Properties

Label 169.8.b.f.168.29
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(168,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.168"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.29
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.f.168.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.99747i q^{2} +87.5208 q^{3} +47.0455 q^{4} -190.033i q^{5} +787.466i q^{6} +44.6495i q^{7} +1574.97i q^{8} +5472.89 q^{9} +1709.81 q^{10} +7589.80i q^{11} +4117.46 q^{12} -401.733 q^{14} -16631.8i q^{15} -8148.89 q^{16} +23353.5 q^{17} +49242.1i q^{18} -16826.8i q^{19} -8940.18i q^{20} +3907.76i q^{21} -68289.0 q^{22} -74929.6 q^{23} +137842. i q^{24} +42012.6 q^{25} +287583. q^{27} +2100.56i q^{28} -140338. q^{29} +149644. q^{30} -40335.6i q^{31} +128276. i q^{32} +664265. i q^{33} +210123. i q^{34} +8484.87 q^{35} +257475. q^{36} +235757. i q^{37} +151399. q^{38} +299295. q^{40} -400429. i q^{41} -35160.0 q^{42} +3696.88 q^{43} +357066. i q^{44} -1.04003e6i q^{45} -674177. i q^{46} -831675. i q^{47} -713197. q^{48} +821549. q^{49} +378007. i q^{50} +2.04392e6 q^{51} -1.10224e6 q^{53} +2.58752e6i q^{54} +1.44231e6 q^{55} -70321.5 q^{56} -1.47269e6i q^{57} -1.26268e6i q^{58} -236199. i q^{59} -782452. i q^{60} +2.81617e6 q^{61} +362918. q^{62} +244362. i q^{63} -2.19722e6 q^{64} -5.97671e6 q^{66} +2.44794e6i q^{67} +1.09868e6 q^{68} -6.55789e6 q^{69} +76342.3i q^{70} -1.62315e6i q^{71} +8.61961e6i q^{72} +891091. i q^{73} -2.12122e6 q^{74} +3.67698e6 q^{75} -791625. i q^{76} -338881. q^{77} +4.25155e6 q^{79} +1.54855e6i q^{80} +1.32003e7 q^{81} +3.60285e6 q^{82} +1.90485e6i q^{83} +183843. i q^{84} -4.43793e6i q^{85} +33262.6i q^{86} -1.22825e7 q^{87} -1.19537e7 q^{88} +6.79531e6i q^{89} +9.35761e6 q^{90} -3.52510e6 q^{92} -3.53020e6i q^{93} +7.48297e6 q^{94} -3.19764e6 q^{95} +1.12268e7i q^{96} -1.03105e7i q^{97} +7.39187e6i q^{98} +4.15381e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 52 q^{3} - 2818 q^{4} + 30930 q^{9} + 10334 q^{10} - 43590 q^{12} - 358 q^{14} + 226410 q^{16} - 90032 q^{17} - 548348 q^{22} + 256210 q^{23} - 733074 q^{25} - 213286 q^{27} - 124658 q^{29} - 19522 q^{30}+ \cdots - 35320062 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.99747i 0.795272i 0.917543 + 0.397636i \(0.130169\pi\)
−0.917543 + 0.397636i \(0.869831\pi\)
\(3\) 87.5208 1.87149 0.935743 0.352682i \(-0.114730\pi\)
0.935743 + 0.352682i \(0.114730\pi\)
\(4\) 47.0455 0.367543
\(5\) − 190.033i − 0.679881i −0.940447 0.339941i \(-0.889593\pi\)
0.940447 0.339941i \(-0.110407\pi\)
\(6\) 787.466i 1.48834i
\(7\) 44.6495i 0.0492010i 0.999697 + 0.0246005i \(0.00783137\pi\)
−0.999697 + 0.0246005i \(0.992169\pi\)
\(8\) 1574.97i 1.08757i
\(9\) 5472.89 2.50246
\(10\) 1709.81 0.540690
\(11\) 7589.80i 1.71932i 0.510869 + 0.859659i \(0.329324\pi\)
−0.510869 + 0.859659i \(0.670676\pi\)
\(12\) 4117.46 0.687852
\(13\) 0 0
\(14\) −401.733 −0.0391281
\(15\) − 16631.8i − 1.27239i
\(16\) −8148.89 −0.497369
\(17\) 23353.5 1.15287 0.576436 0.817142i \(-0.304443\pi\)
0.576436 + 0.817142i \(0.304443\pi\)
\(18\) 49242.1i 1.99014i
\(19\) − 16826.8i − 0.562812i −0.959589 0.281406i \(-0.909199\pi\)
0.959589 0.281406i \(-0.0908008\pi\)
\(20\) − 8940.18i − 0.249886i
\(21\) 3907.76i 0.0920790i
\(22\) −68289.0 −1.36732
\(23\) −74929.6 −1.28412 −0.642060 0.766654i \(-0.721920\pi\)
−0.642060 + 0.766654i \(0.721920\pi\)
\(24\) 137842.i 2.03537i
\(25\) 42012.6 0.537761
\(26\) 0 0
\(27\) 287583. 2.81184
\(28\) 2100.56i 0.0180835i
\(29\) −140338. −1.06852 −0.534258 0.845321i \(-0.679409\pi\)
−0.534258 + 0.845321i \(0.679409\pi\)
\(30\) 149644. 1.01189
\(31\) − 40335.6i − 0.243177i −0.992581 0.121588i \(-0.961201\pi\)
0.992581 0.121588i \(-0.0387988\pi\)
\(32\) 128276.i 0.692025i
\(33\) 664265.i 3.21768i
\(34\) 210123.i 0.916847i
\(35\) 8484.87 0.0334508
\(36\) 257475. 0.919763
\(37\) 235757.i 0.765171i 0.923920 + 0.382586i \(0.124966\pi\)
−0.923920 + 0.382586i \(0.875034\pi\)
\(38\) 151399. 0.447589
\(39\) 0 0
\(40\) 299295. 0.739417
\(41\) − 400429.i − 0.907365i −0.891163 0.453682i \(-0.850110\pi\)
0.891163 0.453682i \(-0.149890\pi\)
\(42\) −35160.0 −0.0732278
\(43\) 3696.88 0.00709081 0.00354540 0.999994i \(-0.498871\pi\)
0.00354540 + 0.999994i \(0.498871\pi\)
\(44\) 357066.i 0.631923i
\(45\) − 1.04003e6i − 1.70138i
\(46\) − 674177.i − 1.02122i
\(47\) − 831675.i − 1.16845i −0.811591 0.584226i \(-0.801398\pi\)
0.811591 0.584226i \(-0.198602\pi\)
\(48\) −713197. −0.930819
\(49\) 821549. 0.997579
\(50\) 378007.i 0.427666i
\(51\) 2.04392e6 2.15759
\(52\) 0 0
\(53\) −1.10224e6 −1.01697 −0.508486 0.861070i \(-0.669795\pi\)
−0.508486 + 0.861070i \(0.669795\pi\)
\(54\) 2.58752e6i 2.23618i
\(55\) 1.44231e6 1.16893
\(56\) −70321.5 −0.0535094
\(57\) − 1.47269e6i − 1.05330i
\(58\) − 1.26268e6i − 0.849760i
\(59\) − 236199.i − 0.149726i −0.997194 0.0748629i \(-0.976148\pi\)
0.997194 0.0748629i \(-0.0238519\pi\)
\(60\) − 782452.i − 0.467658i
\(61\) 2.81617e6 1.58856 0.794281 0.607550i \(-0.207848\pi\)
0.794281 + 0.607550i \(0.207848\pi\)
\(62\) 362918. 0.193392
\(63\) 244362.i 0.123124i
\(64\) −2.19722e6 −1.04772
\(65\) 0 0
\(66\) −5.97671e6 −2.55893
\(67\) 2.44794e6i 0.994351i 0.867650 + 0.497176i \(0.165630\pi\)
−0.867650 + 0.497176i \(0.834370\pi\)
\(68\) 1.09868e6 0.423730
\(69\) −6.55789e6 −2.40321
\(70\) 76342.3i 0.0266025i
\(71\) − 1.62315e6i − 0.538213i −0.963110 0.269106i \(-0.913272\pi\)
