00225131
\(956\) 3.94961e10 1.46201
\(957\) −1.48259e9 −0.0546803
\(958\) −3.52913e10 −1.29685
\(959\) −4.81779e9 −0.176394
\(960\) 2.24024e7 0.000817230 0
\(961\) −2.53647e10 −0.921931
\(962\) 0 0
\(963\) −4.09135e10 −1.47630
\(964\) −4.43255e10 −1.59362
\(965\) −2.71774e6 −9.73558e−5 0
\(966\) 5.53375e9 0.197515
\(967\) 3.75275e10 1.33462 0.667310 0.744780i \(-0.267446\pi\)
0.667310 + 0.744780i \(0.267446\pi\)
\(968\) 7.26940e9 0.257593
\(969\) −9.88050e9 −0.348856
\(970\) 8.17774e6 0.000287695 0
\(971\) 1.78987e9 0.0627414 0.0313707 0.999508i \(-0.490013\pi\)
0.0313707 + 0.999508i \(0.490013\pi\)
\(972\) −2.65969e10 −0.928965
\(973\) −6.37904e9 −0.222004
\(974\) −5.16665e10 −1.79165
\(975\) 0 0
\(976\) 7.98510e9 0.274920
\(977\) −1.98276e10 −0.680203 −0.340101 0.940389i \(-0.610461\pi\)
−0.340101 + 0.940389i \(0.610461\pi\)
\(978\) −9.92259e9 −0.339187
\(979\) 2.97693e9 0.101398
\(980\) −6.62075e7 −0.00224707
\(981\) 3.49266e10 1.18118
\(982\) 6.07523e10 2.04726
\(983\) 3.24213e10 1.08866 0.544332 0.838870i \(-0.316783\pi\)
0.544332 + 0.838870i \(0.316783\pi\)
\(984\) −3.41018e9 −0.114102
\(985\) 5.89601e7 0.00196576
\(986\) 4.01643e10 1.33435
\(987\) −4.37248e9 −0.144750
\(988\) 0 0
\(989\) 6.58104e10 2.16326
\(990\) −2.12775e7 −0.000696942 0
\(991\) −2.45428e10 −0.801063 −0.400532 0.916283i \(-0.631175\pi\)
−0.400532 + 0.916283i \(0.631175\pi\)
\(992\) 1.22629e10 0.398843
\(993\) −5.67890e9 −0.184052
\(994\) 1.67806e10 0.541946
\(995\) −7.52970e7 −0.00242324
\(996\) −3.70537e9 −0.118830
\(997\) −1.08000e10 −0.345137 −0.172568 0.984998i \(-0.555207\pi\)
−0.172568 + 0.984998i \(0.555207\pi\)
\(998\) −7.89357e10 −2.51372
\(999\) 1.25128e10 0.397077
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.i.1.3 yes 21
13.5 odd 4 169.8.b.f.168.36 42
13.8 odd 4 169.8.b.f.168.7 42
13.12 even 2 169.8.a.h.1.19 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.19 21 13.12 even 2
169.8.a.i.1.3 yes 21 1.1 even 1 trivial
169.8.b.f.168.7 42 13.8 odd 4
169.8.b.f.168.36 42 13.5 odd 4