Properties

Label 169.8.a.i.1.6
Level $169$
Weight $8$
Character 169.1
Self dual yes
Analytic conductor $52.793$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,8,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.99747 q^{2} +87.5208 q^{3} -47.0455 q^{4} +190.033 q^{5} -787.466 q^{6} +44.6495 q^{7} +1574.97 q^{8} +5472.89 q^{9} -1709.81 q^{10} +7589.80 q^{11} -4117.46 q^{12} -401.733 q^{14} +16631.8 q^{15} -8148.89 q^{16} -23353.5 q^{17} -49242.1 q^{18} +16826.8 q^{19} -8940.18 q^{20} +3907.76 q^{21} -68289.0 q^{22} +74929.6 q^{23} +137842. q^{24} -42012.6 q^{25} +287583. q^{27} -2100.56 q^{28} -140338. q^{29} -149644. q^{30} +40335.6 q^{31} -128276. q^{32} +664265. q^{33} +210123. q^{34} +8484.87 q^{35} -257475. q^{36} +235757. q^{37} -151399. q^{38} +299295. q^{40} +400429. q^{41} -35160.0 q^{42} -3696.88 q^{43} -357066. q^{44} +1.04003e6 q^{45} -674177. q^{46} -831675. q^{47} -713197. q^{48} -821549. q^{49} +378007. q^{50} -2.04392e6 q^{51} -1.10224e6 q^{53} -2.58752e6 q^{54} +1.44231e6 q^{55} +70321.5 q^{56} +1.47269e6 q^{57} +1.26268e6 q^{58} -236199. q^{59} -782452. q^{60} +2.81617e6 q^{61} -362918. q^{62} +244362. q^{63} +2.19722e6 q^{64} -5.97671e6 q^{66} -2.44794e6 q^{67} +1.09868e6 q^{68} +6.55789e6 q^{69} -76342.3 q^{70} +1.62315e6 q^{71} +8.61961e6 q^{72} +891091. q^{73} -2.12122e6 q^{74} -3.67698e6 q^{75} -791625. q^{76} +338881. q^{77} +4.25155e6 q^{79} -1.54855e6 q^{80} +1.32003e7 q^{81} -3.60285e6 q^{82} -1.90485e6 q^{83} -183843. q^{84} -4.43793e6 q^{85} +33262.6 q^{86} -1.22825e7 q^{87} +1.19537e7 q^{88} +6.79531e6 q^{89} -9.35761e6 q^{90} -3.52510e6 q^{92} +3.53020e6 q^{93} +7.48297e6 q^{94} +3.19764e6 q^{95} -1.12268e7 q^{96} +1.03105e7 q^{97} +7.39187e6 q^{98} +4.15381e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 31 q^{2} - 26 q^{3} + 1409 q^{4} + 680 q^{5} + 1470 q^{6} + 2929 q^{7} + 4716 q^{8} + 15465 q^{9} - 5167 q^{10} + 14824 q^{11} + 21795 q^{12} - 179 q^{14} + 36398 q^{15} + 113205 q^{16} + 45016 q^{17}+ \cdots + 37605493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.99747 −0.795272 −0.397636 0.917543i \(-0.630169\pi\)
−0.397636 + 0.917543i \(0.630169\pi\)
\(3\) 87.5208 1.87149 0.935743 0.352682i \(-0.114730\pi\)
0.935743 + 0.352682i \(0.114730\pi\)
\(4\) −47.0455 −0.367543
\(5\) 190.033 0.679881 0.339941 0.940447i \(-0.389593\pi\)
0.339941 + 0.940447i \(0.389593\pi\)
\(6\) −787.466 −1.48834
\(7\) 44.6495 0.0492010 0.0246005 0.999697i \(-0.492169\pi\)
0.0246005 + 0.999697i \(0.492169\pi\)
\(8\) 1574.97 1.08757
\(9\) 5472.89 2.50246
\(10\) −1709.81 −0.540690
\(11\) 7589.80 1.71932 0.859659 0.510869i \(-0.170676\pi\)
0.859659 + 0.510869i \(0.170676\pi\)
\(12\) −4117.46 −0.687852
\(13\) 0 0
\(14\) −401.733 −0.0391281
\(15\) 16631.8 1.27239
\(16\) −8148.89 −0.497369
\(17\) −23353.5 −1.15287 −0.576436 0.817142i \(-0.695557\pi\)
−0.576436 + 0.817142i \(0.695557\pi\)
\(18\) −49242.1 −1.99014
\(19\) 16826.8 0.562812 0.281406 0.959589i \(-0.409199\pi\)
0.281406 + 0.959589i \(0.409199\pi\)
\(20\) −8940.18 −0.249886
\(21\) 3907.76 0.0920790
\(22\) −68289.0 −1.36732
\(23\) 74929.6 1.28412 0.642060 0.766654i \(-0.278080\pi\)
0.642060 + 0.766654i \(0.278080\pi\)
\(24\) 137842. 2.03537
\(25\) −42012.6 −0.537761
\(26\) 0 0
\(27\) 287583. 2.81184
\(28\) −2100.56 −0.0180835
\(29\) −140338. −1.06852 −0.534258 0.845321i \(-0.679409\pi\)
−0.534258 + 0.845321i \(0.679409\pi\)
\(30\) −149644. −1.01189
\(31\) 40335.6 0.243177 0.121588 0.992581i \(-0.461201\pi\)
0.121588 + 0.992581i \(0.461201\pi\)
\(32\) −128276. −0.692025
\(33\) 664265. 3.21768
\(34\) 210123. 0.916847
\(35\) 8484.87 0.0334508
\(36\) −257475. −0.919763
\(37\) 235757. 0.765171 0.382586 0.923920i \(-0.375034\pi\)
0.382586 + 0.923920i \(0.375034\pi\)
\(38\) −151399. −0.447589
\(39\) 0 0
\(40\) 299295. 0.739417
\(41\) 400429. 0.907365 0.453682 0.891163i \(-0.350110\pi\)
0.453682 + 0.891163i \(0.350110\pi\)
\(42\) −35160.0 −0.0732278
\(43\) −3696.88 −0.00709081 −0.00354540 0.999994i \(-0.501129\pi\)
−0.00354540 + 0.999994i \(0.501129\pi\)
\(44\) −357066. −0.631923
\(45\) 1.04003e6 1.70138
\(46\) −674177. −1.02122
\(47\) −831675. −1.16845 −0.584226 0.811591i \(-0.698602\pi\)
−0.584226 + 0.811591i \(0.698602\pi\)
\(48\) −713197. −0.930819
\(49\) −821549. −0.997579
\(50\) 378007. 0.427666
\(51\) −2.04392e6 −2.15759
\(52\) 0 0
\(53\) −1.10224e6 −1.01697 −0.508486 0.861070i \(-0.669795\pi\)
−0.508486 + 0.861070i \(0.669795\pi\)
\(54\) −2.58752e6 −2.23618
\(55\) 1.44231e6 1.16893
\(56\) 70321.5 0.0535094
\(57\) 1.47269e6 1.05330
\(58\) 1.26268e6 0.849760
\(59\) −236199. −0.149726 −0.0748629 0.997194i \(-0.523852\pi\)
−0.0748629 + 0.997194i \(0.523852\pi\)
\(60\) −782452. −0.467658
\(61\) 2.81617e6 1.58856 0.794281 0.607550i \(-0.207848\pi\)
0.794281 + 0.607550i \(0.207848\pi\)
\(62\) −362918. −0.193392
\(63\) 244362. 0.123124
\(64\) 2.19722e6 1.04772
\(65\) 0 0
\(66\) −5.97671e6 −2.55893
\(67\) −2.44794e6 −0.994351 −0.497176 0.867650i \(-0.665630\pi\)
−0.497176 + 0.867650i \(0.665630\pi\)
\(68\) 1.09868e6 0.423730
\(69\) 6.55789e6 2.40321
\(70\) −76342.3 −0.0266025
\(71\) 1.62315e6 0.538213 0.269106 0.963110i \(-0.413272\pi\)
0.269106 + 0.963110i \(0.413272\pi\)
\(72\) 8.61961e6 2.72160