0.963110 0.269106i \(-0.0867283\pi\)
\(72\) 8.61961e6i 2.72160i
\(73\) 891091.i 0.268097i 0.990975 + 0.134049i \(0.0427978\pi\)
−0.990975 + 0.134049i \(0.957202\pi\)
\(74\) −2.12122e6 −0.608519
\(75\) 3.67698e6 1.00641
\(76\) − 791625.i − 0.206858i
\(77\) −338881. −0.0845921
\(78\) 0 0
\(79\) 4.25155e6 0.970180 0.485090 0.874464i \(-0.338787\pi\)
0.485090 + 0.874464i \(0.338787\pi\)
\(80\) 1.54855e6i 0.338152i
\(81\) 1.32003e7 2.75986
\(82\) 3.60285e6 0.721601
\(83\) 1.90485e6i 0.365668i 0.983144 + 0.182834i \(0.0585272\pi\)
−0.983144 + 0.182834i \(0.941473\pi\)
\(84\) 183843.i 0.0338430i
\(85\) − 4.43793e6i − 0.783816i
\(86\) 33262.6i 0.00563912i
\(87\) −1.22825e7 −1.99971
\(88\) −1.19537e7 −1.86987
\(89\) 6.79531e6i 1.02175i 0.859655 + 0.510874i \(0.170678\pi\)
−0.859655 + 0.510874i \(0.829322\pi\)
\(90\) 9.35761e6 1.35306
\(91\) 0 0
\(92\) −3.52510e6 −0.471970
\(93\) − 3.53020e6i − 0.455102i
\(94\) 7.48297e6 0.929237
\(95\) −3.19764e6 −0.382646
\(96\) 1.12268e7i 1.29512i
\(97\) − 1.03105e7i − 1.14704i −0.819193 0.573519i \(-0.805578\pi\)
0.819193 0.573519i \(-0.194422\pi\)
\(98\) 7.39187e6i 0.793346i
\(99\) 4.15381e7i 4.30253i
\(100\) 1.97651e6 0.197651
\(101\) 274073. 0.0264692 0.0132346 0.999912i \(-0.495787\pi\)
0.0132346 + 0.999912i \(0.495787\pi\)
\(102\) 1.83901e7i 1.71587i
\(103\) 2.54223e6 0.229237 0.114619 0.993410i \(-0.463435\pi\)
0.114619 + 0.993410i \(0.463435\pi\)
\(104\) 0 0
\(105\) 742602. 0.0626028
\(106\) − 9.91734e6i − 0.808769i
\(107\) −1.12719e7 −0.889514 −0.444757 0.895651i \(-0.646710\pi\)
−0.444757 + 0.895651i \(0.646710\pi\)
\(108\) 1.35295e7 1.03347
\(109\) − 6.86352e6i − 0.507638i −0.967252 0.253819i \(-0.918313\pi\)
0.967252 0.253819i \(-0.0816868\pi\)
\(110\) 1.29771e7i 0.929618i
\(111\) 2.06336e7i 1.43201i
\(112\) − 363844.i − 0.0244710i
\(113\) −1.52777e6 −0.0996054 −0.0498027 0.998759i \(-0.515859\pi\)
−0.0498027 + 0.998759i \(0.515859\pi\)
\(114\) 1.32505e7 0.837656
\(115\) 1.42391e7i 0.873050i
\(116\) −6.60226e6 −0.392726
\(117\) 0 0
\(118\) 2.12520e6 0.119073
\(119\) 1.04272e6i 0.0567225i
\(120\) 2.61945e7 1.38381
\(121\) −3.81179e7 −1.95605
\(122\) 2.53384e7i 1.26334i
\(123\) − 3.50458e7i − 1.69812i
\(124\) − 1.89761e6i − 0.0893780i
\(125\) − 2.28301e7i − 1.04550i
\(126\) −2.19864e6 −0.0979167
\(127\) −2.68776e7 −1.16433 −0.582166 0.813070i \(-0.697795\pi\)
−0.582166 + 0.813070i \(0.697795\pi\)
\(128\) − 3.35005e6i − 0.141194i
\(129\) 323554. 0.0132703
\(130\) 0 0
\(131\) 2.01789e7 0.784237 0.392119 0.919915i \(-0.371742\pi\)
0.392119 + 0.919915i \(0.371742\pi\)
\(132\) 3.12507e7i 1.18264i
\(133\) 751308. 0.0276909
\(134\) −2.20253e7 −0.790779
\(135\) − 5.46502e7i − 1.91172i
\(136\) 3.67810e7i 1.25383i
\(137\) − 2.71531e7i − 0.902190i −0.892476 0.451095i \(-0.851034\pi\)
0.892476 0.451095i \(-0.148966\pi\)
\(138\) − 5.90045e7i − 1.91121i
\(139\) −9.19607e6 −0.290436 −0.145218 0.989400i \(-0.546388\pi\)
−0.145218 + 0.989400i \(0.546388\pi\)
\(140\) 399175. 0.0122946
\(141\) − 7.27888e7i − 2.18674i
\(142\) 1.46042e7 0.428025
\(143\) 0 0
\(144\) −4.45980e7 −1.24465
\(145\) 2.66687e7i 0.726464i
\(146\) −8.01757e6 −0.213210
\(147\) 7.19026e7 1.86696
\(148\) 1.10913e7i 0.281233i
\(149\) − 7.49979e7i − 1.85736i −0.370878 0.928682i \(-0.620943\pi\)
0.370878 0.928682i \(-0.379057\pi\)
\(150\) 3.30835e7i 0.800372i
\(151\) − 1.06575e7i − 0.251905i −0.992036 0.125952i \(-0.959801\pi\)
0.992036 0.125952i \(-0.0401986\pi\)
\(152\) 2.65016e7 0.612097
\(153\) 1.27811e8 2.88502
\(154\) − 3.04907e6i − 0.0672737i
\(155\) −7.66507e6 −0.165331
\(156\) 0 0
\(157\) −8.03440e7 −1.65693 −0.828466 0.560039i \(-0.810786\pi\)
−0.828466 + 0.560039i \(0.810786\pi\)
\(158\) 3.82532e7i 0.771557i
\(159\) −9.64685e7 −1.90325
\(160\) 2.43767e7 0.470495
\(161\) − 3.34557e6i − 0.0631800i
\(162\) 1.18769e8i 2.19484i
\(163\) − 8.26127e7i − 1.49414i −0.664748 0.747068i \(-0.731461\pi\)
0.664748 0.747068i \(-0.268539\pi\)
\(164\) − 1.88384e7i − 0.333496i
\(165\) 1.26232e8 2.18764
\(166\) −1.71388e7 −0.290806
\(167\) 1.53330e7i 0.254753i 0.991854 + 0.127377i \(0.0406557\pi\)
−0.991854 + 0.127377i \(0.959344\pi\)
\(168\) −6.15460e6 −0.100142
\(169\) 0 0
\(170\) 3.99302e7 0.623347
\(171\) − 9.20911e7i − 1.40842i
\(172\) 173922. 0.00260618
\(173\) −2.26984e6 −0.0333299 −0.0166650 0.999861i \(-0.505305\pi\)
−0.0166650 + 0.999861i \(0.505305\pi\)
\(174\) − 1.10511e8i − 1.59032i
\(175\) 1.87584e6i 0.0264584i
\(176\) − 6.18485e7i − 0.855135i
\(177\) − 2.06723e7i − 0.280210i
\(178\) −6.11406e7 −0.812567
\(179\) −3.37802e7 −0.440226 −0.220113 0.975474i \(-0.570643\pi\)
−0.220113 + 0.975474i \(0.570643\pi\)
\(180\) − 4.89286e7i − 0.625330i
\(181\) −2.19086e7 −0.274625 −0.137312 0.990528i \(-0.543846\pi\)
−0.137312 + 0.990528i \(0.543846\pi\)
\(182\) 0 0
\(183\) 2.46473e8 2.97297
\(184\) − 1.18012e8i − 1.39657i
\(185\) 4.48015e7 0.520226
\(186\) 3.17629e7 0.361930
\(187\) 1.77249e8i 1.98215i
\(188\) − 3.91266e7i − 0.429457i
\(189\) 1.28405e7i 0.138345i
\(190\) − 2.87707e7i − 0.304307i
\(191\) −1.31760e8 −1.36826 −0.684128 0.729362i \(-0.739817\pi\)
−0.684128 + 0.729362i \(0.739817\pi\)
\(192\) −1.92302e8 −1.96079
\(193\) − 7.46458e6i − 0.0747403i −0.999301 0.0373701i \(-0.988102\pi\)
0.999301 0.0373701i \(-0.0118981\pi\)
\(194\) 9.27682e7 0.912206
\(195\) 0 0
\(196\) 3.86502e7 0.366653
\(197\) − 4.69866e7i − 0.437867i −0.975740 0.218933i \(-0.929742\pi\)
0.975740 0.218933i \(-0.0702577\pi\)
