Properties

Label 169.8.b.f
Level $169$
Weight $8$
Character orbit 169.b
Analytic conductor $52.793$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 42 q - 52 q^{3} - 2818 q^{4} + 30930 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 42 q - 52 q^{3} - 2818 q^{4} + 30930 q^{9} + 10334 q^{10} - 43590 q^{12} - 358 q^{14} + 226410 q^{16} - 90032 q^{17} - 548348 q^{22} + 256210 q^{23} - 733074 q^{25} - 213286 q^{27} - 124658 q^{29} - 19522 q^{30} + 1697720 q^{35} + 548490 q^{36} - 451662 q^{38} - 4577654 q^{40} + 5473672 q^{42} - 1788978 q^{43} + 12604776 q^{48} - 263060 q^{49} + 2368682 q^{51} - 9100054 q^{53} + 11048060 q^{55} - 4668772 q^{56} + 11434024 q^{61} + 27187306 q^{62} - 19535848 q^{64} - 35613954 q^{66} + 24504984 q^{68} - 5544412 q^{69} + 19250156 q^{74} + 86424794 q^{75} - 18892072 q^{77} - 37226562 q^{79} + 82110898 q^{81} - 48380654 q^{82} + 18055788 q^{87} + 151356360 q^{88} - 6671120 q^{90} - 138678780 q^{92} + 57911426 q^{94} - 35320062 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
168.1 21.6353i 79.0768 −340.087 120.676i 1710.85i 240.114i 4588.56i 4066.15 2610.86
168.2 21.5931i 28.3750 −338.261 473.706i 612.705i 99.1966i 4540.19i −1381.86 −10228.8
168.3 20.8456i 28.0386 −306.538 273.942i 584.480i 1317.98i 3721.73i −1400.84 5710.48
168.4 20.4423i −14.6497 −289.887 478.639i 299.473i 1197.76i 3309.33i −1972.39 9784.47
168.5 19.6237i −72.4635 −257.091 413.760i 1422.00i 1005.88i 2533.24i 3063.96 8119.51
168.6 17.7683i 58.1116 −187.714 15.5333i 1032.55i 1688.45i 1061.02i 1189.96 −276.002
168.7 16.7260i −13.7721 −151.758 0.583029i 230.352i 274.333i 397.369i −1997.33 9.75172
168.8 15.3948i −46.3939 −108.998 391.457i 714.223i 1742.39i 292.525i −34.6060 −6026.39
168.9 15.0231i −85.3884 −97.6921 439.379i 1282.79i 536.518i 455.317i 5104.17 −6600.82
168.10 13.2906i 38.7978 −48.6390 274.097i 515.644i 774.181i 1054.75i −681.732 −3642.90
168.11 13.1620i −21.4559 −45.2387 344.184i 282.403i 168.957i 1089.31i −1726.64 4530.16
168.12 11.8381i −26.1495 −12.1398 422.131i 309.560i 1215.99i 1371.56i −1503.20 4997.21
168.13 10.5911i −6.51000 15.8290 397.099i 68.9480i 1187.35i 1523.30i −2144.62 −4205.71
168.14 8.99747i 87.5208 47.0455 190.033i 787.466i 44.6495i 1574.97i 5472.89 1709.81
168.15 8.58294i 18.1259 54.3331 37.6136i 155.574i 711.860i 1564.95i −1858.45 −322.835
168.16 6.93821i −64.5145 79.8613 33.5113i 447.615i 160.658i 1442.18i 1975.12 −232.508
168.17 5.77104i 82.1608 94.6950 17.6329i 474.154i 888.558i 1285.18i 4563.40 101.761
168.18 3.19657i −57.0706 117.782 431.499i 182.430i 225.139i 785.660i 1070.05 −1379.32
168.19 2.91821i 44.2582 119.484 197.474i 129.155i 303.075i 722.210i −228.212 −576.269
168.20 2.90053i −90.5117 119.587 240.795i 262.532i 1391.07i 718.132i 6005.38 698.433
See all 42 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 168.42
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.8.b.f 42
13.b even 2 1 inner 169.8.b.f 42
13.d odd 4 1 169.8.a.h 21
13.d odd 4 1 169.8.a.i yes 21
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.8.a.h 21 13.d odd 4 1
169.8.a.i yes 21 13.d odd 4 1
169.8.b.f 42 1.a even 1 1 trivial
169.8.b.f 42 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{42} + 4097 T_{2}^{40} + 7721510 T_{2}^{38} + 8881814775 T_{2}^{36} + 6976509369092 T_{2}^{34} + \cdots + 38\!\cdots\!24 \) acting on \(S_{8}^{\mathrm{new}}(169, [\chi])\). Copy content Toggle raw display