\(73\) 891091. 0.268097 0.134049 0.990975i \(-0.457202\pi\)
0.134049 + 0.990975i \(0.457202\pi\)
\(74\) −2.12122e6 −0.608519
\(75\) −3.67698e6 −1.00641
\(76\) −791625. −0.206858
\(77\) 338881. 0.0845921
\(78\) 0 0
\(79\) 4.25155e6 0.970180 0.485090 0.874464i \(-0.338787\pi\)
0.485090 + 0.874464i \(0.338787\pi\)
\(80\) −1.54855e6 −0.338152
\(81\) 1.32003e7 2.75986
\(82\) −3.60285e6 −0.721601
\(83\) −1.90485e6 −0.365668 −0.182834 0.983144i \(-0.558527\pi\)
−0.182834 + 0.983144i \(0.558527\pi\)
\(84\) −183843. −0.0338430
\(85\) −4.43793e6 −0.783816
\(86\) 33262.6 0.00563912
\(87\) −1.22825e7 −1.99971
\(88\) 1.19537e7 1.86987
\(89\) 6.79531e6 1.02175 0.510874 0.859655i \(-0.329322\pi\)
0.510874 + 0.859655i \(0.329322\pi\)
\(90\) −9.35761e6 −1.35306
\(91\) 0 0
\(92\) −3.52510e6 −0.471970
\(93\) 3.53020e6 0.455102
\(94\) 7.48297e6 0.929237
\(95\) 3.19764e6 0.382646
\(96\) −1.12268e7 −1.29512
\(97\) 1.03105e7 1.14704 0.573519 0.819193i \(-0.305578\pi\)
0.573519 + 0.819193i \(0.305578\pi\)
\(98\) 7.39187e6 0.793346
\(99\) 4.15381e7 4.30253
\(100\) 1.97651e6 0.197651
\(101\) −274073. −0.0264692 −0.0132346 0.999912i \(-0.504213\pi\)
−0.0132346 + 0.999912i \(0.504213\pi\)
\(102\) 1.83901e7 1.71587
\(103\) −2.54223e6 −0.229237 −0.114619 0.993410i \(-0.536565\pi\)
−0.114619 + 0.993410i \(0.536565\pi\)
\(104\) 0 0
\(105\) 742602. 0.0626028
\(106\) 9.91734e6 0.808769
\(107\) −1.12719e7 −0.889514 −0.444757 0.895651i \(-0.646710\pi\)
−0.444757 + 0.895651i \(0.646710\pi\)
\(108\) −1.35295e7 −1.03347
\(109\) 6.86352e6 0.507638 0.253819 0.967252i \(-0.418313\pi\)
0.253819 + 0.967252i \(0.418313\pi\)
\(110\) −1.29771e7 −0.929618
\(111\) 2.06336e7 1.43201
\(112\) −363844. −0.0244710
\(113\) −1.52777e6 −0.0996054 −0.0498027 0.998759i \(-0.515859\pi\)
−0.0498027 + 0.998759i \(0.515859\pi\)
\(114\) −1.32505e7 −0.837656
\(115\) 1.42391e7 0.873050
\(116\) 6.60226e6 0.392726
\(117\) 0 0
\(118\) 2.12520e6 0.119073
\(119\) −1.04272e6 −0.0567225
\(120\) 2.61945e7 1.38381
\(121\) 3.81179e7 1.95605
\(122\) −2.53384e7 −1.26334
\(123\) 3.50458e7 1.69812
\(124\) −1.89761e6 −0.0893780
\(125\) −2.28301e7 −1.04550
\(126\) −2.19864e6 −0.0979167
\(127\) 2.68776e7 1.16433 0.582166 0.813070i \(-0.302205\pi\)
0.582166 + 0.813070i \(0.302205\pi\)
\(128\) −3.35005e6 −0.141194
\(129\) −323554. −0.0132703
\(130\) 0 0
\(131\) 2.01789e7 0.784237 0.392119 0.919915i \(-0.371742\pi\)
0.392119 + 0.919915i \(0.371742\pi\)
\(132\) −3.12507e7 −1.18264
\(133\) 751308. 0.0276909
\(134\) 2.20253e7 0.790779
\(135\) 5.46502e7 1.91172
\(136\) −3.67810e7 −1.25383
\(137\) −2.71531e7 −0.902190 −0.451095 0.892476i \(-0.648966\pi\)
−0.451095 + 0.892476i \(0.648966\pi\)
\(138\) −5.90045e7 −1.91121
\(139\) −9.19607e6 −0.290436 −0.145218 0.989400i \(-0.546388\pi\)
−0.145218 + 0.989400i \(0.546388\pi\)
\(140\) −399175. −0.0122946
\(141\) −7.27888e7 −2.18674
\(142\) −1.46042e7 −0.428025
\(143\) 0 0
\(144\) −4.45980e7 −1.24465
\(145\) −2.66687e7 −0.726464
\(146\) −8.01757e6 −0.213210
\(147\) −7.19026e7 −1.86696
\(148\) −1.10913e7 −0.281233
\(149\) 7.49979e7 1.85736 0.928682 0.370878i \(-0.120943\pi\)
0.928682 + 0.370878i \(0.120943\pi\)
\(150\) 3.30835e7 0.800372
\(151\) −1.06575e7 −0.251905 −0.125952 0.992036i \(-0.540199\pi\)
−0.125952 + 0.992036i \(0.540199\pi\)
\(152\) 2.65016e7 0.612097
\(153\) −1.27811e8 −2.88502
\(154\) −3.04907e6 −0.0672737
\(155\) 7.66507e6 0.165331
\(156\) 0 0
\(157\) −8.03440e7 −1.65693 −0.828466 0.560039i \(-0.810786\pi\)
−0.828466 + 0.560039i \(0.810786\pi\)
\(158\) −3.82532e7 −0.771557
\(159\) −9.64685e7 −1.90325
\(160\) −2.43767e7 −0.470495
\(161\) 3.34557e6 0.0631800
\(162\) −1.18769e8 −2.19484
\(163\) −8.26127e7 −1.49414 −0.747068 0.664748i \(-0.768539\pi\)
−0.747068 + 0.664748i \(0.768539\pi\)
\(164\) −1.88384e7 −0.333496
\(165\) 1.26232e8 2.18764
\(166\) 1.71388e7 0.290806
\(167\) 1.53330e7 0.254753 0.127377 0.991854i \(-0.459344\pi\)
0.127377 + 0.991854i \(0.459344\pi\)
\(168\) 6.15460e6 0.100142
\(169\) 0 0
\(170\) 3.99302e7 0.623347
\(171\) 9.20911e7 1.40842
\(172\) 173922. 0.00260618
\(173\) 2.26984e6 0.0333299 0.0166650 0.999861i \(-0.494695\pi\)
0.0166650 + 0.999861i \(0.494695\pi\)
\(174\) 1.10511e8 1.59032
\(175\) −1.87584e6 −0.0264584
\(176\) −6.18485e7 −0.855135
\(177\) −2.06723e7 −0.280210
\(178\) −6.11406e7 −0.812567
\(179\) 3.37802e7 0.440226 0.220113 0.975474i \(-0.429357\pi\)
0.220113 + 0.975474i \(0.429357\pi\)
\(180\) −4.89286e7 −0.625330
\(181\) 2.19086e7 0.274625 0.137312 0.990528i \(-0.456154\pi\)
0.137312 + 0.990528i \(0.456154\pi\)
\(182\) 0 0
\(183\) 2.46473e8 2.97297
\(184\) 1.18012e8 1.39657
\(185\) 4.48015e7 0.520226
\(186\) −3.17629e7 −0.361930
\(187\) −1.77249e8 −1.98215
\(188\) 3.91266e7 0.429457
\(189\) 1.28405e7 0.138345
\(190\) −2.87707e7 −0.304307
\(191\) −1.31760e8 −1.36826 −0.684128 0.729362i \(-0.739817\pi\)
−0.684128 + 0.729362i \(0.739817\pi\)
\(192\) 1.92302e8 1.96079
\(193\) −7.46458e6 −0.0747403 −0.0373701 0.999301i \(-0.511898\pi\)
−0.0373701 + 0.999301i \(0.511898\pi\)
\(194\) −9.27682e7 −0.912206
\(195\) 0 0
\(196\) 3.86502e7 0.366653
\(197\) 4.69866e7 0.437867 0.218933 0.975740i \(-0.429742\pi\)
0.218933 + 0.975740i \(0.429742\pi\)
\(198\) −3.73738e8 −3.42168