\(198\) −3.73738e8 −3.42168
\(199\) −1.29435e7 −0.116430 −0.0582149 0.998304i \(-0.518541\pi\)
−0.0582149 + 0.998304i \(0.518541\pi\)
\(200\) 6.61685e7i 0.584852i
\(201\) 2.14246e8i 1.86092i
\(202\) 2.46596e6i 0.0210502i
\(203\) − 6.26601e6i − 0.0525720i
\(204\) 9.61572e7 0.793006
\(205\) −7.60945e7 −0.616900
\(206\) 2.28737e7i 0.182306i
\(207\) −4.10081e8 −3.21346
\(208\) 0 0
\(209\) 1.27712e8 0.967653
\(210\) 6.68154e6i 0.0497862i
\(211\) 1.85248e6 0.0135758 0.00678790 0.999977i \(-0.497839\pi\)
0.00678790 + 0.999977i \(0.497839\pi\)
\(212\) −5.18553e7 −0.373781
\(213\) − 1.42059e8i − 1.00726i
\(214\) − 1.01418e8i − 0.707405i
\(215\) − 702527.i − 0.00482091i
\(216\) 4.52934e8i 3.05807i
\(217\) 1.80096e6 0.0119645
\(218\) 6.17543e7 0.403710
\(219\) 7.79890e7i 0.501740i
\(220\) 6.78542e7 0.429633
\(221\) 0 0
\(222\) −1.85651e8 −1.13883
\(223\) − 1.60027e8i − 0.966330i −0.875529 0.483165i \(-0.839487\pi\)
0.875529 0.483165i \(-0.160513\pi\)
\(224\) −5.72748e6 −0.0340483
\(225\) 2.29930e8 1.34573
\(226\) − 1.37460e7i − 0.0792134i
\(227\) 2.82188e8i 1.60121i 0.599194 + 0.800604i \(0.295488\pi\)
−0.599194 + 0.800604i \(0.704512\pi\)
\(228\) − 6.92837e7i − 0.387132i
\(229\) − 7.12916e6i − 0.0392296i −0.999808 0.0196148i \(-0.993756\pi\)
0.999808 0.0196148i \(-0.00624399\pi\)
\(230\) −1.28116e8 −0.694312
\(231\) −2.96591e7 −0.158313
\(232\) − 2.21027e8i − 1.16208i
\(233\) −8.80122e6 −0.0455824 −0.0227912 0.999740i \(-0.507255\pi\)
−0.0227912 + 0.999740i \(0.507255\pi\)
\(234\) 0 0
\(235\) −1.58045e8 −0.794409
\(236\) − 1.11121e7i − 0.0550307i
\(237\) 3.72099e8 1.81568
\(238\) −9.38188e6 −0.0451098
\(239\) − 1.35488e7i − 0.0641958i −0.999485 0.0320979i \(-0.989781\pi\)
0.999485 0.0320979i \(-0.0102188\pi\)
\(240\) 1.35531e8i 0.632847i
\(241\) − 2.45021e8i − 1.12757i −0.825921 0.563785i \(-0.809345\pi\)
0.825921 0.563785i \(-0.190655\pi\)
\(242\) − 3.42965e8i − 1.55559i
\(243\) 5.26357e8 2.35320
\(244\) 1.32488e8 0.583865
\(245\) − 1.56121e8i − 0.678235i
\(246\) 3.15324e8 1.35047
\(247\) 0 0
\(248\) 6.35272e7 0.264471
\(249\) 1.66714e8i 0.684344i
\(250\) 2.05413e8 0.831453
\(251\) 1.24387e8 0.496496 0.248248 0.968696i \(-0.420145\pi\)
0.248248 + 0.968696i \(0.420145\pi\)
\(252\) 1.14961e7i 0.0452533i
\(253\) − 5.68701e8i − 2.20781i
\(254\) − 2.41830e8i − 0.925960i
\(255\) − 3.88411e8i − 1.46690i
\(256\) −2.51102e8 −0.935429
\(257\) −1.54924e8 −0.569317 −0.284658 0.958629i \(-0.591880\pi\)
−0.284658 + 0.958629i \(0.591880\pi\)
\(258\) 2.91116e6i 0.0105535i
\(259\) −1.05264e7 −0.0376472
\(260\) 0 0
\(261\) −7.68052e8 −2.67392
\(262\) 1.81559e8i 0.623681i
\(263\) 1.82841e8 0.619766 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(264\) −1.04620e9 −3.49945
\(265\) 2.09461e8i 0.691420i
\(266\) 6.75987e6i 0.0220218i
\(267\) 5.94730e8i 1.91219i
\(268\) 1.15165e8i 0.365467i
\(269\) −5.92306e8 −1.85530 −0.927648 0.373456i \(-0.878173\pi\)
−0.927648 + 0.373456i \(0.878173\pi\)
\(270\) 4.91714e8 1.52033
\(271\) − 2.92411e8i − 0.892487i −0.894912 0.446243i \(-0.852762\pi\)
0.894912 0.446243i \(-0.147238\pi\)
\(272\) −1.90305e8 −0.573403
\(273\) 0 0
\(274\) 2.44309e8 0.717486
\(275\) 3.18867e8i 0.924583i
\(276\) −3.08520e8 −0.883285
\(277\) 5.12690e8 1.44936 0.724679 0.689087i \(-0.241988\pi\)
0.724679 + 0.689087i \(0.241988\pi\)
\(278\) − 8.27414e7i − 0.230975i
\(279\) − 2.20752e8i − 0.608541i
\(280\) 1.33634e7i 0.0363801i
\(281\) − 2.43625e7i − 0.0655012i −0.999464 0.0327506i \(-0.989573\pi\)
0.999464 0.0327506i \(-0.0104267\pi\)
\(282\) 6.54915e8 1.73905
\(283\) 1.36204e8 0.357221 0.178611 0.983920i \(-0.442840\pi\)
0.178611 + 0.983920i \(0.442840\pi\)
\(284\) − 7.63618e7i − 0.197816i
\(285\) −2.79860e8 −0.716116
\(286\) 0 0
\(287\) 1.78790e7 0.0446432
\(288\) 7.02042e8i 1.73177i
\(289\) 1.35049e8 0.329115
\(290\) −2.39951e8 −0.577736
\(291\) − 9.02381e8i − 2.14667i
\(292\) 4.19219e7i 0.0985373i
\(293\) 5.54711e8i 1.28834i 0.764883 + 0.644170i \(0.222797\pi\)
−0.764883 + 0.644170i \(0.777203\pi\)
\(294\) 6.46942e8i 1.48474i
\(295\) −4.48855e7 −0.101796
\(296\) −3.71309e8 −0.832176
\(297\) 2.18270e9i 4.83444i
\(298\) 6.74791e8 1.47711
\(299\) 0 0
\(300\) 1.72985e8 0.369900
\(301\) 165064.i 0 0.000348875i
\(302\) 9.58906e7 0.200333
\(303\) 2.39871e7 0.0495368
\(304\) 1.37120e8i 0.279925i
\(305\) − 5.35164e8i − 1.08003i
\(306\) 1.14998e9i 2.29437i
\(307\) − 7.96114e8i − 1.57033i −0.619286 0.785165i \(-0.712578\pi\)
0.619286 0.785165i \(-0.287422\pi\)
\(308\) −1.59428e7 −0.0310913
\(309\) 2.22498e8 0.429014
\(310\) − 6.89662e7i − 0.131483i
\(311\) 4.47275e8 0.843167 0.421583 0.906790i \(-0.361474\pi\)
0.421583 + 0.906790i \(0.361474\pi\)
\(312\) 0 0
\(313\) 4.58943e8 0.845967 0.422984 0.906137i \(-0.360983\pi\)
0.422984 + 0.906137i \(0.360983\pi\)
\(314\) − 7.22893e8i − 1.31771i
\(315\) 4.64367e7 0.0837095
\(316\) 2.00016e8 0.356583
\(317\) 9.03574e8i 1.59315i 0.604541 + 0.796574i \(0.293357\pi\)
−0.604541 + 0.796574i \(0.706643\pi\)
\(318\) − 8.67973e8i − 1.51360i
\(319\) − 1.06513e9i − 1.83712i
\(320\) 4.17544e8i 0.712323i
\(321\) −9.86522e8 −1.66471
\(322\) 3.01017e7 0.0502453
\(323\) − 3.92965e8i − 0.648851i
\(324\) 6.21016e8 1.01437
\(325\) 0 0
\(326\) 7.43305e8 1.18824
\(327\) − 6.00701e8i − 0.950038i
\(328\) 6.30662e8 0.986821
\(329\) 3.71339e7 0.0574890
\(330\) 1.13577e9i 1.73977i
\(331\) 6.97509e8i 1.05719i 0.848875 + 0.528593i \(0.177280\pi\)
