Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,8,Mod(168,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.168");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(52.7930693068\) |
Analytic rank: | \(0\) |
Dimension: | \(42\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
168.1 | − | 21.6353i | 79.0768 | −340.087 | 120.676i | − | 1710.85i | 240.114i | 4588.56i | 4066.15 | 2610.86 | ||||||||||||||||
168.2 | − | 21.5931i | 28.3750 | −338.261 | − | 473.706i | − | 612.705i | − | 99.1966i | 4540.19i | −1381.86 | −10228.8 | ||||||||||||||
168.3 | − | 20.8456i | 28.0386 | −306.538 | 273.942i | − | 584.480i | − | 1317.98i | 3721.73i | −1400.84 | 5710.48 | |||||||||||||||
168.4 | − | 20.4423i | −14.6497 | −289.887 | 478.639i | 299.473i | 1197.76i | 3309.33i | −1972.39 | 9784.47 | |||||||||||||||||
168.5 | − | 19.6237i | −72.4635 | −257.091 | 413.760i | 1422.00i | − | 1005.88i | 2533.24i | 3063.96 | 8119.51 | ||||||||||||||||
168.6 | − | 17.7683i | 58.1116 | −187.714 | − | 15.5333i | − | 1032.55i | 1688.45i | 1061.02i | 1189.96 | −276.002 | |||||||||||||||
168.7 | − | 16.7260i | −13.7721 | −151.758 | 0.583029i | 230.352i | 274.333i | 397.369i | −1997.33 | 9.75172 | |||||||||||||||||
168.8 | − | 15.3948i | −46.3939 | −108.998 | − | 391.457i | 714.223i | 1742.39i | − | 292.525i | −34.6060 | −6026.39 | |||||||||||||||
168.9 | − | 15.0231i | −85.3884 | −97.6921 | − | 439.379i | 1282.79i | − | 536.518i | − | 455.317i | 5104.17 | −6600.82 | ||||||||||||||
168.10 | − | 13.2906i | 38.7978 | −48.6390 | − | 274.097i | − | 515.644i | − | 774.181i | − | 1054.75i | −681.732 | −3642.90 | |||||||||||||
168.11 | − | 13.1620i | −21.4559 | −45.2387 | 344.184i | 282.403i | − | 168.957i | − | 1089.31i | −1726.64 | 4530.16 | |||||||||||||||
168.12 | − | 11.8381i | −26.1495 | −12.1398 | 422.131i | 309.560i | − | 1215.99i | − | 1371.56i | −1503.20 | 4997.21 | |||||||||||||||
168.13 | − | 10.5911i | −6.51000 | 15.8290 | − | 397.099i | 68.9480i | − | 1187.35i | − | 1523.30i | −2144.62 | −4205.71 | ||||||||||||||
168.14 | − | 8.99747i | 87.5208 | 47.0455 | 190.033i | − | 787.466i | − | 44.6495i | − | 1574.97i | 5472.89 | 1709.81 | ||||||||||||||
168.15 | − | 8.58294i | 18.1259 | 54.3331 | − | 37.6136i | − | 155.574i | 711.860i | − | 1564.95i | −1858.45 | −322.835 | ||||||||||||||
168.16 | − | 6.93821i | −64.5145 | 79.8613 | − | 33.5113i | 447.615i | − | 160.658i | − | 1442.18i | 1975.12 | −232.508 | ||||||||||||||
168.17 | − | 5.77104i | 82.1608 | 94.6950 | 17.6329i | − | 474.154i | 888.558i | − | 1285.18i | 4563.40 | 101.761 | |||||||||||||||
168.18 | − | 3.19657i | −57.0706 | 117.782 | − | 431.499i | 182.430i | 225.139i | − | 785.660i | 1070.05 | −1379.32 | |||||||||||||||
168.19 | − | 2.91821i | 44.2582 | 119.484 | − | 197.474i | − | 129.155i | − | 303.075i | − | 722.210i | −228.212 | −576.269 | |||||||||||||
168.20 | − | 2.90053i | −90.5117 | 119.587 | 240.795i | 262.532i | − | 1391.07i | − | 718.132i | 6005.38 | 698.433 | |||||||||||||||
See all 42 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.8.b.f | 42 | |
13.b | even | 2 | 1 | inner | 169.8.b.f | 42 | |
13.d | odd | 4 | 1 | 169.8.a.h | ✓ | 21 | |
13.d | odd | 4 | 1 | 169.8.a.i | yes | 21 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.8.a.h | ✓ | 21 | 13.d | odd | 4 | 1 | |
169.8.a.i | yes | 21 | 13.d | odd | 4 | 1 | |
169.8.b.f | 42 | 1.a | even | 1 | 1 | trivial | |
169.8.b.f | 42 | 13.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{42} + 4097 T_{2}^{40} + 7721510 T_{2}^{38} + 8881814775 T_{2}^{36} + 6976509369092 T_{2}^{34} + \cdots + 38\!\cdots\!24 \) acting on \(S_{8}^{\mathrm{new}}(169, [\chi])\).