\(199\) 1.29435e7 0.116430 0.0582149 0.998304i \(-0.481459\pi\)
0.0582149 + 0.998304i \(0.481459\pi\)
\(200\) −6.61685e7 −0.584852
\(201\) −2.14246e8 −1.86092
\(202\) 2.46596e6 0.0210502
\(203\) −6.26601e6 −0.0525720
\(204\) 9.61572e7 0.793006
\(205\) 7.60945e7 0.616900
\(206\) 2.28737e7 0.182306
\(207\) 4.10081e8 3.21346
\(208\) 0 0
\(209\) 1.27712e8 0.967653
\(210\) −6.68154e6 −0.0497862
\(211\) 1.85248e6 0.0135758 0.00678790 0.999977i \(-0.497839\pi\)
0.00678790 + 0.999977i \(0.497839\pi\)
\(212\) 5.18553e7 0.373781
\(213\) 1.42059e8 1.00726
\(214\) 1.01418e8 0.707405
\(215\) −702527. −0.00482091
\(216\) 4.52934e8 3.05807
\(217\) 1.80096e6 0.0119645
\(218\) −6.17543e7 −0.403710
\(219\) 7.79890e7 0.501740
\(220\) −6.78542e7 −0.429633
\(221\) 0 0
\(222\) −1.85651e8 −1.13883
\(223\) 1.60027e8 0.966330 0.483165 0.875529i \(-0.339487\pi\)
0.483165 + 0.875529i \(0.339487\pi\)
\(224\) −5.72748e6 −0.0340483
\(225\) −2.29930e8 −1.34573
\(226\) 1.37460e7 0.0792134
\(227\) −2.82188e8 −1.60121 −0.800604 0.599194i \(-0.795488\pi\)
−0.800604 + 0.599194i \(0.795488\pi\)
\(228\) −6.92837e7 −0.387132
\(229\) −7.12916e6 −0.0392296 −0.0196148 0.999808i \(-0.506244\pi\)
−0.0196148 + 0.999808i \(0.506244\pi\)
\(230\) −1.28116e8 −0.694312
\(231\) 2.96591e7 0.158313
\(232\) −2.21027e8 −1.16208
\(233\) 8.80122e6 0.0455824 0.0227912 0.999740i \(-0.492745\pi\)
0.0227912 + 0.999740i \(0.492745\pi\)
\(234\) 0 0
\(235\) −1.58045e8 −0.794409
\(236\) 1.11121e7 0.0550307
\(237\) 3.72099e8 1.81568
\(238\) 9.38188e6 0.0451098
\(239\) 1.35488e7 0.0641958 0.0320979 0.999485i \(-0.489781\pi\)
0.0320979 + 0.999485i \(0.489781\pi\)
\(240\) −1.35531e8 −0.632847
\(241\) −2.45021e8 −1.12757 −0.563785 0.825921i \(-0.690655\pi\)
−0.563785 + 0.825921i \(0.690655\pi\)
\(242\) −3.42965e8 −1.55559
\(243\) 5.26357e8 2.35320
\(244\) −1.32488e8 −0.583865
\(245\) −1.56121e8 −0.678235
\(246\) −3.15324e8 −1.35047
\(247\) 0 0
\(248\) 6.35272e7 0.264471
\(249\) −1.66714e8 −0.684344
\(250\) 2.05413e8 0.831453
\(251\) −1.24387e8 −0.496496 −0.248248 0.968696i \(-0.579855\pi\)
−0.248248 + 0.968696i \(0.579855\pi\)
\(252\) −1.14961e7 −0.0452533
\(253\) 5.68701e8 2.20781
\(254\) −2.41830e8 −0.925960
\(255\) −3.88411e8 −1.46690
\(256\) −2.51102e8 −0.935429
\(257\) 1.54924e8 0.569317 0.284658 0.958629i \(-0.408120\pi\)
0.284658 + 0.958629i \(0.408120\pi\)
\(258\) 2.91116e6 0.0105535
\(259\) 1.05264e7 0.0376472
\(260\) 0 0
\(261\) −7.68052e8 −2.67392
\(262\) −1.81559e8 −0.623681
\(263\) 1.82841e8 0.619766 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(264\) 1.04620e9 3.49945
\(265\) −2.09461e8 −0.691420
\(266\) −6.75987e6 −0.0220218
\(267\) 5.94730e8 1.91219
\(268\) 1.15165e8 0.365467
\(269\) −5.92306e8 −1.85530 −0.927648 0.373456i \(-0.878173\pi\)
−0.927648 + 0.373456i \(0.878173\pi\)
\(270\) −4.91714e8 −1.52033
\(271\) −2.92411e8 −0.892487 −0.446243 0.894912i \(-0.647238\pi\)
−0.446243 + 0.894912i \(0.647238\pi\)
\(272\) 1.90305e8 0.573403
\(273\) 0 0
\(274\) 2.44309e8 0.717486
\(275\) −3.18867e8 −0.924583
\(276\) −3.08520e8 −0.883285
\(277\) −5.12690e8 −1.44936 −0.724679 0.689087i \(-0.758012\pi\)
−0.724679 + 0.689087i \(0.758012\pi\)
\(278\) 8.27414e7 0.230975
\(279\) 2.20752e8 0.608541
\(280\) 1.33634e7 0.0363801
\(281\) −2.43625e7 −0.0655012 −0.0327506 0.999464i \(-0.510427\pi\)
−0.0327506 + 0.999464i \(0.510427\pi\)
\(282\) 6.54915e8 1.73905
\(283\) −1.36204e8 −0.357221 −0.178611 0.983920i \(-0.557160\pi\)
−0.178611 + 0.983920i \(0.557160\pi\)
\(284\) −7.63618e7 −0.197816
\(285\) 2.79860e8 0.716116
\(286\) 0 0
\(287\) 1.78790e7 0.0446432
\(288\) −7.02042e8 −1.73177
\(289\) 1.35049e8 0.329115
\(290\) 2.39951e8 0.577736
\(291\) 9.02381e8 2.14667
\(292\) −4.19219e7 −0.0985373
\(293\) 5.54711e8 1.28834 0.644170 0.764883i \(-0.277203\pi\)
0.644170 + 0.764883i \(0.277203\pi\)
\(294\) 6.46942e8 1.48474
\(295\) −4.48855e7 −0.101796
\(296\) 3.71309e8 0.832176
\(297\) 2.18270e9 4.83444
\(298\) −6.74791e8 −1.47711
\(299\) 0 0
\(300\) 1.72985e8 0.369900
\(301\) −165064. −0.000348875 0
\(302\) 9.58906e7 0.200333
\(303\) −2.39871e7 −0.0495368
\(304\) −1.37120e8 −0.279925
\(305\) 5.35164e8 1.08003
\(306\) 1.14998e9 2.29437
\(307\) −7.96114e8 −1.57033 −0.785165 0.619286i \(-0.787422\pi\)
−0.785165 + 0.619286i \(0.787422\pi\)
\(308\) −1.59428e7 −0.0310913
\(309\) −2.22498e8 −0.429014
\(310\) −6.89662e7 −0.131483
\(311\) −4.47275e8 −0.843167 −0.421583 0.906790i \(-0.638526\pi\)
−0.421583 + 0.906790i \(0.638526\pi\)
\(312\) 0 0
\(313\) 4.58943e8 0.845967 0.422984 0.906137i \(-0.360983\pi\)
0.422984 + 0.906137i \(0.360983\pi\)
\(314\) 7.22893e8 1.31771
\(315\) 4.64367e7 0.0837095
\(316\) −2.00016e8 −0.356583
\(317\) −9.03574e8 −1.59315 −0.796574 0.604541i \(-0.793357\pi\)
−0.796574 + 0.604541i \(0.793357\pi\)
\(318\) 8.67973e8 1.51360
\(319\) −1.06513e9 −1.83712
\(320\) 4.17544e8 0.712323
\(321\) −9.86522e8 −1.66471
\(322\) −3.01017e7 −0.0502453
\(323\) −3.92965e8 −0.648851
\(324\) −6.21016e8 −1.01437
\(325\) 0 0
\(326\) 7.43305e8 1.18824
\(327\) 6.00701e8 0.950038
\(328\) 6.30662e8 0.986821
\(329\) −3.71339e7 −0.0574890
\(330\) −1.13577e9 −1.73977
\(331\) −6.97509e8 −1.05719 −0.528593 0.848875i \(-0.677280\pi\)
−0.528593 + 0.848875i \(0.677280\pi\)