−0.848875 + 0.528593i \(0.822720\pi\)
\(332\) 8.96147e7i 0.134399i
\(333\) 1.29027e9i 1.91481i
\(334\) −1.37958e8 −0.202598
\(335\) 4.65189e8 0.676041
\(336\) − 3.18439e7i − 0.0457972i
\(337\) 1.04121e9 1.48195 0.740976 0.671532i \(-0.234363\pi\)
0.740976 + 0.671532i \(0.234363\pi\)
\(338\) 0 0
\(339\) −1.33711e8 −0.186410
\(340\) − 2.08785e8i − 0.288086i
\(341\) 3.06139e8 0.418098
\(342\) 8.28587e8 1.12007
\(343\) 7.34526e7i 0.0982829i
\(344\) 5.82246e6i 0.00771173i
\(345\) 1.24621e9i 1.63390i
\(346\) − 2.04228e7i − 0.0265063i
\(347\) −1.03087e9 −1.32450 −0.662251 0.749282i \(-0.730399\pi\)
−0.662251 + 0.749282i \(0.730399\pi\)
\(348\) −5.77835e8 −0.734981
\(349\) 1.57566e9i 1.98415i 0.125660 + 0.992073i \(0.459895\pi\)
−0.125660 + 0.992073i \(0.540105\pi\)
\(350\) −1.68778e7 −0.0210416
\(351\) 0 0
\(352\) −9.73592e8 −1.18981
\(353\) − 2.54911e8i − 0.308445i −0.988036 0.154223i \(-0.950713\pi\)
0.988036 0.154223i \(-0.0492873\pi\)
\(354\) 1.85999e8 0.222843
\(355\) −3.08451e8 −0.365921
\(356\) 3.19689e8i 0.375537i
\(357\) 9.12600e7i 0.106155i
\(358\) − 3.03936e8i − 0.350099i
\(359\) − 1.10775e8i − 0.126360i −0.998002 0.0631800i \(-0.979876\pi\)
0.998002 0.0631800i \(-0.0201242\pi\)
\(360\) 1.63801e9 1.85036
\(361\) 6.10731e8 0.683242
\(362\) − 1.97122e8i − 0.218401i
\(363\) −3.33611e9 −3.66073
\(364\) 0 0
\(365\) 1.69336e8 0.182274
\(366\) 2.21764e9i 2.36432i
\(367\) −7.95882e8 −0.840461 −0.420230 0.907417i \(-0.638051\pi\)
−0.420230 + 0.907417i \(0.638051\pi\)
\(368\) 6.10593e8 0.638682
\(369\) − 2.19150e9i − 2.27065i
\(370\) 4.03100e8i 0.413721i
\(371\) − 4.92143e7i − 0.0500360i
\(372\) − 1.66080e8i − 0.167270i
\(373\) 2.92736e8 0.292075 0.146038 0.989279i \(-0.453348\pi\)
0.146038 + 0.989279i \(0.453348\pi\)
\(374\) −1.59479e9 −1.57635
\(375\) − 1.99810e9i − 1.95663i
\(376\) 1.30986e9 1.27077
\(377\) 0 0
\(378\) −1.15532e8 −0.110022
\(379\) − 5.27578e8i − 0.497794i −0.968530 0.248897i \(-0.919932\pi\)
0.968530 0.248897i \(-0.0800681\pi\)
\(380\) −1.50435e8 −0.140639
\(381\) −2.35235e9 −2.17903
\(382\) − 1.18551e9i − 1.08814i
\(383\) − 1.02879e8i − 0.0935686i −0.998905 0.0467843i \(-0.985103\pi\)
0.998905 0.0467843i \(-0.0148973\pi\)
\(384\) − 2.93199e8i − 0.264243i
\(385\) 6.43985e7i 0.0575126i
\(386\) 6.71623e7 0.0594388
\(387\) 2.02326e7 0.0177445
\(388\) − 4.85062e8i − 0.421586i
\(389\) −8.52263e8 −0.734091 −0.367046 0.930203i \(-0.619631\pi\)
−0.367046 + 0.930203i \(0.619631\pi\)
\(390\) 0 0
\(391\) −1.74987e9 −1.48043
\(392\) 1.29391e9i 1.08494i
\(393\) 1.76607e9 1.46769
\(394\) 4.22760e8 0.348223
\(395\) − 8.07933e8i − 0.659608i
\(396\) 1.95418e9i 1.58136i
\(397\) − 1.28264e9i − 1.02881i −0.857547 0.514406i \(-0.828012\pi\)
0.857547 0.514406i \(-0.171988\pi\)
\(398\) − 1.16458e8i − 0.0925934i
\(399\) 6.57551e7 0.0518232
\(400\) −3.42356e8 −0.267466
\(401\) − 5.51461e8i − 0.427080i −0.976934 0.213540i \(-0.931501\pi\)
0.976934 0.213540i \(-0.0684994\pi\)
\(402\) −1.92767e9 −1.47993
\(403\) 0 0
\(404\) 1.28939e7 0.00972859
\(405\) − 2.50849e9i − 1.87638i
\(406\) 5.63782e7 0.0418090
\(407\) −1.78935e9 −1.31557
\(408\) 3.21910e9i 2.34652i
\(409\) − 1.82547e9i − 1.31930i −0.751573 0.659650i \(-0.770705\pi\)
0.751573 0.659650i \(-0.229295\pi\)
\(410\) − 6.84658e8i − 0.490603i
\(411\) − 2.37646e9i − 1.68844i
\(412\) 1.19601e8 0.0842545
\(413\) 1.05462e7 0.00736665
\(414\) − 3.68969e9i − 2.55558i
\(415\) 3.61984e8 0.248611
\(416\) 0 0
\(417\) −8.04847e8 −0.543547
\(418\) 1.14909e9i 0.769547i
\(419\) −2.20929e9 −1.46725 −0.733626 0.679554i \(-0.762173\pi\)
−0.733626 + 0.679554i \(0.762173\pi\)
\(420\) 3.49361e7 0.0230092
\(421\) 1.35671e9i 0.886133i 0.896489 + 0.443066i \(0.146109\pi\)
−0.896489 + 0.443066i \(0.853891\pi\)
\(422\) 1.66677e7i 0.0107965i
\(423\) − 4.55166e9i − 2.92401i
\(424\) − 1.73599e9i − 1.10603i
\(425\) 9.81143e8 0.619970
\(426\) 1.27817e9 0.801043
\(427\) 1.25741e8i 0.0781588i
\(428\) −5.30291e8 −0.326935
\(429\) 0 0
\(430\) 6.32097e6 0.00383393
\(431\) − 2.84335e9i − 1.71064i −0.518096 0.855322i \(-0.673359\pi\)
0.518096 0.855322i \(-0.326641\pi\)
\(432\) −2.34348e9 −1.39852
\(433\) 7.55617e8 0.447295 0.223648 0.974670i \(-0.428204\pi\)
0.223648 + 0.974670i \(0.428204\pi\)
\(434\) 1.62041e7i 0.00951505i
\(435\) 2.33407e9i 1.35957i
\(436\) − 3.22898e8i − 0.186579i
\(437\) 1.26082e9i 0.722719i
\(438\) −7.01704e8 −0.399020
\(439\) 3.94623e8 0.222616 0.111308 0.993786i \(-0.464496\pi\)
0.111308 + 0.993786i \(0.464496\pi\)
\(440\) 2.27159e9i 1.27129i
\(441\) 4.49625e9 2.49641
\(442\) 0 0
\(443\) 1.96580e9 1.07430 0.537150 0.843487i \(-0.319501\pi\)
0.537150 + 0.843487i \(0.319501\pi\)
\(444\) 9.70720e8i 0.526325i
\(445\) 1.29133e9 0.694668
\(446\) 1.43984e9 0.768494
\(447\) − 6.56387e9i − 3.47603i
\(448\) − 9.81049e7i − 0.0515487i
\(449\) 2.72494e9i 1.42068i 0.703860 + 0.710339i \(0.251458\pi\)
−0.703860 + 0.710339i \(0.748542\pi\)
\(450\) 2.06879e9i 1.07022i
\(451\) 3.03918e9 1.56005
\(452\) −7.18747e7 −0.0366093
\(453\) − 9.32753e8i − 0.471436i
\(454\) −2.53898e9 −1.27339
\(455\) 0 0
\(456\) 2.31944e9 1.14553
\(457\) − 1.27696e9i − 0.625850i −0.949778 0.312925i \(-0.898691\pi\)
0.949778 0.312925i \(-0.101309\pi\)
\(458\) 6.41444e7 0.0311982
\(459\) 6.71609e9 3.24169
\(460\) 6.69884e8i 0.320883i
\(461\) 4.87491e8i 0.231746i 0.993264 + 0.115873i \(0.0369666\pi\)
−0.993264 + 0.115873i \(0.963033\pi\)
\(462\) − 2.66857e8i − 0.125902i
\(463\) 2.46579e9i 1.15458i 0.816541 + 0.577288i \(0.195889\pi\)
−0.816541 + 0.577288i \(0.804111\pi\)
\(464\) 1.14360e9 0.531447
\(465\) −6.70853e8 −0.309415
\(466\) − 7.91887e7i − 0.0362504i
\(467\) −2.40297e9 −1.09179 −0.545894 0.837854i \(-0.683810\pi\)
−0.545894 + 0.837854i \(0.683810\pi\)
\(468\) 0 0
\(469\) −1.09300e8 −0.0489231
\(470\) − 1.42201e9i − 0.631771i
\(471\) −7.03177e9 −3.10093
\(472\) 3.72006e8 0.162837
\(473\) 2.80586e7i 0.0121913i
\(474\) 3.34795e9i 1.44396i
\(475\) − 7.06937e8i − 0.302659i
\(476\) 4.90555e7i 0.0208480i
\(477\) −6.03241e9 −2.54493
\(478\) 1.21905e8 0.0510531
\(479\) 4.04966e9i 1.68362i 0.539772 + 0.841811i \(0.318510\pi\)
−0.539772 + 0.841811i \(0.681490\pi\)
\(480\) 2.13347e9 0.880525
\(481\) 0 0
\(482\) 2.20457e9 0.896725
\(483\) − 2.92807e8i − 0.118241i
\(484\) −1.79328e9 −0.718934
\(485\) −1.95933e9 −0.779849
\(486\) 4.73588e9i 1.87143i
\(487\) − 8.24903e8i − 0.323632i −0.986821 0.161816i \(-0.948265\pi\)
0.986821 0.161816i \(-0.0517351\pi\)
\(488\) 4.43537e9i 1.72767i
\(489\) − 7.23032e9i − 2.79625i
\(490\) 1.40470e9 0.539381
\(491\) −3.20090e9 −1.22036 −0.610178 0.792264i \(-0.708902\pi\)
−0.610178 + 0.792264i \(0.708902\pi\)
\(492\) − 1.64875e9i − 0.624133i
\(493\) −3.27738e9 −1.23186
\(494\) 0 0
\(495\) 7.89360e9 2.92521
\(496\) 3.28690e8i 0.120949i
\(497\) 7.24728e7 0.0264806
\(498\) −1.50000e9 −0.544239
\(499\) 4.61602e9i 1.66309i 0.555457 + 0.831545i \(0.312543\pi\)
−0.555457 + 0.831545i \(0.687457\pi\)
\(500\) − 1.07405e9i − 0.384265i
\(501\) 1.34196e9i 0.476768i
\(502\) 1.11917e9i 0.394849i
\(503\) −2.24669e9 −0.787145 −0.393573 0.919294i \(-0.628761\pi\)
−0.393573 + 0.919294i \(0.628761\pi\)
\(504\) −3.84862e8 −0.133905
\(505\) − 5.20828e7i − 0.0179959i
\(506\) 5.11687e9 1.75581
\(507\) 0 0
\(508\) −1.26447e9 −0.427942
\(509\) 4.39689e9i 1.47786i 0.673783 + 0.738930i \(0.264668\pi\)
−0.673783 + 0.738930i \(0.735332\pi\)
\(510\) 3.49472e9 1.16659
\(511\) −3.97868e7 −0.0131906
\(512\) − 2.68809e9i − 0.885114i
\(513\) − 4.83910e9i − 1.58254i
\(514\) − 1.39393e9i − 0.452762i
\(515\) − 4.83107e8i − 0.155854i
\(516\) 1.52218e7 0.00487743
\(517\) 6.31225e9 2.00894
\(518\) − 9.47113e7i − 0.0299397i
\(519\) −1.98658e8 −0.0623765
\(520\) 0 0
\(521\) −5.64598e8 −0.174907 −0.0874535 0.996169i \(-0.527873\pi\)
−0.0874535 + 0.996169i \(0.527873\pi\)
\(522\) − 6.91052e9i − 2.12649i
\(523\) −8.96882e8 −0.274144 −0.137072 0.990561i \(-0.543769\pi\)
−0.137072 + 0.990561i \(0.543769\pi\)
\(524\) 9.49326e8 0.288241
\(525\) 1.64175e8i 0.0495165i
\(526\) 1.64510e9i 0.492882i
\(527\) − 9.41977e8i − 0.280352i
\(528\) − 5.41303e9i − 1.60037i
\(529\) 2.20962e9 0.648966
\(530\) −1.88462e9 −0.549867
\(531\) − 1.29269e9i − 0.374683i
\(532\) 3.53457e7 0.0101776
\(533\) 0 0
\(534\) −5.35107e9 −1.52071
\(535\) 2.14202e9i 0.604764i
\(536\) −3.85543e9 −1.08142
\(537\) −2.95646e9 −0.823878
\(538\) − 5.32926e9i − 1.47546i
\(539\) 6.23540e9i 1.71516i
\(540\) − 2.57105e9i − 0.702639i
\(541\) 5.09067e9i 1.38224i 0.722738 + 0.691122i \(0.242883\pi\)
−0.722738 + 0.691122i \(0.757117\pi\)
\(542\) 2.63096e9 0.709769
\(543\) −1.91746e9 −0.513956
\(544\) 2.99571e9i 0.797817i
\(545\) −1.30429e9 −0.345134
\(546\) 0 0
\(547\) −6.55393e9 −1.71217 −0.856083 0.516838i \(-0.827109\pi\)
−0.856083 + 0.516838i \(0.827109\pi\)
\(548\) − 1.27743e9i − 0.331594i
\(549\) 1.54126e10 3.97532
\(550\) −2.86900e9 −0.735294
\(551\) 2.36143e9i 0.601374i
\(552\) − 1.03285e10i − 2.61366i
\(553\) 1.89830e8i 0.0477338i
\(554\) 4.61291e9i 1.15263i
\(555\) 3.92106e9 0.973595
\(556\) −4.32634e8 −0.106748
\(557\) 5.25472e9i 1.28842i 0.764850 + 0.644208i \(0.222813\pi\)
−0.764850 + 0.644208i \(0.777187\pi\)
\(558\) 1.98621e9 0.483955
\(559\) 0 0
\(560\) −6.91422e7 −0.0166374
\(561\) 1.55129e10i 3.70957i
\(562\) 2.19201e8 0.0520913
\(563\) 8.12322e9 1.91844 0.959221 0.282657i \(-0.0912158\pi\)
0.959221 + 0.282657i \(0.0912158\pi\)
\(564\) − 3.42439e9i − 0.803722i
\(565\) 2.90326e8i 0.0677199i
\(566\) 1.22549e9i 0.284088i
\(567\) 5.89388e8i 0.135788i
\(568\) 2.55640e9 0.585343
\(569\) 3.04502e9 0.692943 0.346471 0.938061i \(-0.387380\pi\)
0.346471 + 0.938061i \(0.387380\pi\)
\(570\) − 2.51803e9i − 0.569507i
\(571\) 4.99500e8 0.112282 0.0561409 0.998423i \(-0.482120\pi\)
0.0561409 + 0.998423i \(0.482120\pi\)
\(572\) 0 0
\(573\) −1.15318e10 −2.56067
\(574\) 1.60865e8i 0.0355035i
\(575\) −3.14799e9 −0.690551
\(576\) −1.20251e10 −2.62187
\(577\) − 5.43954e9i − 1.17882i −0.807835 0.589409i \(-0.799361\pi\)
0.807835 0.589409i \(-0.200639\pi\)
\(578\) 1.21510e9i 0.261736i
\(579\) − 6.53306e8i − 0.139875i
\(580\) 1.25464e9i 0.267007i
\(581\) −8.50507e7 −0.0179912
\(582\) 8.11914e9 1.70718
\(583\) − 8.36575e9i − 1.74850i
\(584\) −1.40344e9 −0.291574
\(585\) 0 0
\(586\) −4.99100e9 −1.02458
\(587\) − 8.19904e9i − 1.67313i −0.547868 0.836565i \(-0.684560\pi\)
0.547868 0.836565i \(-0.315440\pi\)
\(588\) 3.38270e9 0.686187
\(589\) −6.78718e8 −0.136863
\(590\) − 4.03856e8i − 0.0809552i
\(591\) − 4.11230e9i − 0.819462i
\(592\) − 1.92116e9i − 0.380572i
\(593\) 1.83780e9i 0.361915i 0.983491 + 0.180957i \(0.0579196\pi\)
−0.983491 + 0.180957i \(0.942080\pi\)
\(594\) −1.96388e10 −3.84470
\(595\) 1.98152e8 0.0385645
\(596\) − 3.52831e9i − 0.682661i
\(597\) −1.13282e9 −0.217897
\(598\) 0 0
\(599\) 5.00835e9 0.952139 0.476070 0.879408i \(-0.342061\pi\)
0.476070 + 0.879408i \(0.342061\pi\)
\(600\) 5.79112e9i 1.09454i