\(332\) 8.96147e7 0.134399
\(333\) 1.29027e9 1.91481
\(334\) −1.37958e8 −0.202598
\(335\) −4.65189e8 −0.676041
\(336\) −3.18439e7 −0.0457972
\(337\) −1.04121e9 −1.48195 −0.740976 0.671532i \(-0.765637\pi\)
−0.740976 + 0.671532i \(0.765637\pi\)
\(338\) 0 0
\(339\) −1.33711e8 −0.186410
\(340\) 2.08785e8 0.288086
\(341\) 3.06139e8 0.418098
\(342\) −8.28587e8 −1.12007
\(343\) −7.34526e7 −0.0982829
\(344\) −5.82246e6 −0.00771173
\(345\) 1.24621e9 1.63390
\(346\) −2.04228e7 −0.0265063
\(347\) −1.03087e9 −1.32450 −0.662251 0.749282i \(-0.730399\pi\)
−0.662251 + 0.749282i \(0.730399\pi\)
\(348\) 5.77835e8 0.734981
\(349\) 1.57566e9 1.98415 0.992073 0.125660i \(-0.0401047\pi\)
0.992073 + 0.125660i \(0.0401047\pi\)
\(350\) 1.68778e7 0.0210416
\(351\) 0 0
\(352\) −9.73592e8 −1.18981
\(353\) 2.54911e8 0.308445 0.154223 0.988036i \(-0.450713\pi\)
0.154223 + 0.988036i \(0.450713\pi\)
\(354\) 1.85999e8 0.222843
\(355\) 3.08451e8 0.365921
\(356\) −3.19689e8 −0.375537
\(357\) −9.12600e7 −0.106155
\(358\) −3.03936e8 −0.350099
\(359\) −1.10775e8 −0.126360 −0.0631800 0.998002i \(-0.520124\pi\)
−0.0631800 + 0.998002i \(0.520124\pi\)
\(360\) 1.63801e9 1.85036
\(361\) −6.10731e8 −0.683242
\(362\) −1.97122e8 −0.218401
\(363\) 3.33611e9 3.66073
\(364\) 0 0
\(365\) 1.69336e8 0.182274
\(366\) −2.21764e9 −2.36432
\(367\) −7.95882e8 −0.840461 −0.420230 0.907417i \(-0.638051\pi\)
−0.420230 + 0.907417i \(0.638051\pi\)
\(368\) −6.10593e8 −0.638682
\(369\) 2.19150e9 2.27065
\(370\) −4.03100e8 −0.413721
\(371\) −4.92143e7 −0.0500360
\(372\) −1.66080e8 −0.167270
\(373\) 2.92736e8 0.292075 0.146038 0.989279i \(-0.453348\pi\)
0.146038 + 0.989279i \(0.453348\pi\)
\(374\) 1.59479e9 1.57635
\(375\) −1.99810e9 −1.95663
\(376\) −1.30986e9 −1.27077
\(377\) 0 0
\(378\) −1.15532e8 −0.110022
\(379\) 5.27578e8 0.497794 0.248897 0.968530i \(-0.419932\pi\)
0.248897 + 0.968530i \(0.419932\pi\)
\(380\) −1.50435e8 −0.140639
\(381\) 2.35235e9 2.17903
\(382\) 1.18551e9 1.08814
\(383\) 1.02879e8 0.0935686 0.0467843 0.998905i \(-0.485103\pi\)
0.0467843 + 0.998905i \(0.485103\pi\)
\(384\) −2.93199e8 −0.264243
\(385\) 6.43985e7 0.0575126
\(386\) 6.71623e7 0.0594388
\(387\) −2.02326e7 −0.0177445
\(388\) −4.85062e8 −0.421586
\(389\) 8.52263e8 0.734091 0.367046 0.930203i \(-0.380369\pi\)
0.367046 + 0.930203i \(0.380369\pi\)
\(390\) 0 0
\(391\) −1.74987e9 −1.48043
\(392\) −1.29391e9 −1.08494
\(393\) 1.76607e9 1.46769
\(394\) −4.22760e8 −0.348223
\(395\) 8.07933e8 0.659608
\(396\) −1.95418e9 −1.58136
\(397\) −1.28264e9 −1.02881 −0.514406 0.857547i \(-0.671988\pi\)
−0.514406 + 0.857547i \(0.671988\pi\)
\(398\) −1.16458e8 −0.0925934
\(399\) 6.57551e7 0.0518232
\(400\) 3.42356e8 0.267466
\(401\) −5.51461e8 −0.427080 −0.213540 0.976934i \(-0.568499\pi\)
−0.213540 + 0.976934i \(0.568499\pi\)
\(402\) 1.92767e9 1.47993
\(403\) 0 0
\(404\) 1.28939e7 0.00972859
\(405\) 2.50849e9 1.87638
\(406\) 5.63782e7 0.0418090
\(407\) 1.78935e9 1.31557
\(408\) −3.21910e9 −2.34652
\(409\) 1.82547e9 1.31930 0.659650 0.751573i \(-0.270705\pi\)
0.659650 + 0.751573i \(0.270705\pi\)
\(410\) −6.84658e8 −0.490603
\(411\) −2.37646e9 −1.68844
\(412\) 1.19601e8 0.0842545
\(413\) −1.05462e7 −0.00736665
\(414\) −3.68969e9 −2.55558
\(415\) −3.61984e8 −0.248611
\(416\) 0 0
\(417\) −8.04847e8 −0.543547
\(418\) −1.14909e9 −0.769547
\(419\) −2.20929e9 −1.46725 −0.733626 0.679554i \(-0.762173\pi\)
−0.733626 + 0.679554i \(0.762173\pi\)
\(420\) −3.49361e7 −0.0230092
\(421\) −1.35671e9 −0.886133 −0.443066 0.896489i \(-0.646109\pi\)
−0.443066 + 0.896489i \(0.646109\pi\)
\(422\) −1.66677e7 −0.0107965
\(423\) −4.55166e9 −2.92401
\(424\) −1.73599e9 −1.10603
\(425\) 9.81143e8 0.619970
\(426\) −1.27817e9 −0.801043
\(427\) 1.25741e8 0.0781588
\(428\) 5.30291e8 0.326935
\(429\) 0 0
\(430\) 6.32097e6 0.00383393
\(431\) 2.84335e9 1.71064 0.855322 0.518096i \(-0.173359\pi\)
0.855322 + 0.518096i \(0.173359\pi\)
\(432\) −2.34348e9 −1.39852
\(433\) −7.55617e8 −0.447295 −0.223648 0.974670i \(-0.571796\pi\)
−0.223648 + 0.974670i \(0.571796\pi\)
\(434\) −1.62041e7 −0.00951505
\(435\) −2.33407e9 −1.35957
\(436\) −3.22898e8 −0.186579
\(437\) 1.26082e9 0.722719
\(438\) −7.01704e8 −0.399020
\(439\) −3.94623e8 −0.222616 −0.111308 0.993786i \(-0.535504\pi\)
−0.111308 + 0.993786i \(0.535504\pi\)
\(440\) 2.27159e9 1.27129
\(441\) −4.49625e9 −2.49641
\(442\) 0 0
\(443\) 1.96580e9 1.07430 0.537150 0.843487i \(-0.319501\pi\)
0.537150 + 0.843487i \(0.319501\pi\)
\(444\) −9.70720e8 −0.526325
\(445\) 1.29133e9 0.694668
\(446\) −1.43984e9 −0.768494
\(447\) 6.56387e9 3.47603
\(448\) 9.81049e7 0.0515487
\(449\) 2.72494e9 1.42068 0.710339 0.703860i \(-0.248542\pi\)
0.710339 + 0.703860i \(0.248542\pi\)
\(450\) 2.06879e9 1.07022
\(451\) 3.03918e9 1.56005
\(452\) 7.18747e7 0.0366093
\(453\) −9.32753e8 −0.471436
\(454\) 2.53898e9 1.27339
\(455\) 0 0
\(456\) 2.31944e9 1.14553
\(457\) 1.27696e9 0.625850 0.312925 0.949778i \(-0.398691\pi\)
0.312925 + 0.949778i \(0.398691\pi\)
\(458\) 6.41444e7 0.0311982
\(459\) −6.71609e9 −3.24169
\(460\) −6.69884e8 −0.320883
\(461\) −4.87491e8 −0.231746 −0.115873 0.993264i \(-0.536967\pi\)
−0.115873 + 0.993264i \(0.536967\pi\)
\(462\) −2.66857e8 −0.125902
\(463\) 2.46579e9 1.15458 0.577288 0.816541i \(-0.304111\pi\)
0.577288 + 0.816541i \(0.304111\pi\)
\(464\) 1.14360e9 0.531447
\(465\) 6.70853e8 0.309415
\(466\) −7.91887e7 −0.0362504
\(467\) 2.40297e9 1.09179 0.545894 0.837854i \(-0.316190\pi\)
0.545894 + 0.837854i \(0.316190\pi\)
\(468\) 0 0
\(469\) −1.09300e8 −0.0489231
\(470\) 1.42201e9 0.631771
\(471\) −7.03177e9 −3.10093
\(472\) −3.72006e8 −0.162837
\(473\) −2.80586e7 −0.0121913
\(474\) −3.34795e9 −1.44396
\(475\) −7.06937e8 −0.302659
\(476\) 4.90555e7 0.0208480
\(477\) −6.03241e9 −2.54493
\(478\) −1.21905e8 −0.0510531
\(479\) 4.04966e9 1.68362 0.841811 0.539772i \(-0.181490\pi\)
0.841811 + 0.539772i \(0.181490\pi\)
\(480\) −2.13347e9 −0.880525
\(481\) 0 0
\(482\) 2.20457e9 0.896725
\(483\) 2.92807e8 0.118241
\(484\) −1.79328e9 −0.718934
\(485\) 1.95933e9 0.779849
\(486\) −4.73588e9 −1.87143
\(487\) 8.24903e8 0.323632 0.161816 0.986821i \(-0.448265\pi\)
0.161816 + 0.986821i \(0.448265\pi\)
\(488\) 4.43537e9 1.72767
\(489\) −7.23032e9 −2.79625
\(490\) 1.40470e9 0.539381
\(491\) 3.20090e9 1.22036 0.610178 0.792264i \(-0.291098\pi\)
0.610178 + 0.792264i \(0.291098\pi\)
\(492\) −1.64875e9 −0.624133
\(493\) 3.27738e9 1.23186
\(494\) 0 0
\(495\) 7.89360e9 2.92521
\(496\) −3.28690e8 −0.120949
\(497\) 7.24728e7 0.0264806
\(498\) 1.50000e9 0.544239
\(499\) −4.61602e9 −1.66309 −0.831545 0.555457i \(-0.812543\pi\)
−0.831545 + 0.555457i \(0.812543\pi\)
\(500\) 1.07405e9 0.384265
\(501\) 1.34196e9 0.476768
\(502\) 1.11917e9 0.394849
\(503\) −2.24669e9 −0.787145 −0.393573 0.919294i \(-0.628761\pi\)
−0.393573 + 0.919294i \(0.628761\pi\)
\(504\) 3.84862e8 0.133905
\(505\) −5.20828e7 −0.0179959
\(506\) −5.11687e9 −1.75581
\(507\) 0 0
\(508\) −1.26447e9 −0.427942
\(509\) −4.39689e9 −1.47786 −0.738930 0.673783i \(-0.764668\pi\)
−0.738930 + 0.673783i \(0.764668\pi\)
\(510\) 3.49472e9 1.16659
\(511\) 3.97868e7 0.0131906
\(512\) 2.68809e9 0.885114
\(513\) 4.83910e9 1.58254
\(514\) −1.39393e9 −0.452762
\(515\) −4.83107e8 −0.155854
\(516\) 1.52218e7 0.00487743
\(517\) −6.31225e9 −2.00894
\(518\) −9.47113e7 −0.0299397
\(519\) 1.98658e8 0.0623765
\(520\) 0 0
\(521\) −5.64598e8 −0.174907 −0.0874535 0.996169i \(-0.527873\pi\)
−0.0874535 + 0.996169i \(0.527873\pi\)
\(522\) 6.91052e9 2.12649
\(523\) −8.96882e8 −0.274144 −0.137072 0.990561i \(-0.543769\pi\)
−0.137072 + 0.990561i \(0.543769\pi\)
\(524\) −9.49326e8 −0.288241
\(525\) −1.64175e8 −0.0495165
\(526\) −1.64510e9 −0.492882
\(527\) −9.41977e8 −0.280352
\(528\) −5.41303e9 −1.60037
\(529\) 2.20962e9 0.648966
\(530\) 1.88462e9 0.549867
\(531\) −1.29269e9 −0.374683
\(532\) −3.53457e7 −0.0101776
\(533\) 0 0
\(534\) −5.35107e9 −1.52071
\(535\) −2.14202e9 −0.604764
\(536\) −3.85543e9 −1.08142
\(537\) 2.95646e9 0.823878
\(538\) 5.32926e9 1.47546
\(539\) −6.23540e9 −1.71516
\(540\) −2.57105e9 −0.702639
\(541\) 5.09067e9 1.38224 0.691122 0.722738i \(-0.257117\pi\)
0.691122 + 0.722738i \(0.257117\pi\)
\(542\) 2.63096e9 0.709769
\(543\) 1.91746e9 0.513956
\(544\) 2.99571e9 0.797817
\(545\) 1.30429e9 0.345134
\(546\) 0 0
\(547\) −6.55393e9 −1.71217 −0.856083 0.516838i \(-0.827109\pi\)
−0.856083 + 0.516838i \(0.827109\pi\)
\(548\) 1.27743e9 0.331594
\(549\) 1.54126e10 3.97532
\(550\) 2.86900e9 0.735294
\(551\) −2.36143e9 −0.601374
\(552\) 1.03285e10 2.61366
\(553\) 1.89830e8 0.0477338
\(554\) 4.61291e9 1.15263
\(555\) 3.92106e9 0.973595
\(556\) 4.32634e8 0.106748
\(557\) 5.25472e9 1.28842 0.644208 0.764850i \(-0.277187\pi\)
0.644208 + 0.764850i \(0.277187\pi\)
\(558\) −1.98621e9 −0.483955
\(559\) 0 0
\(560\) −6.91422e7 −0.0166374
\(561\) −1.55129e10 −3.70957
\(562\) 2.19201e8 0.0520913
\(563\) −8.12322e9 −1.91844 −0.959221 0.282657i \(-0.908784\pi\)
−0.959221 + 0.282657i \(0.908784\pi\)
\(564\) 3.42439e9 0.803722
\(565\) −2.90326e8 −0.0677199
\(566\) 1.22549e9 0.284088
\(567\) 5.89388e8 0.135788
\(568\) 2.55640e9 0.585343
\(569\) −3.04502e9 −0.692943 −0.346471 0.938061i \(-0.612620\pi\)
−0.346471 + 0.938061i \(0.612620\pi\)
\(570\) −2.51803e9 −0.569507
\(571\) −4.99500e8 −0.112282 −0.0561409 0.998423i \(-0.517880\pi\)
−0.0561409 + 0.998423i \(0.517880\pi\)
\(572\) 0 0
\(573\) −1.15318e10 −2.56067
\(574\) −1.60865e8 −0.0355035
\(575\) −3.14799e9 −0.690551
\(576\) 1.20251e10 2.62187
\(577\) 5.43954e9 1.17882 0.589409 0.807835i \(-0.299361\pi\)
0.589409 + 0.807835i \(0.299361\pi\)
\(578\) −1.21510e9 −0.261736
\(579\) −6.53306e8 −0.139875
\(580\) 1.25464e9 0.267007
\(581\) −8.50507e7 −0.0179912
\(582\) −8.11914e9 −1.70718
\(583\) −8.36575e9 −1.74850
\(584\) 1.40344e9 0.291574
\(585\) 0 0
\(586\) −4.99100e9 −1.02458
\(587\) 8.19904e9 1.67313 0.836565 0.547868i \(-0.184560\pi\)
0.836565 + 0.547868i \(0.184560\pi\)
\(588\) 3.38270e9 0.686187
\(589\) 6.78718e8 0.136863
\(590\) 4.03856e8 0.0809552
\(591\) 4.11230e9 0.819462
\(592\) −1.92116e9 −0.380572
\(593\) 1.83780e9 0.361915 0.180957 0.983491i \(-0.442080\pi\)
0.180957 + 0.983491i \(0.442080\pi\)
\(594\) −1.96388e10 −3.84470
\(595\) −1.98152e8 −0.0385645
\(596\) −3.52831e9 −0.682661
\(597\) 1.13282e9 0.217897
\(598\) 0 0
\(599\) 5.00835e9 0.952139 0.476070 0.879408i \(-0.342061\pi\)
0.476070 + 0.879408i \(0.342061\pi\)
\(600\) −5.79112e9 −1.09454
\(601\) 5.99631e9 1.12674 0.563370 0.826205i \(-0.309505\pi\)