\(601\) 5.99631e9 1.12674 0.563370 0.826205i \(-0.309505\pi\)
0.563370 + 0.826205i \(0.309505\pi\)
\(602\) −1.48516e6 −0.000277450 0
\(603\) 1.33973e10i 2.48833i
\(604\) − 5.01388e8i − 0.0925858i
\(605\) 7.24365e9i 1.32988i
\(606\) 2.15823e8i 0.0393952i
\(607\) 4.18428e8 0.0759382 0.0379691 0.999279i \(-0.487911\pi\)
0.0379691 + 0.999279i \(0.487911\pi\)
\(608\) 2.15848e9 0.389480
\(609\) − 5.48406e8i − 0.0983879i
\(610\) 4.81512e9 0.858920
\(611\) 0 0
\(612\) 6.01295e9 1.06037
\(613\) − 1.22737e9i − 0.215210i −0.994194 0.107605i \(-0.965682\pi\)
0.994194 0.107605i \(-0.0343183\pi\)
\(614\) 7.16301e9 1.24884
\(615\) −6.65985e9 −1.15452
\(616\) − 5.33727e8i − 0.0919997i
\(617\) − 3.48381e9i − 0.597113i −0.954392 0.298557i \(-0.903495\pi\)
0.954392 0.298557i \(-0.0965051\pi\)
\(618\) 2.00192e9i 0.341183i
\(619\) − 2.85160e9i − 0.483250i −0.970370 0.241625i \(-0.922320\pi\)
0.970370 0.241625i \(-0.0776803\pi\)
\(620\) −3.60607e8 −0.0607664
\(621\) −2.15485e10 −3.61074
\(622\) 4.02435e9i 0.670546i
\(623\) −3.03407e8 −0.0502710
\(624\) 0 0
\(625\) −1.05622e9 −0.173051
\(626\) 4.12933e9i 0.672774i
\(627\) 1.11775e10 1.81095
\(628\) −3.77983e9 −0.608994
\(629\) 5.50576e9i 0.882145i
\(630\) 4.17813e8i 0.0665717i
\(631\) 7.87572e9i 1.24792i 0.781455 + 0.623961i \(0.214478\pi\)
−0.781455 + 0.623961i \(0.785522\pi\)
\(632\) 6.69605e9i 1.05514i
\(633\) 1.62131e8 0.0254069
\(634\) −8.12988e9 −1.26699
\(635\) 5.10761e9i 0.791608i
\(636\) −4.53841e9 −0.699527
\(637\) 0 0
\(638\) 9.58352e9 1.46101
\(639\) − 8.88330e9i − 1.34686i
\(640\) −6.36619e8 −0.0959953
\(641\) 2.81246e9 0.421777 0.210889 0.977510i \(-0.432364\pi\)
0.210889 + 0.977510i \(0.432364\pi\)
\(642\) − 8.87621e9i − 1.32390i
\(643\) 9.76948e9i 1.44922i 0.689161 + 0.724608i \(0.257979\pi\)
−0.689161 + 0.724608i \(0.742021\pi\)
\(644\) − 1.57394e8i − 0.0232214i
\(645\) − 6.14857e7i − 0.00902226i
\(646\) 3.53569e9 0.516013
\(647\) 7.55684e9 1.09692 0.548460 0.836177i \(-0.315214\pi\)
0.548460 + 0.836177i \(0.315214\pi\)
\(648\) 2.07901e10i 3.00153i
\(649\) 1.79271e9 0.257426
\(650\) 0 0
\(651\) 1.57622e8 0.0223915
\(652\) − 3.88656e9i − 0.549159i
\(653\) −1.11232e10 −1.56326 −0.781632 0.623740i \(-0.785613\pi\)
−0.781632 + 0.623740i \(0.785613\pi\)
\(654\) 5.40479e9 0.755538
\(655\) − 3.83464e9i − 0.533188i
\(656\) 3.26305e9i 0.451295i
\(657\) 4.87684e9i 0.670903i
\(658\) 3.34111e8i 0.0457194i
\(659\) 6.76599e9 0.920943 0.460471 0.887675i \(-0.347680\pi\)
0.460471 + 0.887675i \(0.347680\pi\)
\(660\) 5.93866e9 0.804052
\(661\) − 3.13975e9i − 0.422854i −0.977394 0.211427i \(-0.932189\pi\)
0.977394 0.211427i \(-0.0678110\pi\)
\(662\) −6.27582e9 −0.840751
\(663\) 0 0
\(664\) −3.00008e9 −0.397689
\(665\) − 1.42773e8i − 0.0188265i
\(666\) −1.16092e10 −1.52280
\(667\) 1.05154e10 1.37210
\(668\) 7.21350e8i 0.0936329i
\(669\) − 1.40057e10i − 1.80847i
\(670\) 4.18553e9i 0.537636i
\(671\) 2.13742e10i 2.73124i
\(672\) −5.01273e8 −0.0637210
\(673\) 8.83621e9 1.11741 0.558706 0.829366i \(-0.311298\pi\)
0.558706 + 0.829366i \(0.311298\pi\)
\(674\) 9.36826e9i 1.17855i
\(675\) 1.20821e10 1.51210
\(676\) 0 0
\(677\) 9.80819e9 1.21487 0.607433 0.794371i \(-0.292199\pi\)
0.607433 + 0.794371i \(0.292199\pi\)
\(678\) − 1.20306e9i − 0.148247i
\(679\) 4.60358e8 0.0564354
\(680\) 6.98960e9 0.852454
\(681\) 2.46973e10i 2.99664i
\(682\) 2.75448e9i 0.332501i
\(683\) 2.38753e9i 0.286732i 0.989670 + 0.143366i \(0.0457927\pi\)
−0.989670 + 0.143366i \(0.954207\pi\)
\(684\) − 4.33248e9i − 0.517654i
\(685\) −5.15998e9 −0.613382
\(686\) −6.60888e8 −0.0781616
\(687\) − 6.23949e8i − 0.0734177i
\(688\) −3.01255e7 −0.00352675
\(689\) 0 0
\(690\) −1.12128e10 −1.29939
\(691\) 1.48851e10i 1.71624i 0.513445 + 0.858122i \(0.328369\pi\)
−0.513445 + 0.858122i \(0.671631\pi\)
\(692\) −1.06786e8 −0.0122502
\(693\) −1.85466e9 −0.211689
\(694\) − 9.27526e9i − 1.05334i
\(695\) 1.74755e9i 0.197462i
\(696\) − 1.93445e10i − 2.17483i
\(697\) − 9.35143e9i − 1.04608i
\(698\) −1.41770e10 −1.57794
\(699\) −7.70289e8 −0.0853068
\(700\) 8.82500e7i 0.00972460i
\(701\) 1.19283e10 1.30787 0.653935 0.756551i \(-0.273117\pi\)
0.653935 + 0.756551i \(0.273117\pi\)
\(702\) 0 0
\(703\) 3.96703e9 0.430648
\(704\) − 1.66765e10i − 1.80136i
\(705\) −1.38322e10 −1.48673
\(706\) 2.29356e9 0.245298
\(707\) 1.22372e7i 0.00130231i
\(708\) − 9.72541e8i − 0.102989i
\(709\) − 5.88988e9i − 0.620647i −0.950631 0.310324i \(-0.899563\pi\)
0.950631 0.310324i \(-0.100437\pi\)
\(710\) − 2.77528e9i − 0.291006i
\(711\) 2.32683e10 2.42784
\(712\) −1.07024e10 −1.11122
\(713\) 3.02233e9i 0.312268i
\(714\) −8.21109e8 −0.0844223
\(715\) 0 0
\(716\) −1.58921e9 −0.161802
\(717\) − 1.18580e9i − 0.120142i
\(718\) 9.96691e8 0.100490
\(719\) −7.36634e9 −0.739095 −0.369548 0.929212i \(-0.620487\pi\)
−0.369548 + 0.929212i \(0.620487\pi\)
\(720\) 8.47506e9i 0.846212i
\(721\) 1.13509e8i 0.0112787i
\(722\) 5.49503e9i 0.543363i
\(723\) − 2.14444e10i − 2.11023i
\(724\) −1.03070e9 −0.100936
\(725\) −5.89595e9 −0.574607
\(726\) − 3.00166e10i − 2.91127i
\(727\) −1.60000e10 −1.54437 −0.772183 0.635401i \(-0.780835\pi\)
−0.772183 + 0.635401i \(0.780835\pi\)
\(728\) 0 0
\(729\) 1.71981e10 1.64412
\(730\) 1.52360e9i 0.144958i
\(731\) 8.63352e7 0.00817480
\(732\) 1.15955e10 1.09270
\(733\) − 1.72398e10i − 1.61685i −0.588600 0.808424i \(-0.700321\pi\)
0.588600 0.808424i \(-0.299679\pi\)
\(734\) − 7.16093e9i − 0.668395i
\(735\) − 1.36638e10i − 1.26931i
\(736\) − 9.61169e9i − 0.888643i
\(737\) −1.85794e10 −1.70961
\(738\) 1.97180e10 1.80578
\(739\) − 1.45339e10i − 1.32473i −0.749181 0.662366i \(-0.769553\pi\)
0.749181 0.662366i \(-0.230447\pi\)
\(740\) 2.10771e9 0.191205
\(741\) 0 0
\(742\) 4.42804e8 0.0397922
\(743\) 5.50310e9i 0.492206i 0.969244 + 0.246103i \(0.0791501\pi\)
−0.969244 + 0.246103i \(0.920850\pi\)
\(744\) 5.55995e9 0.494955
\(745\) −1.42520e10 −1.26279
\(746\) 2.63388e9i 0.232279i
\(747\) 1.04250e10i 0.915072i
\(748\) 8.33876e9i 0.728527i
\(749\) − 5.03283e8i − 0.0437649i
\(750\) 1.79779e10 1.55605
\(751\) 1.82503e10 1.57228 0.786141 0.618047i \(-0.212076\pi\)
0.786141 + 0.618047i \(0.212076\pi\)
\(752\) 6.77722e9i 0.581152i
\(753\) 1.08864e10 0.929186
\(754\) 0 0
\(755\) −2.02527e9 −0.171265
\(756\) 6.04086e8i 0.0508479i
\(757\) 2.26365e9 0.189659 0.0948297 0.995494i \(-0.469769\pi\)
0.0948297 + 0.995494i \(0.469769\pi\)
\(758\) 4.74687e9 0.395881
\(759\) − 4.97731e10i − 4.13189i
\(760\) − 5.03618e9i − 0.416153i
\(761\) − 5.92208e9i − 0.487111i −0.969887 0.243555i \(-0.921686\pi\)
0.969887 0.243555i \(-0.0783138\pi\)
\(762\) − 2.11652e10i − 1.73292i
\(763\) 3.06453e8 0.0249763
\(764\) −6.19873e9 −0.502893
\(765\) − 2.42883e10i − 1.96147i
\(766\) 9.25649e8 0.0744125
\(767\) 0 0
\(768\) −2.19767e10 −1.75064
\(769\) 1.44521e10i 1.14601i 0.819551 + 0.573007i \(0.194223\pi\)
−0.819551 + 0.573007i \(0.805777\pi\)
\(770\) −5.79423e8 −0.0457381
\(771\) −1.35591e10 −1.06547
\(772\) − 3.51175e8i − 0.0274703i
\(773\) 2.39438e10i 1.86451i 0.361796 + 0.932257i \(0.382164\pi\)
−0.361796 + 0.932257i \(0.617836\pi\)
\(774\) 1.82042e8i 0.0141117i
\(775\) − 1.69460e9i − 0.130771i
\(776\) 1.62387e10 1.24748
\(777\) −9.21282e8 −0.0704562
\(778\) − 7.66821e9i − 0.583802i
\(779\) −6.73793e9 −0.510676
\(780\) 0 0
\(781\) 1.23194e10 0.925358
\(782\) − 1.57444e10i − 1.17734i
\(783\) −4.03588e10 −3.00450
\(784\) −6.69472e9 −0.496165
\(785\) 1.52680e10i 1.12652i
\(786\) 1.58902e10i 1.16721i
\(787\) − 5.23881e9i − 0.383108i −0.981482 0.191554i \(-0.938647\pi\)
0.981482 0.191554i \(-0.0613527\pi\)
\(788\) − 2.21051e9i − 0.160935i
\(789\) 1.60024e10 1.15988
\(790\) 7.26935e9 0.524567
\(791\) − 6.82141e7i − 0.00490068i
\(792\) −6.54212e10 −4.67929
\(793\) 0 0
\(794\) 1.15405e10 0.818185
\(795\) 1.83322e10i 1.29398i
\(796\) −6.08932e8 −0.0427930
\(797\) 1.63612e10 1.14475 0.572376 0.819991i \(-0.306022\pi\)
0.572376 + 0.819991i \(0.306022\pi\)
\(798\) 5.91629e8i 0.0412135i
\(799\) − 1.94225e10i − 1.34708i
\(800\) 5.38922e9i 0.372144i
\(801\) 3.71899e10i 2.55689i
\(802\) 4.96175e9 0.339645
\(803\) −6.76321e9 −0.460944
\(804\) 1.00793e10i 0.683967i
\(805\) −6.35767e8 −0.0429549
\(806\) 0 0
\(807\) −5.18391e10 −3.47216
\(808\) 4.31656e8i 0.0287871i
\(809\) −1.34948e10 −0.896080 −0.448040 0.894014i \(-0.647878\pi\)
−0.448040 + 0.894014i \(0.647878\pi\)
\(810\) 2.25701e10 1.49223
\(811\) 2.97924e10i 1.96125i 0.195893 + 0.980625i \(0.437239\pi\)
−0.195893 + 0.980625i \(0.562761\pi\)
\(812\) − 2.94788e8i − 0.0193225i
\(813\) − 2.55921e10i − 1.67028i
\(814\) − 1.60996e10i − 1.04624i
\(815\) −1.56991e10 −1.01583
\(816\) −1.66557e10 −1.07312
\(817\) − 6.22066e7i − 0.00399079i
\(818\) 1.64246e10 1.04920
\(819\) 0 0
\(820\) −3.57991e9 −0.226738
\(821\) − 3.02544e10i − 1.90804i −0.299741 0.954021i \(-0.596900\pi\)
0.299741 0.954021i \(-0.403100\pi\)
\(822\) 2.13822e10 1.34277
\(823\) −2.21462e10 −1.38484 −0.692420 0.721495i \(-0.743455\pi\)
−0.692420 + 0.721495i \(0.743455\pi\)
\(824\) 4.00393e9i 0.249311i
\(825\) 2.79075e10i 1.73034i
\(826\) 9.48890e7i 0.00585849i
\(827\) 1.02462e10i 0.629935i 0.949103 + 0.314967i \(0.101994\pi\)
−0.949103 + 0.314967i \(0.898006\pi\)
\(828\) −1.92925e10 −1.18109
\(829\) −1.42575e10 −0.869164 −0.434582 0.900632i \(-0.643104\pi\)
−0.434582 + 0.900632i \(0.643104\pi\)
\(830\) 3.25694e9i 0.197713i
\(831\) 4.48710e10 2.71245
\(832\) 0 0
\(833\) 1.91861e10 1.15008
\(834\) − 7.24159e9i − 0.432268i
\(835\) 2.91377e9 0.173202
\(836\) 6.00828e9 0.355654
\(837\) − 1.15998e10i − 0.683774i
\(838\) − 1.98781e10i − 1.16686i
\(839\) − 3.22825e10i − 1.88712i −0.331195 0.943562i \(-0.607452\pi\)
0.331195 0.943562i \(-0.392548\pi\)
\(840\) 1.16957e9i 0.0680848i
\(841\) 2.44477e9 0.141727
\(842\) −1.22069e10 −0.704716
\(843\) − 2.13222e9i − 0.122585i
\(844\) 8.71510e7 0.00498969
\(845\) 0 0
\(846\) 4.09534e10 2.32538
\(847\) − 1.70195e9i − 0.0962397i
\(848\) 8.98200e9 0.505810
\(849\) 1.19207e10 0.668535
\(850\) 8.82780e9i 0.493045i
\(851\) − 1.76652e10i − 0.982572i
\(852\) − 6.68325e9i − 0.370211i
\(853\) − 1.14608e10i − 0.632254i −0.948717 0.316127i \(-0.897617\pi\)
0.948717 0.316127i \(-0.102383\pi\)
\(854\) −1.13135e9 −0.0621575
\(855\) −1.75003e10 −0.957557
\(856\) − 1.77528e10i − 0.967407i
\(857\) 5.50942e9 0.299001 0.149501 0.988762i \(-0.452233\pi\)
0.149501 + 0.988762i \(0.452233\pi\)
\(858\) 0 0
\(859\) 1.22212e10 0.657866 0.328933 0.944353i \(-0.393311\pi\)
0.328933 + 0.944353i \(0.393311\pi\)
\(860\) − 3.30508e7i − 0.00177189i
\(861\) 1.56478e9 0.0835492
\(862\) 2.55830e10 1.36043
\(863\) 1.56748e10i 0.830167i 0.909783 + 0.415083i \(0.136248\pi\)
−0.909783 + 0.415083i \(0.863752\pi\)
\(864\) 3.68901e10i 1.94586i
\(865\) 4.31344e8i 0.0226604i
\(866\) 6.79864e9i 0.355721i
\(867\) 1.18196e10 0.615934
\(868\) 8.47273e7 0.00439748
\(869\) 3.22684e10i 1.66805i
\(870\) −2.10007e10 −1.08123
\(871\) 0 0
\(872\) 1.08098e10 0.552091