0.563370 + 0.826205i \(0.309505\pi\)
\(602\) 1.48516e6 0.000277450 0
\(603\) −1.33973e10 −2.48833
\(604\) 5.01388e8 0.0925858
\(605\) 7.24365e9 1.32988
\(606\) 2.15823e8 0.0393952
\(607\) 4.18428e8 0.0759382 0.0379691 0.999279i \(-0.487911\pi\)
0.0379691 + 0.999279i \(0.487911\pi\)
\(608\) −2.15848e9 −0.389480
\(609\) −5.48406e8 −0.0983879
\(610\) −4.81512e9 −0.858920
\(611\) 0 0
\(612\) 6.01295e9 1.06037
\(613\) 1.22737e9 0.215210 0.107605 0.994194i \(-0.465682\pi\)
0.107605 + 0.994194i \(0.465682\pi\)
\(614\) 7.16301e9 1.24884
\(615\) 6.65985e9 1.15452
\(616\) 5.33727e8 0.0919997
\(617\) 3.48381e9 0.597113 0.298557 0.954392i \(-0.403495\pi\)
0.298557 + 0.954392i \(0.403495\pi\)
\(618\) 2.00192e9 0.341183
\(619\) −2.85160e9 −0.483250 −0.241625 0.970370i \(-0.577680\pi\)
−0.241625 + 0.970370i \(0.577680\pi\)
\(620\) −3.60607e8 −0.0607664
\(621\) 2.15485e10 3.61074
\(622\) 4.02435e9 0.670546
\(623\) 3.03407e8 0.0502710
\(624\) 0 0
\(625\) −1.05622e9 −0.173051
\(626\) −4.12933e9 −0.672774
\(627\) 1.11775e10 1.81095
\(628\) 3.77983e9 0.608994
\(629\) −5.50576e9 −0.882145
\(630\) −4.17813e8 −0.0665717
\(631\) 7.87572e9 1.24792 0.623961 0.781455i \(-0.285522\pi\)
0.623961 + 0.781455i \(0.285522\pi\)
\(632\) 6.69605e9 1.05514
\(633\) 1.62131e8 0.0254069
\(634\) 8.12988e9 1.26699
\(635\) 5.10761e9 0.791608
\(636\) 4.53841e9 0.699527
\(637\) 0 0
\(638\) 9.58352e9 1.46101
\(639\) 8.88330e9 1.34686
\(640\) −6.36619e8 −0.0959953
\(641\) −2.81246e9 −0.421777 −0.210889 0.977510i \(-0.567636\pi\)
−0.210889 + 0.977510i \(0.567636\pi\)
\(642\) 8.87621e9 1.32390
\(643\) −9.76948e9 −1.44922 −0.724608 0.689161i \(-0.757979\pi\)
−0.724608 + 0.689161i \(0.757979\pi\)
\(644\) −1.57394e8 −0.0232214
\(645\) −6.14857e7 −0.00902226
\(646\) 3.53569e9 0.516013
\(647\) −7.55684e9 −1.09692 −0.548460 0.836177i \(-0.684786\pi\)
−0.548460 + 0.836177i \(0.684786\pi\)
\(648\) 2.07901e10 3.00153
\(649\) −1.79271e9 −0.257426
\(650\) 0 0
\(651\) 1.57622e8 0.0223915
\(652\) 3.88656e9 0.549159
\(653\) −1.11232e10 −1.56326 −0.781632 0.623740i \(-0.785613\pi\)
−0.781632 + 0.623740i \(0.785613\pi\)
\(654\) −5.40479e9 −0.755538
\(655\) 3.83464e9 0.533188
\(656\) −3.26305e9 −0.451295
\(657\) 4.87684e9 0.670903
\(658\) 3.34111e8 0.0457194
\(659\) 6.76599e9 0.920943 0.460471 0.887675i \(-0.347680\pi\)
0.460471 + 0.887675i \(0.347680\pi\)
\(660\) −5.93866e9 −0.804052
\(661\) −3.13975e9 −0.422854 −0.211427 0.977394i \(-0.567811\pi\)
−0.211427 + 0.977394i \(0.567811\pi\)
\(662\) 6.27582e9 0.840751
\(663\) 0 0
\(664\) −3.00008e9 −0.397689
\(665\) 1.42773e8 0.0188265
\(666\) −1.16092e10 −1.52280
\(667\) −1.05154e10 −1.37210
\(668\) −7.21350e8 −0.0936329
\(669\) 1.40057e10 1.80847
\(670\) 4.18553e9 0.537636
\(671\) 2.13742e10 2.73124
\(672\) −5.01273e8 −0.0637210
\(673\) −8.83621e9 −1.11741 −0.558706 0.829366i \(-0.688702\pi\)
−0.558706 + 0.829366i \(0.688702\pi\)
\(674\) 9.36826e9 1.17855
\(675\) −1.20821e10 −1.51210
\(676\) 0 0
\(677\) 9.80819e9 1.21487 0.607433 0.794371i \(-0.292199\pi\)
0.607433 + 0.794371i \(0.292199\pi\)
\(678\) 1.20306e9 0.148247
\(679\) 4.60358e8 0.0564354
\(680\) −6.98960e9 −0.852454
\(681\) −2.46973e10 −2.99664
\(682\) −2.75448e9 −0.332501
\(683\) 2.38753e9 0.286732 0.143366 0.989670i \(-0.454207\pi\)
0.143366 + 0.989670i \(0.454207\pi\)
\(684\) −4.33248e9 −0.517654
\(685\) −5.15998e9 −0.613382
\(686\) 6.60888e8 0.0781616
\(687\) −6.23949e8 −0.0734177
\(688\) 3.01255e7 0.00352675
\(689\) 0 0
\(690\) −1.12128e10 −1.29939
\(691\) −1.48851e10 −1.71624 −0.858122 0.513445i \(-0.828369\pi\)
−0.858122 + 0.513445i \(0.828369\pi\)
\(692\) −1.06786e8 −0.0122502
\(693\) 1.85466e9 0.211689
\(694\) 9.27526e9 1.05334
\(695\) −1.74755e9 −0.197462
\(696\) −1.93445e10 −2.17483
\(697\) −9.35143e9 −1.04608
\(698\) −1.41770e10 −1.57794
\(699\) 7.70289e8 0.0853068
\(700\) 8.82500e7 0.00972460
\(701\) −1.19283e10 −1.30787 −0.653935 0.756551i \(-0.726883\pi\)
−0.653935 + 0.756551i \(0.726883\pi\)
\(702\) 0 0
\(703\) 3.96703e9 0.430648
\(704\) 1.66765e10 1.80136
\(705\) −1.38322e10 −1.48673
\(706\) −2.29356e9 −0.245298
\(707\) −1.22372e7 −0.00130231
\(708\) 9.72541e8 0.102989
\(709\) −5.88988e9 −0.620647 −0.310324 0.950631i \(-0.600437\pi\)
−0.310324 + 0.950631i \(0.600437\pi\)
\(710\) −2.77528e9 −0.291006
\(711\) 2.32683e10 2.42784
\(712\) 1.07024e10 1.11122
\(713\) 3.02233e9 0.312268
\(714\) 8.21109e8 0.0844223
\(715\) 0 0
\(716\) −1.58921e9 −0.161802
\(717\) 1.18580e9 0.120142
\(718\) 9.96691e8 0.100490
\(719\) 7.36634e9 0.739095 0.369548 0.929212i \(-0.379513\pi\)
0.369548 + 0.929212i \(0.379513\pi\)
\(720\) −8.47506e9 −0.846212
\(721\) −1.13509e8 −0.0112787
\(722\) 5.49503e9 0.543363
\(723\) −2.14444e10 −2.11023
\(724\) −1.03070e9 −0.100936
\(725\) 5.89595e9 0.574607
\(726\) −3.00166e10 −2.91127
\(727\) 1.60000e10 1.54437 0.772183 0.635401i \(-0.219165\pi\)
0.772183 + 0.635401i \(0.219165\pi\)
\(728\) 0 0
\(729\) 1.71981e10 1.64412
\(730\) −1.52360e9 −0.144958
\(731\) 8.63352e7 0.00817480
\(732\) −1.15955e10 −1.09270
\(733\) 1.72398e10 1.61685 0.808424 0.588600i \(-0.200321\pi\)
0.808424 + 0.588600i \(0.200321\pi\)
\(734\) 7.16093e9 0.668395
\(735\) −1.36638e10 −1.26931
\(736\) −9.61169e9 −0.888643