\(873\) − 5.64280e10i − 2.87042i
\(874\) −1.13442e10 −0.574758
\(875\) 1.01935e9 0.0514394
\(876\) 3.66903e9i 0.184411i
\(877\) − 4.79534e9i − 0.240061i −0.992770 0.120030i \(-0.961701\pi\)
0.992770 0.120030i \(-0.0382992\pi\)
\(878\) 3.55061e9i 0.177040i
\(879\) 4.85487e10i 2.41111i
\(880\) −1.17532e10 −0.581390
\(881\) −1.67020e10 −0.822910 −0.411455 0.911430i \(-0.634979\pi\)
−0.411455 + 0.911430i \(0.634979\pi\)
\(882\) 4.04548e10i 1.98532i
\(883\) −2.90550e10 −1.42023 −0.710115 0.704085i \(-0.751357\pi\)
−0.710115 + 0.704085i \(0.751357\pi\)
\(884\) 0 0
\(885\) −3.92842e9 −0.190509
\(886\) 1.76872e10i 0.854360i
\(887\) 1.87692e10 0.903054 0.451527 0.892258i \(-0.350879\pi\)
0.451527 + 0.892258i \(0.350879\pi\)
\(888\) −3.24973e10 −1.55741
\(889\) − 1.20007e9i − 0.0572863i
\(890\) 1.16187e10i 0.552449i
\(891\) 1.00188e11i 4.74507i
\(892\) − 7.52854e9i − 0.355168i
\(893\) −1.39944e10 −0.657619
\(894\) 5.90582e10 2.76439
\(895\) 6.41933e9i 0.299302i
\(896\) 1.49578e8 0.00694689
\(897\) 0 0
\(898\) −2.45176e10 −1.12982
\(899\) 5.66059e9i 0.259838i
\(900\) 1.08172e10 0.494613
\(901\) −2.57411e10 −1.17244
\(902\) 2.73449e10i 1.24066i
\(903\) 1.44465e7i 0 0.000652914i
\(904\) − 2.40618e9i − 0.108328i
\(905\) 4.16335e9i 0.186712i
\(906\) 8.39242e9 0.374920
\(907\) −1.56436e10 −0.696162 −0.348081 0.937464i \(-0.613167\pi\)
−0.348081 + 0.937464i \(0.613167\pi\)
\(908\) 1.32757e10i 0.588513i
\(909\) 1.49997e9 0.0662383
\(910\) 0 0
\(911\) 2.04341e10 0.895450 0.447725 0.894171i \(-0.352234\pi\)
0.447725 + 0.894171i \(0.352234\pi\)
\(912\) 1.20008e10i 0.523877i
\(913\) −1.44574e10 −0.628700
\(914\) 1.14894e10 0.497721
\(915\) − 4.68380e10i − 2.02127i
\(916\) − 3.35395e8i − 0.0144186i
\(917\) 9.00977e8i 0.0385852i
\(918\) 6.04278e10i 2.57803i
\(919\) −1.70846e10 −0.726108 −0.363054 0.931768i \(-0.618266\pi\)
−0.363054 + 0.931768i \(0.618266\pi\)
\(920\) −2.24261e10 −0.949501
\(921\) − 6.96765e10i − 2.93885i
\(922\) −4.38618e9 −0.184301
\(923\) 0 0
\(924\) −1.39533e9 −0.0581869
\(925\) 9.90477e9i 0.411479i
\(926\) −2.21859e10 −0.918201
\(927\) 1.39133e10 0.573657
\(928\) − 1.80020e10i − 0.739440i
\(929\) − 2.58067e9i − 0.105603i −0.998605 0.0528017i \(-0.983185\pi\)
0.998605 0.0528017i \(-0.0168151\pi\)
\(930\) − 6.03598e9i − 0.246069i
\(931\) − 1.38240e10i − 0.561450i
\(932\) −4.14058e8 −0.0167535
\(933\) 3.91459e10 1.57798
\(934\) − 2.16206e10i − 0.868268i
\(935\) 3.36830e10 1.34763
\(936\) 0 0
\(937\) −5.01652e9 −0.199211 −0.0996057 0.995027i \(-0.531758\pi\)
−0.0996057 + 0.995027i \(0.531758\pi\)
\(938\) − 9.83420e8i − 0.0389071i
\(939\) 4.01671e10 1.58322
\(940\) −7.43532e9 −0.291980
\(941\) 2.55661e10i 1.00023i 0.865958 + 0.500116i \(0.166709\pi\)
−0.865958 + 0.500116i \(0.833291\pi\)
\(942\) − 6.32681e10i − 2.46608i
\(943\) 3.00040e10i 1.16517i
\(944\) 1.92476e9i 0.0744689i
\(945\) 2.44011e9 0.0940584
\(946\) −2.52456e8 −0.00969543
\(947\) 3.77249e10i 1.44345i 0.692178 + 0.721727i \(0.256651\pi\)
−0.692178 + 0.721727i \(0.743349\pi\)
\(948\) 1.75056e10 0.667341
\(949\) 0 0
\(950\) 6.36065e9 0.240696
\(951\) 7.90815e10i 2.98156i
\(952\) −1.64226e9 −0.0616895
\(953\) −1.31880e10 −0.493578 −0.246789 0.969069i \(-0.579375\pi\)
−0.246789 + 0.969069i \(0.579375\pi\)
\(954\) − 5.42764e10i − 2.02391i
\(955\) 2.50387e10i 0.930252i
\(956\) − 6.37408e8i − 0.0235947i
\(957\) − 9.32214e10i − 3.43814i
\(958\) −3.64367e10 −1.33894
\(959\) 1.21237e9 0.0443886
\(960\) 3.65437e10i 1.33310i
\(961\) 2.58857e10 0.940865
\(962\) 0 0
\(963\) −6.16896e10 −2.22597
\(964\) − 1.15271e10i − 0.414431i
\(965\) −1.41851e9 −0.0508145
\(966\) 2.63452e9 0.0940333
\(967\) 2.35452e10i 0.837354i 0.908135 + 0.418677i \(0.137506\pi\)
−0.908135 + 0.418677i \(0.862494\pi\)
\(968\) − 6.00345e10i − 2.12734i
\(969\) − 3.43926e10i − 1.21432i
\(970\) − 1.76290e10i − 0.620192i
\(971\) −2.74435e9 −0.0961994 −0.0480997 0.998843i \(-0.515317\pi\)
−0.0480997 + 0.998843i \(0.515317\pi\)
\(972\) 2.47627e10 0.864902
\(973\) − 4.10600e8i − 0.0142897i
\(974\) 7.42204e9 0.257375
\(975\) 0 0
\(976\) −2.29487e10 −0.790102
\(977\) − 2.58483e9i − 0.0886750i −0.999017 0.0443375i \(-0.985882\pi\)
0.999017 0.0443375i \(-0.0141177\pi\)
\(978\) 6.50546e10 2.22378
\(979\) −5.15750e10 −1.75671
\(980\) − 7.34480e9i − 0.249281i
\(981\) − 3.75633e10i − 1.27035i
\(982\) − 2.88000e10i − 0.970515i
\(983\) 4.00140e8i 0.0134361i 0.999977 + 0.00671807i \(0.00213845\pi\)
−0.999977 + 0.00671807i \(0.997862\pi\)
\(984\) 5.51960e10 1.84682
\(985\) −8.92898e9 −0.297697
\(986\) − 2.94881e10i − 0.979665i
\(987\) 3.24999e9 0.107590
\(988\) 0 0
\(989\) −2.77006e8 −0.00910545
\(990\) 7.10224e10i 2.32633i
\(991\) 3.08196e10 1.00593 0.502967 0.864305i \(-0.332242\pi\)
0.502967 + 0.864305i \(0.332242\pi\)
\(992\) 5.17410e9 0.168284
\(993\) 6.10465e10i 1.97851i
\(994\) 6.52072e8i 0.0210593i
\(995\) 2.45968e9i 0.0791585i
\(996\) 7.84315e9i 0.251526i
\(997\) −5.01181e8 −0.0160163 −0.00800814 0.999968i \(-0.502549\pi\)
−0.00800814 + 0.999968i \(0.502549\pi\)
\(998\) −4.15325e10 −1.32261
\(999\) 6.77998e10i 2.15154i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.f.168.29 42
13.5 odd 4 169.8.a.h.1.16 21
13.8 odd 4 169.8.a.i.1.6 yes 21
13.12 even 2 inner 169.8.b.f.168.14 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.16 21 13.5 odd 4
169.8.a.i.1.6 yes 21 13.8 odd 4
169.8.b.f.168.14 42 13.12 even 2 inner
169.8.b.f.168.29 42 1.1 even 1 trivial