\(737\) −1.85794e10 −1.70961
\(738\) −1.97180e10 −1.80578
\(739\) −1.45339e10 −1.32473 −0.662366 0.749181i \(-0.730447\pi\)
−0.662366 + 0.749181i \(0.730447\pi\)
\(740\) −2.10771e9 −0.191205
\(741\) 0 0
\(742\) 4.42804e8 0.0397922
\(743\) −5.50310e9 −0.492206 −0.246103 0.969244i \(-0.579150\pi\)
−0.246103 + 0.969244i \(0.579150\pi\)
\(744\) 5.55995e9 0.494955
\(745\) 1.42520e10 1.26279
\(746\) −2.63388e9 −0.232279
\(747\) −1.04250e10 −0.915072
\(748\) 8.33876e9 0.728527
\(749\) −5.03283e8 −0.0437649
\(750\) 1.79779e10 1.55605
\(751\) −1.82503e10 −1.57228 −0.786141 0.618047i \(-0.787924\pi\)
−0.786141 + 0.618047i \(0.787924\pi\)
\(752\) 6.77722e9 0.581152
\(753\) −1.08864e10 −0.929186
\(754\) 0 0
\(755\) −2.02527e9 −0.171265
\(756\) −6.04086e8 −0.0508479
\(757\) 2.26365e9 0.189659 0.0948297 0.995494i \(-0.469769\pi\)
0.0948297 + 0.995494i \(0.469769\pi\)
\(758\) −4.74687e9 −0.395881
\(759\) 4.97731e10 4.13189
\(760\) 5.03618e9 0.416153
\(761\) −5.92208e9 −0.487111 −0.243555 0.969887i \(-0.578314\pi\)
−0.243555 + 0.969887i \(0.578314\pi\)
\(762\) −2.11652e10 −1.73292
\(763\) 3.06453e8 0.0249763
\(764\) 6.19873e9 0.502893
\(765\) −2.42883e10 −1.96147
\(766\) −9.25649e8 −0.0744125
\(767\) 0 0
\(768\) −2.19767e10 −1.75064
\(769\) −1.44521e10 −1.14601 −0.573007 0.819551i \(-0.694223\pi\)
−0.573007 + 0.819551i \(0.694223\pi\)
\(770\) −5.79423e8 −0.0457381
\(771\) 1.35591e10 1.06547
\(772\) 3.51175e8 0.0274703
\(773\) −2.39438e10 −1.86451 −0.932257 0.361796i \(-0.882164\pi\)
−0.932257 + 0.361796i \(0.882164\pi\)
\(774\) 1.82042e8 0.0141117
\(775\) −1.69460e9 −0.130771
\(776\) 1.62387e10 1.24748
\(777\) 9.21282e8 0.0704562
\(778\) −7.66821e9 −0.583802
\(779\) 6.73793e9 0.510676
\(780\) 0 0
\(781\) 1.23194e10 0.925358
\(782\) 1.57444e10 1.17734
\(783\) −4.03588e10 −3.00450
\(784\) 6.69472e9 0.496165
\(785\) −1.52680e10 −1.12652
\(786\) −1.58902e10 −1.16721
\(787\) −5.23881e9 −0.383108 −0.191554 0.981482i \(-0.561353\pi\)
−0.191554 + 0.981482i \(0.561353\pi\)
\(788\) −2.21051e9 −0.160935
\(789\) 1.60024e10 1.15988
\(790\) −7.26935e9 −0.524567
\(791\) −6.82141e7 −0.00490068
\(792\) 6.54212e10 4.67929
\(793\) 0 0
\(794\) 1.15405e10 0.818185
\(795\) −1.83322e10 −1.29398
\(796\) −6.08932e8 −0.0427930
\(797\) −1.63612e10 −1.14475 −0.572376 0.819991i \(-0.693978\pi\)
−0.572376 + 0.819991i \(0.693978\pi\)
\(798\) −5.91629e8 −0.0412135
\(799\) 1.94225e10 1.34708
\(800\) 5.38922e9 0.372144
\(801\) 3.71899e10 2.55689
\(802\) 4.96175e9 0.339645
\(803\) 6.76321e9 0.460944
\(804\) 1.00793e10 0.683967
\(805\) 6.35767e8 0.0429549
\(806\) 0 0
\(807\) −5.18391e10 −3.47216
\(808\) −4.31656e8 −0.0287871
\(809\) −1.34948e10 −0.896080 −0.448040 0.894014i \(-0.647878\pi\)
−0.448040 + 0.894014i \(0.647878\pi\)
\(810\) −2.25701e10 −1.49223
\(811\) −2.97924e10 −1.96125 −0.980625 0.195893i \(-0.937239\pi\)
−0.980625 + 0.195893i \(0.937239\pi\)
\(812\) 2.94788e8 0.0193225
\(813\) −2.55921e10 −1.67028
\(814\) −1.60996e10 −1.04624
\(815\) −1.56991e10 −1.01583
\(816\) 1.66557e10 1.07312
\(817\) −6.22066e7 −0.00399079
\(818\) −1.64246e10 −1.04920
\(819\) 0 0
\(820\) −3.57991e9 −0.226738
\(821\) 3.02544e10 1.90804 0.954021 0.299741i \(-0.0969003\pi\)
0.954021 + 0.299741i \(0.0969003\pi\)
\(822\) 2.13822e10 1.34277
\(823\) 2.21462e10 1.38484 0.692420 0.721495i \(-0.256545\pi\)
0.692420 + 0.721495i \(0.256545\pi\)
\(824\) −4.00393e9 −0.249311
\(825\) −2.79075e10 −1.73034
\(826\) 9.48890e7 0.00585849
\(827\) 1.02462e10 0.629935 0.314967 0.949103i \(-0.398006\pi\)
0.314967 + 0.949103i \(0.398006\pi\)
\(828\) −1.92925e10 −1.18109
\(829\) 1.42575e10 0.869164 0.434582 0.900632i \(-0.356896\pi\)
0.434582 + 0.900632i \(0.356896\pi\)
\(830\) 3.25694e9 0.197713
\(831\) −4.48710e10 −2.71245
\(832\) 0 0
\(833\) 1.91861e10 1.15008
\(834\) 7.24159e9 0.432268
\(835\) 2.91377e9 0.173202
\(836\) −6.00828e9 −0.355654
\(837\) 1.15998e10 0.683774
\(838\) 1.98781e10 1.16686
\(839\) −3.22825e10 −1.88712 −0.943562 0.331195i \(-0.892548\pi\)
−0.943562 + 0.331195i \(0.892548\pi\)
\(840\) 1.16957e9 0.0680848
\(841\) 2.44477e9 0.141727
\(842\) 1.22069e10 0.704716
\(843\) −2.13222e9 −0.122585
\(844\) −8.71510e7 −0.00498969
\(845\) 0 0
\(846\) 4.09534e10 2.32538
\(847\) 1.70195e9 0.0962397
\(848\) 8.98200e9 0.505810
\(849\) −1.19207e10 −0.668535
\(850\) −8.82780e9 −0.493045
\(851\) 1.76652e10 0.982572
\(852\) −6.68325e9 −0.370211
\(853\) −1.14608e10 −0.632254 −0.316127 0.948717i \(-0.602383\pi\)
−0.316127 + 0.948717i \(0.602383\pi\)
\(854\) −1.13135e9 −0.0621575
\(855\) 1.75003e10 0.957557
\(856\) −1.77528e10 −0.967407
\(857\) −5.50942e9 −0.299001 −0.149501 0.988762i \(-0.547767\pi\)
−0.149501 + 0.988762i \(0.547767\pi\)
\(858\) 0 0
\(859\) 1.22212e10 0.657866 0.328933 0.944353i \(-0.393311\pi\)
0.328933 + 0.944353i \(0.393311\pi\)
\(860\) 3.30508e7 0.00177189
\(861\) 1.56478e9 0.0835492
\(862\) −2.55830e10 −1.36043
\(863\) −1.56748e10 −0.830167 −0.415083 0.909783i \(-0.636248\pi\)
−0.415083 + 0.909783i \(0.636248\pi\)
\(864\) −3.68901e10 −1.94586
\(865\) 4.31344e8 0.0226604
\(866\) 6.79864e9 0.355721
\(867\) 1.18196e10 0.615934
\(868\) −8.47273e7 −0.00439748
\(869\) 3.22684e10 1.66805
\(870\) 2.10007e10 1.08123
\(871\) 0 0
\(872\) 1.08098e10 0.552091
\(873\) 5.64280e10 2.87042
\(874\) −1.13442e10 −0.574758
\(875\) −1.01935e9 −0.0514394
\(876\) −3.66903e9 −0.184411
\(877\) 4.79534e9 0.240061 0.120030 0.992770i \(-0.461701\pi\)
0.120030 + 0.992770i \(0.461701\pi\)
\(878\) 3.55061e9 0.177040
\(879\) 4.85487e10 2.41111
\(880\) −1.17532e10 −0.581390
\(881\) 1.67020e10 0.822910 0.411455 0.911430i \(-0.365021\pi\)
0.411455 + 0.911430i \(0.365021\pi\)
\(882\) 4.04548e10 1.98532
\(883\) 2.90550e10 1.42023 0.710115 0.704085i \(-0.248643\pi\)
0.710115 + 0.704085i \(0.248643\pi\)
\(884\) 0 0
\(885\) −3.92842e9 −0.190509
\(886\) −1.76872e10 −0.854360
\(887\) 1.87692e10 0.903054 0.451527 0.892258i \(-0.350879\pi\)
0.451527 + 0.892258i \(0.350879\pi\)
\(888\) 3.24973e10 1.55741
\(889\) 1.20007e9 0.0572863
\(890\) −1.16187e10 −0.552449
\(891\) 1.00188e11 4.74507
\(892\) −7.52854e9 −0.355168
\(893\) −1.39944e10 −0.657619
\(894\) −5.90582e10 −2.76439
\(895\) 6.41933e9 0.299302
\(896\) −1.49578e8 −0.00694689
\(897\) 0 0
\(898\) −2.45176e10 −1.12982
\(899\) −5.66059e9 −0.259838
\(900\) 1.08172e10 0.494613
\(901\) 2.57411e10 1.17244
\(902\) −2.73449e10 −1.24066
\(903\) −1.44465e7 −0.000652914 0
\(904\) −2.40618e9 −0.108328
\(905\) 4.16335e9 0.186712
\(906\) 8.39242e9 0.374920
\(907\) 1.56436e10 0.696162 0.348081 0.937464i \(-0.386833\pi\)
0.348081 + 0.937464i \(0.386833\pi\)
\(908\) 1.32757e10 0.588513
\(909\) −1.49997e9 −0.0662383
\(910\) 0 0
\(911\) 2.04341e10 0.895450 0.447725 0.894171i \(-0.352234\pi\)
0.447725 + 0.894171i \(0.352234\pi\)
\(912\) −1.20008e10 −0.523877
\(913\) −1.44574e10 −0.628700
\(914\) −1.14894e10 −0.497721
\(915\) 4.68380e10 2.02127
\(916\) 3.35395e8 0.0144186
\(917\) 9.00977e8 0.0385852
\(918\) 6.04278e10 2.57803
\(919\) −1.70846e10 −0.726108 −0.363054 0.931768i \(-0.618266\pi\)
−0.363054 + 0.931768i \(0.618266\pi\)
\(920\) 2.24261e10 0.949501
\(921\) −6.96765e10 −2.93885
\(922\) 4.38618e9 0.184301
\(923\) 0 0
\(924\) −1.39533e9 −0.0581869
\(925\) −9.90477e9 −0.411479
\(926\) −2.21859e10 −0.918201
\(927\) −1.39133e10 −0.573657
\(928\) 1.80020e10 0.739440
\(929\) 2.58067e9 0.105603 0.0528017 0.998605i \(-0.483185\pi\)
0.0528017 + 0.998605i \(0.483185\pi\)
\(930\) −6.03598e9 −0.246069
\(931\) −1.38240e10 −0.561450
\(932\) −4.14058e8 −0.0167535
\(933\) −3.91459e10 −1.57798
\(934\) −2.16206e10 −0.868268
\(935\) −3.36830e10 −1.34763
\(936\) 0 0
\(937\) −5.01652e9 −0.199211 −0.0996057 0.995027i \(-0.531758\pi\)
−0.0996057 + 0.995027i \(0.531758\pi\)
\(938\) 9.83420e8 0.0389071
\(939\) 4.01671e10 1.58322
\(940\) 7.43532e9 0.291980
\(941\) −2.55661e10 −1.00023 −0.500116 0.865958i \(-0.666709\pi\)
−0.500116 + 0.865958i \(0.666709\pi\)
\(942\) 6.32681e10 2.46608
\(943\) 3.00040e10 1.16517
\(944\) 1.92476e9 0.0744689
\(945\) 2.44011e9 0.0940584
\(946\) 2.52456e8 0.00969543
\(947\) 3.77249e10 1.44345 0.721727 0.692178i \(-0.243349\pi\)
0.721727 + 0.692178i \(0.243349\pi\)
\(948\) −1.75056e10 −0.667341
\(949\) 0 0
\(950\) 6.36065e9 0.240696
\(951\) −7.90815e10 −2.98156
\(952\) −1.64226e9 −0.0616895
\(953\) 1.31880e10 0.493578 0.246789 0.969069i \(-0.420625\pi\)
0.246789 + 0.969069i \(0.420625\pi\)
\(954\) 5.42764e10 2.02391
\(955\) −2.50387e10 −0.930252
\(956\) −6.37408e8 −0.0235947
\(957\) −9.32214e10 −3.43814
\(958\) −3.64367e10 −1.33894
\(959\) −1.21237e9 −0.0443886
\(960\) 3.65437e10 1.33310
\(961\) −2.58857e10 −0.940865
\(962\) 0 0
\(963\) −6.16896e10 −2.22597
\(964\) 1.15271e10 0.414431
\(965\) −1.41851e9 −0.0508145
\(966\) −2.63452e9 −0.0940333
\(967\) −2.35452e10 −0.837354 −0.418677 0.908135i \(-0.637506\pi\)
−0.418677 + 0.908135i \(0.637506\pi\)
\(968\) 6.00345e10 2.12734
\(969\) −3.43926e10 −1.21432
\(970\) −1.76290e10 −0.620192
\(971\) −2.74435e9 −0.0961994 −0.0480997 0.998843i \(-0.515317\pi\)
−0.0480997 + 0.998843i \(0.515317\pi\)
\(972\) −2.47627e10 −0.864902
\(973\) −4.10600e8 −0.0142897
\(974\) −7.42204e9 −0.257375
\(975\) 0 0
\(976\) −2.29487e10 −0.790102
\(977\) 2.58483e9 0.0886750 0.0443375 0.999017i \(-0.485882\pi\)
0.0443375 + 0.999017i \(0.485882\pi\)
\(978\) 6.50546e10 2.22378
\(979\) 5.15750e10 1.75671
\(980\) 7.34480e9 0.249281
\(981\) 3.75633e10 1.27035
\(982\) −2.88000e10 −0.970515
\(983\) 4.00140e8 0.0134361 0.00671807 0.999977i \(-0.497862\pi\)
0.00671807 + 0.999977i \(0.497862\pi\)
\(984\) 5.51960e10 1.84682
\(985\) 8.92898e9 0.297697
\(986\) −2.94881e10 −0.979665
\(987\) −3.24999e9 −0.107590
\(988\) 0 0
\(989\) −2.77006e8 −0.00910545
\(990\) −7.10224e10 −2.32633
\(991\) 3.08196e10 1.00593 0.502967 0.864305i \(-0.332242\pi\)
0.502967 + 0.864305i \(0.332242\pi\)
\(992\) −5.17410e9 −0.168284
\(993\) −6.10465e10 −1.97851
\(994\) −6.52072e8 −0.0210593
\(995\) 2.45968e9 0.0791585
\(996\) 7.84315e9 0.251526
\(997\) −5.01181e8 −0.0160163 −0.00800814 0.999968i \(-0.502549\pi\)
−0.00800814 + 0.999968i \(0.502549\pi\)
\(998\) 4.15325e10 1.32261
\(999\) 6.77998e10 2.15154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.a.i.1.6 yes 21
13.5 odd 4 169.8.b.f.168.29 42
13.8 odd 4 169.8.b.f.168.14 42
13.12 even 2 169.8.a.h.1.16 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.8.a.h.1.16 21 13.12 even 2
169.8.a.i.1.6 yes 21 1.1 even 1 trivial
169.8.b.f.168.14 42 13.8 odd 4
169.8.b.f.168.29 42 13.5 odd 4